
Resource-Definition Policies for Autonomic Computing

Radu Calinescu
Computing Laboratory, University of Oxford, UK

Email: Radu.Calinescu@comlab.ox.ac.uk

Abstract

The paper introduces a framework for the formal spec-
ification of autonomic computing policies, and uses it to
define a new type of autonomic computing policy termed
a resource-definition policy. We describe the semantics of
resource-definition policies, explain how they can be used as
a basis for the development of autonomic system of systems,
and present a sample data-centre application built using the
new policy type.

1. Introduction

A key objective of autonomic computing is to reduce the
cost and expertise required for the management of complex
IT systems [6], [7], [9]. As a growing number of these sys-
tems are implemented as hierarchies or federations of lower-
level systems [4], techniques that support the development
of autonomic systems of systems are required. This paper
introduces one such technique, which is based on the use
of a new type of autonomic computing policy. Termed a
resource-definition policy, the new policy type specifies how
the autonomic manager at the core of an autonomic system
should expose the system to its environment.

As illustrated in Figure 1, the implementation of resource-
definition policies requires that the reference architecture
for autonomic computing loops from [7] is augmented with
a “synthesise” step. Like in the reference architecture, an
autonomic manager monitors the system resources through
sensors, uses its knowledge to analyse their state and to plan
changes in their configurable parameters, and implements
these changes through effectors. Additionally, the autonomic
manager module that implements the “synthesise” step has
the role to dynamically generate sensor-effector interfaces
that expose the underlying system to its environment as
requested by the user-specified resource-definition policies.
This new functionality supports the runtime integration of
existing autonomic systems into hierarchical, collaborating
or hybrid autonomic systems of systems, such as the one
depicted in Figure 4 and described later in the paper.

The contributions of the paper include a formal framework
for the unified specification and analysis of autonomic com-
puting policies, and the introduction of resource-definition
policies within this framework. While previous work by the
author mentions resource-definition policies at a high level

Managed resources

Autonomic
manager

Manageability adaptors

sensors effectors

Monitor

Analyse

Synthesise

Plan

Knowledge

sensors effectors

Policies
Execute

Figure 1. Autonomic computing system whose control
loop is augmented with an interface synthesis step.

[3], this is the first time that the new type of autonomic
computing policy is introduced formally, and its role and
semantics are presented in detail.

The rest of the paper starts with an overview of related
work in Section 2, followed by the description of our frame-
work for the specification of autonomic computing policies
in Section 3. Section 4 provides a formal introduction to
resource-definition policies. Section 5 describes the proto-
type implementation of an autonomic manager that handles
resource-definition policies. System-of-systems application
development using the new policy type is discussed in
Section 6, followed by concluding remarks in Section 7.

2. Related Work

The idea to integrate a set of autonomic systems into
a higher-level autonomic system is not new. Indeed, the
seminal paper of Kephart and Chess [7] envisaged auto-
nomic elements that “interact with other elements and with
human programmers via their autonomic managers”. More
recently, this vision was realised successfully by autonomic
computing systems from areas including aerospace [5] and
“beyond 3G” networking [10]. However, these systems are
characterised by pre-defined types of interactions between
their autonomic elements. Due to the statically implemented
sensor-effector interfaces of their autonomic elements, the
potential applications of these systems are limited to those
pre-planned during their original development. In contrast,
the use of resource-definition policies makes possible the au-
tomated, runtime generation of the sensor-effector interfaces
of autonomic elements, thus supporting the development of
unforeseen autonomic applications.

2009 Fifth International Conference on Autonomic and Autonomous Systems

978-0-7695-3584-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICAS.2009.16

111

The architecture and functionality of the autonomic sys-
tems of systems built using resource-definition policies re-
semble those of intelligent multi-agent systems [12]. How-
ever, the typical approach to multi-agent system develop-
ment [12] involves defining and implementing the agent
interfaces statically, before the components of the system
are deployed. In contrast, our approach has the advantage
that these interfaces can flexibly be defined at runtime, thus
enabling the development of applications not envisaged until
after the components of the system are deployed.

A unified framework that interrelates three types of auto-
nomic computing policies was introduced in [8]. Based on
the concepts of state and action (i.e., state transition) adopted
from the field of artificial intelligence, this framework makes
possible the effective high-level analysis of the relation-
ships among action, goal and utility-function policies for
autonomic computing. Our policy specification framework
differs essentially from the one in [8], which it complements
through enabling the formal specification and analysis of all
these policy types in terms of the knowledge employed by
the autonomic manager that implements them.

3. A Framework for the Formal Specification
of Autonomic Computing Policies

Before introducing the new type of policy, we will
formally define the knowledge module of the autonomic
manager in Figure 1. This knowledge is a tuple that models
the n ≥ 1 resources of the system and their behaviour:

K = (R1, R2, . . . , Rn, f), (1)

where Ri, 1 ≤ i ≤ n is a formal specification for the ith
system resource, and f is a model of the known behaviour
of the system. Each resource specification Ri represents a
named sequence of mi ≥ 1 resource parameters, i.e.,

Ri = (resIdi, Pi1, Pi2, . . . , Pimi),∀1 ≤ i ≤ n, (2)

where resIdi is an identifier used to distinguish between
different types of resources. Finally, for each 1 ≤ i ≤ n,
1 ≤ j ≤ mi, the resource parameter Pij is a tuple

Pij = (paramId ij ,ValueDomainij , typeij) (3)

where paramId ij is a string-valued identifier used
to distinguish the different parameters of a resource;
ValueDomainij is the set of possible values for Pij ; and
typeij ∈ {ReadOnly, ReadWrite} specifies whether the
autonomic manager can only read or can both read and
modify the value of the parameter. The parameters of each
resource must have different identifiers, i.e.,

∀1≤ i≤n • ∀1≤j < k ≤mi • paramId ij 6= paramId ik

We further define the state space S of the system as the
Cartesian product of the value domains of all its ReadOnly

resource parameters, i.e.,

S =

1≤i≤n

1≤j≤mi

typeij=ReadOnly

ValueDomainij (4)

Similarly, the configuration space C of the system is defined
as the Cartesian product of the value domains of all its
ReadWrite resource parameters, i.e.,

C =

1≤i≤n

1≤j≤mi

typeij=ReadWrite

ValueDomainij (5)

With this notation, the behavioural model f from (1) is a
partial function1

f : S × C 7→ S

such that for any (s, c) ∈ domain(f), f(s, c) represents the
expected future state of the system if its current state is s ∈ S
and its configuration is set to c ∈ C. Presenting classes of
behavioural models that can support the implementation of
different autonomic computing policies is beyond the scope
of this paper; for a description of such models see [3].

The standard types of autonomic policies described in [8],
[11] can be defined using this notation as follows:

1. An action policy specifies how the system configuration
should be changed when the system reaches certain
state/configuration combinations:

paction : S × C 7→ C. (6)

Note that an action policy can be implemented even when
domain(f) = ∅ in (1).

2. A goal policy partitions the state/configuration combina-
tions for the system into desirable and undesirable:

pgoal : S × C → {true, false}, (7)

with the autonomic manager requested to maintain the
system in an operation area for which pgoal is true.

3. A utility policy associates a value with each state/con-
figuration combination, and the autonomic manager
should adjust the system configuration such as to max-
imise this value:

putility : S × C → R. (8)

Example 1 To illustrate the application of the notation
introduced so far, consider the example of an autonomic
data-centre comprising a pool of nServers ≥ 0 servers that
need to be partitioned among the N ≥ 1 services that the
data-centre can provide. Assume that each such service has
a priority and is subjected to a variable workload. The
knowledge (1) for this system can be expressed as a tuple

K = (ServerPool ,Service1, . . . ,Servicen, f) (9)

where the models for the server pool and for a generic
service i, 1 ≤ i ≤ N are given by:

1. A partial function on a set X is a function whose domain is a subset
of X . We use the symbol 7→ to denote partial functions.

112

ServerPool = ("serverPool",
("nServers", N, ReadOnly),
("partition", NN , ReadWrite))

Servicei = ("service",
("priority", N+, ReadOnly),
("workload", N, ReadOnly))

(10)
The state and configuration spaces of the system are S =
N × (N+ × N)N and C = NN , respectively. For sim-
plicity, we will consider that the workload of a service
represents the minimum number of operational servers it
requires to achieve its service-level agreement. Sample ac-
tion, goal and utility policies for the system are specified
below by giving their values for a generic data-centre state
s = (n, p1, w1, p2, w2, . . . , pN , wN) ∈ S and configuration
c = (n1, n2, . . . , nN) ∈ C:

paction(s, c) = (dαw1e, dαw2e, . . . , dαwNe) (11)

pgoal(s, c) = ∀1 ≤ i ≤ N •
(ni >0 =⇒ (∀1≤j≤N • pj >pi =⇒ nj =dαwje)) ∧(
ni = 0 =⇒

N∑
j = 1

pj ≥ pi

nj = n

)
(12)

putility(s, c)=


−∞, if

N∑
i=1

ni >n

N∑
i = 1

wi > 0

piu(wi, ni)− ε
N∑

i=1

ni, otherwise

(13)
The action policy (11) prescribes that dαwie servers are
allocated to service i, 1 ≤ i ≤ N at all times. Notice how
a redundancy factor α ∈ (1, 2) is used in a deliberately
simplistic attempt to increase the likelihood that at least
wi servers will be available for service i in the presence
of server failures. Also, the policy is (over)optimistically
assuming that n≥

∑N
i=1dαwie at all times.

The goal policy (12) specifies that the desirable
state/configuration combinations of the data-centre are those
in which two conditions hold for each service. The first
condition states that a service i should be allocated servers
only if each service j of higher priority has already been
allocated dαwje servers. The second condition states that a
service should be allocated no server only if all n available
servers were allocated to services of higher or equal priority.

Finally, the utility policy requires that the value of the
expression in (13) is maximised. The value −∞ in this
expression is used to avoid the configurations in which more
servers than the n available are allocated to the services.
When this is not the case, the value of the policy is given
by the combination of two sums. The first sum encodes the
utility u(wi, ni) of allocating ni servers to each service i
with wi > 0, weighted by the priority pi of the service.

u : R+ × R+ → [0, 1]

u(w, n) =


0, if n < (2− α)w

n−(2−α)w
2(α−1)w , if (2− α)w ≤ n ≤ αw

1, if n > αw

α ∈ (1, 2)

u(w0, n)

0

1

w0 αw0(2− α)w0

n

Figure 2. Sample function u for Example 1 (the graph
shows u for a fixed value w0 of its first argument)

By setting ε to a small positive value (i.e., 0 < ε � 1),
the second sum ensures that from all server partitions that
maximise the first sum, the one that uses the smallest number
of servers is chosen at all times. A sample function u
is shown in Figure 2; a more realistic u and a matching
behavioural model f from (9) are described in [3].

4. Resource-Definition Policies

Definition Using R to denote the set of all resource models
with the form in (2), and E(S, C) to denote the set of all
expressions defined on the Cartesian product S×C, we can
now give the generic form of a resource-definition policy as

pdef : S × C → R× E(S, C)q, (14)

where, for any (s, c) ∈ S × C,

pdef(s, c) = (R,E1, E2, . . . , Eq). (15)

In this definition, R represents the resource that the auto-
nomic manager is required to synthesise, and the expressions
E1, E2, . . . , Eq specify how the autonomic manager will
calculate the values of the q ≥ 0 ReadOnly parameters of
R as functions of (s, c). Assuming that the value domain
for the ith ReadOnly parameter of R, 1 ≤ i ≤ q is
ValueDomaini, we have Ei : S × C → ValueDomaini.

Example 2 Consider again the autonomic data-centre
from Example 1. A sample resource-definition policy that
complements the utility policy in (13) is given by

pdef(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),
"dataCentre A",

max
(x1,x2,...,xN)∈NN

∑1≤i≤N
wi>0 piu(wi, xi),∑1≤i≤N

wi>0 piu(wi, ni))

(16)

This policy requests the autonomic manager to synthesise
a resource termed a "dataCentre" and comprising three
ReadOnly parameters: id is a string-valued identifier with
the constant value "dataCentre A", while maxUtility
and utility represent the maximum and actual utility
values associated with the autonomic data-centre when it
implements policy (13). (The term ε

∑N
i=1 ni from the policy

definition is insignificant, and was not included in (16) for
simplicity.) Exposing the system through this synthesised

113

resource enables an external autonomic manager to monitor
how close the data-center is to achieving its maximum utility.

Synthesised Resources with ReadWrite Parameters
We will next explore the semantics and applications of
ReadWrite (i.e., configurable) parameters in synthesised
resources. These are parameters whose identifiers and value
domains are specified through a resource-definition policy,
but whose values are set by an external entity such as
another autonomic manager. Because these parameters do
not correspond to any element of the managed resources
within the autonomic system, the only way ensure that they
have an influence on the autonomic system in Figure 1
as a whole is to take them into account within the set of
policies implemented by the autonomic manager. This is
achieved by redefining the state space S of the system. Thus,
in the presence of resource-definition policies requesting
the synthesis of high-level resources with a non-empty set
of ReadWrite parameters {P synth

1 , P synth
2 , . . . , P synth

r }, the
state space definition (4) is replaced by:

S =



1≤i≤n

1≤j≤mi

typeij=ReadOnly

ValueDomainij

×

(

1≤i≤r
ValueDomainsynth

i

)
,

(17)

where ValueDomainsynth
i represents the value domain of

the ith synthesised resource parameter P synth
i , 1 ≤ i ≤ r.

Example 3 Consider again our running example of an
autonomic data-centre. The resource-definition policy in (16)
can be extended to allow a peer data-centre (such as a data-
centre running the same set of services within the same
security domain) to take advantage of any spare servers:

p′def(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),
("nSpare", N, ReadOnly)),
("peerRequest", NN , ReadWrite)),
"dataCentre A",

max
(x1,x2,...,xN)∈NN

∑1≤i≤N
wi>0 piu(wi, xi),∑1≤i≤N

wi>0 piu(wi, ni), n−
∑N

i=1 ni)

(18)

The synthesised resource has two new parameters: nSpare
represents the number of servers not allocated to any (local)
service; and peerRequest is a vector (nl

1, n
l
2, . . . , n

l
N) that

a remote data-centre can set to request that the local data-
centre assigns nl

i of its servers to service i, for all 1≤ i≤N .
To illustrate how this is achieved, we will consider two

data-centres that each implements the policy in (18), and
which have access to each other’s "dataCentre" resource
as shown in the lower half of Figure 4. For simplicity, we

will further assume that the data-centres are responsible for
disjoint sets of services (i.e., there is no 1 ≤ i ≤ N such that
wi > 0 for both data-centres). To ensure that the two data-
centres collaborate, we need policies that specify how each
of them should set the peerRequestr parameter of its peer,
and how it should use its own peerRequestl parameter
(which is set by the other data-centre). The "dataCentre"
parameters have been annotated with l and r to distinguish
between identically named parameters belonging to the local
and remote data-centre, respectively. Before giving a utility
policy that ensures the collaboration of the two data-centres,
it is worth mentioning that the state of each has the form
s = (n, p1, w1, p2, w2, . . . , pN , wN , nr, nl

1, n
l
2, . . . , n

l
N) (cf.

(17)); and the system configuration has the form c =
(n1, n2, . . . , nN , nr

1, n
r
2, . . . , n

r
N). The utility policy to use

alongside policy (18) is given below:

p′utility(s, c) =

=



−∞, if
N∑

i=1

ni >n ∨
N∑

i=1

nr
i >nr

N∑
i = 1

wi > 0

piu(wi, ni + nr
i)− ε

N∑
i=1

ni−

−λ
N∑

i=1

nr
i + µ

N∑
i = 1

nl
i > 0

min
(
1, ni

nl
i

) , otherwise

(19)
where 0 < ε � λ, µ � 1 are user-specified constants. The
value −∞ is used to avoid the configurations in which more
servers than available (either locally or from the remote data-
centre) are allocated to the local services. The first two sums
in the expression that handles all other scenarios are similar
to those from utility policy (13), except that ni + nr

i rather
than ni servers are being allocated to any local service i
for which wi > 0. The term −λ

∑N
i=1n

r
i ensures that the

optimal utility is achieved with as few remote servers as
possible, and the term µ

∑1≤i≤N

nl
i>0

min(1, ni

nl
i

) requests the
policy engine to allocate local servers to services for which
nl

i >0. Observe that the contribution of a term µmin(1, ni

nl
i

)
to the overall utility increases as ni grows from 0 to nl

i, and
stays constant if ni increases beyond nl

i. Together with the
utility term −ε

∑N
i=1ni, this determines the policy engine to

never allocate more than the requested nl
i servers to service

i. Small positive constants are used for the weights ε, λ and
µ so that the terms they belong to are negligible compared
to the first utility term. Further, choosing ε�λ ensures that
using a local server decreases the utility less than using a
remote one; and setting ε�µ ensures that allocating up to
nl

i servers to a service i at the request of the remote data-
center increases the system utility.

Finally, since the requests for remote servers and the
allocation of such servers happen asynchronously, there
is a risk that the parameter values in policy (19) may
be out of date. However, this is not a problem, as the

114

resource synthesised from policy (18)manually implemented manageability

service

priority : unsigned
workload : unsigned

serverPool dataCentre

id : String
maxUtility : double
utility : double
nSpare: unsigned
peerRequest : unsigned[1..N]

adaptors

generic autonomic computing framework from [3]

ManagedResource〈〉 :
System.Web.Services.WebService

ManagedServerPool :

ManagedResource〈service〉
ManagedService : ManagedDataCentre :

ManagedResource〈dataCentre〉

Figure 3. Class diagram for Example 4
allocation of fewer or more remote servers than ideally
required is never decreasing the utility of a data-centre
below the value achieved when the data-centre operates
in isolation. Additionally, local servers are never used for
remote services at the expense of the local services because∑1≤i≤N

wi>0 piu(wi, ni) � µ
∑1≤i≤N

nl
i>0

min(1, ni/nl
i)) in (19).

5. Prototype Implementation
The policy engine (i.e., policy-based autonomic manager)

introduced by the author in [2] was extended with the ability
to handle resource-definition policies. Implemented as a
model-driven, service-oriented architecture with the charac-
teristics presented in [1], the policy engine from [2] can
manage IT resources whose model is supplied to the engine
in a runtime configuration step. The policy engine is imple-
mented as a .NET web service, and the manageability adap-
tors from Figure 1 are implemented as web services that spe-
cialise a generic, abstract web service ManagedResource〈〉.
For each type of resource in the system, a manageability
adaptor is built in two steps. First, a class (i.e., a data type)
Ti is generated from the resource model (2) that will be used
to configure the policy engine. Second, the manageability
adaptor ManagedTi for resources of type Ti is implemented
by specialising our generic ManagedResource〈〉 adaptor,
i.e., ManagedTi : ManagedResource〈Ti〉. This process is
described in [2]. Adding support for the implementation
of resource-definition policies involved extending the policy
engine with the following functionality:
1. Automated generation of a .NET class T for the syn-

thesised resource R from (15). This class is built by
including a field and the associated getter/setter methods
for each parameter of R. The types of these fields are
given by the value domains of the resource parameters.

2. Automated creation of an instance of T using reflection
(i.e., an object-oriented programming technique that al-
lows the runtime discovery and creation of objects based
on their metadata). The ReadOnly fields of this object
are updated by evaluating expressions E1, E2, . . . , Eq

whenever the object is accessed by an external entity.

autonomic data-centre

top-level
autonomic
manager

dashboard

service service service service
autonomic data-centre

synthesised
"dataCentre"

resource

synthesised
"dataCentre"

resource

Figure 4. Autonomic system of systems

3. Automatic generation of a manageability adaptor web
service ManagedT : ManagedResource〈T〉. The web
methods provided by this manageability adaptor allow
entities from outside the autonomic system (e.g., external
autonomic managers) to access the object of type T
maintained by the policy engine. The fields of this object
that correspond to ReadOnly parameters of R can be
read, and those corresponding to ReadWrite parameters
can be read and modified, respectively.

The .NET components generated in steps 1 and 3 are
deployed automatically, and made accessible through the
same Microsoft IIS instance as the policy engine.

Example 4 Returning to our running example of an
autonomic data-centre, the class diagram in Figure 3 de-
picts the manageability adaptors in place after policy (18)
was supplied to the policy engine. Thus, the Managed-
ServerPool and ManagedService classes in this diagram
represent the manageability adaptors implemented manu-
ally for the ServerPool and Service resources described
in Example 1. The other manageability adaptor derived
from ManagedResource〈〉 (i.e., ManagedDataCentre) was
synthesised automatically by the policy engine as a result of
handling the resource-definition policy. Also shown in the
diagram are the classes used to represent instances of the
IT resources within the system—serverPool and service
for the original autonomic system, and dataCentre for the
resource synthesised from policy (18).

6. Application Development
System-of-systems application development with re-

source-definition policies involves supplying such policies
to existing autonomic systems whose autonomic managers
support the new policy type. Hierarchical systems of sys-
tems can then be built by setting a higher-level autonomic
manager to monitor and/or control the resources synthesised
as a result of implementing these policies. Alternatively, the
original autonomic systems can be configured to collaborate
with each other by means of the synthesised resource sensors

115

Figure 5. Dashboard for isolated data-centre (left) and for identical data-centre operating as part of the autonomic
system of systems from Figure 4 (right)

and effectors. Hybrid applications comprising both types of
interactions are also possible, as illustrated below.

Example 5 The policy engine from Section 5 was used
to simulate an autonomic system of systems comprising
the pair of autonomic data-centres described in Exam-
ple 3, and a top-level autonomic manager that monitors and
summarises their performance using a dashboard resource
(Figure 4). The policies implemented by the autonomic
managers local to each data-centre are policies (18)–(19)
from Example 3. The top-level autonomic manager im-
plements a simple action policy that periodically copies
the values of the maxUtility and utility parameters
of the "dataCentre" resources synthesised by the data-
centres into the appropriate ReadWrite parameters of the
dashboard. For brevity, we do not give this policy here; a
sample action policy was presented earlier in Example 1.

We used the data-centre simulators from [3], and imple-
mented the dashboard as an ASP.NET web page provided
with a manageability adaptor built manually as described
in Section 5 and in [2]. Separate series of experiments for
20-day simulated time periods were run for two scenarios.
In the first scenario, the data-centres were kept operating
in isolation, by blocking the mechanisms they could use to
discover each other. In the second scenario, the data-centres
were allowed to discover each other, and thus to collaborate
through implementing policy (19). Figure 5 depicts typical
snapshots of the dashboard for both scenarios; the same
workloads were used in both experiments shown. As ex-
pected from the analysis in Example 3, the system achieves
higher utility when data-centre collaboration is enabled.

7. Conclusions

We introduced a policy specification framework for auto-
nomic computing, and used it to formally define the existing
types of autonomic computing policies from [8], [11] and
a new type of policy that we termed a resource-definition
policy. The semantics of resource-definition policies and

their use in the development of hierarchical, collaborating
and hybrid autonomic systems of systems are described in
the paper. Also, we presented the change to the reference
autonomic computing loop from [7] that is required to
implement these policies, and described a prototype imple-
mentation of an autonomic manager that supports them.

Acknowledgement This work was partly supported by the
UK EPSRC grant EP/F001096/1.

References
[1] R. Calinescu. Model-driven autonomic architecture. In Proc.

4th IEEE Intl. Conf. Autonomic Computing, 2007.
[2] R. Calinescu. Implementation of a generic autonomic frame-

work. In D. Greenwood et al., editors, Proc. 4th Intl. Conf.
Autonomic and Autonomous Systems, pages 124–129, 2008.

[3] R. Calinescu. General-purpose autonomic computing. In
M. Denko et al., editors, Autonomic Computing and Network-
ing. Springer, April 2009.

[4] G. Goth. Ultralarge systems: Redefining software engineer-
ing? IEEE Software, 25(3):91–94, May/June 2008.

[5] M. Hinchey et al. Modeling for NASA autonomous nano-
technology swarm missions and model-driven autonomic
computing. In Proc. 21st Intl. Conf. Advanced Networking
and Applications, pages 250–257, 2007.

[6] M. Huebscher and J. McCann. A survey of autonomic
computing—degrees, models, and applications. ACM Com-
put. Surv., 40(3):1–28, 2008.

[7] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer Journal, 36(1):41–50, Jan. 2003.

[8] J. O. Kephart and W. E. Walsh. An artificial intelligence
perspective on autonomic computing policies. In Proc. 5th
IEEE Intl. Workshop on Policies for Distributed Systems and
Networks, 2004.

[9] M. Parashar and S. Hariri. Autonomic Computing: Concepts,
Infrastructure & Applications. CRC Press, 2006.

[10] D. Raymer et al. From autonomic computing to autonomic
networking: an architectural perspective. In Proc. 5th IEEE
Workshop on Engineering of Autonomic and Autonomous
Systems, pages 174–183, 2008.

[11] W. Walsh et al. Utility functions in autonomic systems. In
Proc. 1st Intl. Conf. Autonomic Computing, pp. 70–77, 2004.

[12] M. Wooldridge. An Introduction to Multi-agent Systems. J.
Wiley and Sons, 2002.

116

