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Abstract

We consider a class of infinite-state Markov decision processes generated by state-
less pushdown automata. This class corresponds to 11

2 -player games over graphs
generated by BPA systems or (equivalently) 1-exit recursive state machines. An
extended reachability objective is specified by two sets S and T of safe and terminal
stack configurations, where the membership to S and T depends just on the top-
of-the-stack symbol. The question is whether there is a suitable strategy such that
the probability of hitting a terminal configuration by a path leading only through
safe configurations is equal to (or different from) a given x ∈ {0, 1}. We show that
the qualitative extended reachability problem is decidable in polynomial time, and
that the set of all configurations for which there is a winning strategy is effectively
regular. More precisely, this set can be represented by a deterministic finite-state
automaton with a fixed number of control states. This result is a generalization of
a recent theorem by Etessami & Yannakakis which says that the qualitative termi-
nation for 1-exit RMDPs (which exactly correspond to our 11

2 -player BPA games)
is decidable in polynomial time. Interestingly, the properties of winning strategies
for the extended reachability objectives are quite different from the ones for termi-
nation, and new observations are needed to obtain the result. As an application, we
derive the EXPTIME-completeness of the model-checking problem for 11

2 -player
BPA games and qualitative PCTL formulae.
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1 Introduction

11
2
-player games (or Markov decision processes) are a fundamental model in

the area of system design and control optimization [13,9]. Formally, a 11
2
-player

game G is a directed graph where the vertices are split into two disjoint sub-
sets V2 and V©. For every v ∈ V©, there is a fixed probability distribution
over the set of its outgoing transitions. A play is initiated by putting a token
on some vertex. The token is then moved from vertex to vertex by one “real”
player 2 (controller) and one “virtual” player © (stochastic environment),
who are responsible for selecting outgoing transitions in the vertices of V2 and
V©, respectively. Player © does not make a real choice, but selects his next
move randomly according to the fixed probability distribution over the out-
going transitions. A strategy specifies how player 2 should play. In general, a
strategy may or may not depend on the history of a play (we say that a strat-
egy is history-dependent (H) or memoryless (M)), and the transitions may be
chosen deterministically or randomly (deterministic (D) and randomized (R)
strategies). In the case of randomized strategies, player 2 chooses a proba-
bility distribution on the set of outgoing transitions. Note that deterministic
strategies can be seen as restricted randomized strategies, where one of the
outgoing transitions has probability 1. Each strategy σ determines a unique
Markov chain G(σ) where the states are finite paths in G, and wu → wuu′

with probability x iff (u, u′) is a transition in the game and x is the prob-
ability chosen by player 2, or the fixed probability of the transition (u, u′)
when u ∈ V©. A winning objective for player 2 is some property of Markov
chains that is to be achieved. A winning strategy is a strategy that achieves
the objective. In the context of “classical” MDP theory, winning objectives
are typically related to long-time characteristics such as the expected total
reward, the expected reward per transition, etc. [13,9]. In the context of for-
mal verification, winning objectives are often specified as formulae of suitable
temporal logics and their probabilistic variants such as PCTL or PCTL∗ [11].
For games with finitely many vertices, the corresponding decision algorithms
have been designed [11,2,1] and also implemented in verifications tools such as
PRISM (see, e.g., [12]). Recently, the scope of this study has been extended to
a class of infinite-state games generated by recursive state machines (RSM)
[7,8]. Intuitively, a RSM is a finite collection of finite-state automata which
can call each other in a recursive fashion, maintaining the (unbounded) stack
of activation records. RSM are semantically equivalent to pushdown automata
(PDA), and there are effective linear-time translations between the two mod-
els. A given RSM can be encoded in PDA syntax by storing the collection
of finite-state automata in the control unit, and the recursive calls/returns
are modeled by pushing/popping symbols onto/from the stack. An important
subclass of RSM are 1-exit RSM, where each finite-state automaton in the
collection terminates in exactly one state. This means that no information
can be returned back to the caller. In PDA terms, this means that whenever a
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given stack symbol X is popped from the stack, the same control state pX is
entered. Hence, the finite-state control unit can be encoded directly into the
stack alphabet and simulated in top-of-the-stack symbol. Thus, 1-exit RSM
can effectively be represented as stateless PDA, which are also denoted BPA
in the context of concurrency theory.

Now we briefly summarize some of the results presented in [7,8]. To be able
to give a clear comparison with our work, we reformulate these results in
PDA/BPA terminology. A termination objective is specified by two control
states p, q and one stack symbol X of a given PDA. The task of player 2

is to maximize/minimize the probability of hitting qε from pX (each “head”
rY in a given PDA is either probabilistic or non-deterministic; transitions
from probabilistic heads are chosen randomly according to a fixed distribution,
while the transitions from non-deterministic heads can be chosen by player 2).
In the case of BPA, there are no control states and the termination objective
is specified simply by the stack symbol which is to be removed.

In [7,8], it has been shown that optimal minimizing/maximizing strategies in
general 11

2
-player PDA games with termination objectives do not always ex-

ist, and that the problem whether for every 0 < δ ≤ 1 there is a strategy
such that termination is achieved with probability at least 1 − δ is undecid-
able. The situation is different for 11

2
-player BPA games, where the optimal

minimizing/maximizing strategies do exist, and can be constructed so that
they depend only on top-of-the-stack symbol of a given configuration. Hence,
the optimal strategies are stackless, memoryless, and deterministic (SMD).
Furthermore, the corresponding minimal/maximal termination probabilities
are expressible as the least solution of an effectively constructible system of
non-linear min/max equations. Since the least solution of this system can ef-
fectively be expressed in first-order theory of the reals, this entails the decid-
ability of the quantitative termination problem, i.e., the question whether the
minimal/maximal achievable termination probability is bounded by a given
constant. For the qualitative subcase (i.e., the problem whether the mini-
mal/maximal achievable termination probability is equal to one), polynomial-
time algorithms have been designed.

Our contribution: In this paper we consider 11
2
-player BPA games with

extended reachability objectives (EROs). An ERO is specified by two sets of
safe and terminal stack symbols. A configuration is safe/terminal iff its top-of-
the-stack symbol is safe/terminal. A run w satisfies a given ERO iff w visits a
terminal configuration and all configurations preceding this visit are safe. The
goal of player 2 is to minimize/maximize the probability of all runs satisfying
a given ERO. Note that termination objectives can easily be encoded as EROs
(this may require a new bottom-of-the-stack symbol). However, the properties
of EROs are surprisingly different from the ones of termination objectives (in
contrast, methods for termination can easily be extended to EROs for fully
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probabilistic PDA [5]). We show that optimal maximizing strategies may not
exist at all, and even if they do exist, they are not necessarily SMD. The
optimal minimizing strategies are guaranteed to exist, but are not necessarily
SMD. The method of expressing the minimal/maximal termination probability
by a system of non-linear min/max equations used in [7] cannot be easily
extended to EROs, and the reasons seem to be fundamental.

At the core of our paper are results about qualitative EROs. We show that
the sets of all configurations for which there exists a strategy such that the
probability of all runs satisfying a given ERO is equal to zero (equal to one,
larger than zero, less than one, resp.) are regular and the corresponding finite-
state automata can be constructed in polynomial time. In our algorithms, we
use the results about qualitative termination as “black boxes” and concentrate
on problems that are specific to EROs. We note that the subcase “equal to
one”, and particularly the subcase “less than one”, require non-trivial methods
and observations.

As an application, we design an exponential-time model-checking algorithm
for 11

2
-player BPA games and the qualitative fragment of the logic PCTL.

More precisely, our algorithm is polynomial in the size of a given BPA and
exponential in the size of a given formula (hence, the algorithm becomes poly-
nomial for each fixed formula). Since there is a matching EXPTIME lower
bound [4], we yield the EXPTIME-completeness of the problem. As a con-
sequence we also obtain the EXPTIME-completeness of the model-checking
problem for fully probabilistic BPA and qualitative PCTL (fully probabilistic
BPA correspond to a subclass of 11

2
-player BPA games where all heads are

probabilistic). This problem was studied in [5,4], but the best known upper
complexity bound was EXPSPACE.

2 Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational
numbers, real numbers, and non-negative real numbers are denoted N, N0,
Q, R, and R≥0, respectively. For every finite or countably infinite set M ,
the symbol M∗ denotes the set of all finite words over M . The length of
a given word w is denoted |w|, and the individual letters in w are denoted
w(0), · · · , w(|w|− 1). The empty word is denoted by ε, where |ε| = 0. We also
use M+ to denote the set M∗ r {ε}.

We start by recalling basic notions of probability theory. Let A be a finite or
countably infinite set. A probability distribution on A is a function f : A → R≥0

such that
∑

a∈A f(a) = 1. A distribution f is rational if f(a) ∈ Q for every
a ∈ A, positive if f(a) > 0 for every a ∈ A, and Dirac if f(a) = 1 for some
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a ∈ A. The set of all distributions on A is denoted D(A).

A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under
complement and countable union. A measurable space is a pair (X,F) where
X is a set called sample space and F is a σ-field over X. A probability measure
over a measurable space (X,F) is a function P : F → R≥0 such that, for each
countable collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =∑

i∈I P(Xi), and moreover P(X) = 1. A probability space is a triple (X,F ,P)
where (X,F) is a measurable space and P is a probability measure over (X,F).

2.1 Markov chains

A Markov chain is a tripleM = (M,→,Prob) where M is a finite or countably
infinite set of states, → ⊆ M ×M is a set of transitions such that for every
s ∈ M there is some transition (s, t) ∈ →, and Prob is a function which to each
s ∈ M assigns a positive probability distribution over the set of its outgoing
transitions.

In the rest of this paper we write s → t instead of (s, t) ∈ →, and s
x→ t instead

of Prob((s, t)) = x. A path inM is a finite or infinite sequence w = s0, s1, · · · of
states such that si → si+1 for every i. The length of a finite path w = s0, · · · , si,
denoted |w|, is i + 1. We also use w(i) to denote the state si of w, and wi to
denote the path si, si+1, · · · (by writing w(i) = s or wi we implicitly impose
the condition that |w| ≥ i+1). A state t is reachable from a state s, written
s →∗ t, if there is a finite path from s to t.

A run is an infinite path. The sets of all finite paths and all runs of M are
denoted FPath(M) and Run(M), respectively. Similarly, the sets of all finite
paths and runs that start in a given s ∈ M are denoted FPath(M, s) and
Run(M, s), respectively.

Each w ∈ FPath(M) determines a basic cylinder Run(M, w) which consists
of all runs that start with w. To every s ∈ M we associate the probability
space (Run(M, s),F ,P) where F is the σ-field generated by all basic cylinders
Run(M, w) where w starts with s, and P : F → R≥0 is the unique probability
measure such that P(Run(M, w)) = Πm−1

i=0 xi where w = s0, · · · , sm and si
xi→

si+1 for every 0 ≤ i < m (if m = 0, we put P(Run(M, w)) = 1).

2.2 Games and strategies

A 11
2
-player game (or Markov decision process) is a tuple G = (V, 7→

, (V2, V©),Prob) where V is a finite or countably infinite set of vertices,
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7→ ⊆ V × V is a set of transitions, (V2, V©) is a partition of V , and Prob
is a probability assignment which to each v ∈ V© assigns a positive probabil-
ity distribution on the set of its outgoing transitions. We write v 7→ u instead
of (v, u) ∈ 7→, and v

x7→ u when v 7→ u, v ∈ V©, and Prob((v, u)) = x. For
technical convenience, we assume that each vertex has at least one outgoing
transition. We say that G is finitely-branching if for each v ∈ V there are only
finitely many u ∈ V such that v 7→ u.

The game is played by a player 2 who selects the moves in the V2 vertices,
and a “virtual” player © who selects the moves in the V© vertices according
to the corresponding probability distribution.

A strategy for player 2 is a function σ which to each wv ∈ V ∗V2 assigns a
probability distribution on the set of outgoing transitions of v. We say that
a strategy σ is memoryless (M) if σ(wv) depends just on the last vertex v,
and deterministic (D) if σ(wv) is a Dirac distribution for each wv ∈ V ∗V2.
Strategies that are not necessarily memoryless are called history-dependent
(H), and strategies that are not necessarily deterministic are called randomized
(R). Hence, we can define the following four classes of strategies: MD, MR,
HD, and HR, where MD ⊆ HD ⊆ HR and MD ⊆ MR ⊆ HR, but MR and
HD are incomparable.

Each strategy σ for player 2 determines a unique play of the game G, which is
a Markov chain G(σ) where V + is the set of states, and wu

x→ wuu′ iff u 7→ u′

and one of the following conditions holds:

• u ∈ V© and u
x7→ u′;

• u ∈ V2 and σ(wu) assigns x to u 7→ u′, where x > 0.

For every w ∈ Run(G(σ)) and every i ∈ N0, we define w[i] to be the last
vertex of w(i) (realize that w(i) is a finite sequence of vertices of the game G).
Further, for all S, T ⊆ V and u ∈ V , we define the sets

• Run(G(σ), u, S U T ) = {w ∈ Run(G(σ), u) | ∃j ≥ 0 : w[j] ∈ T ∧∀i < j : w[i] ∈ S}

• Run(G(σ), u,X S) = {w ∈ Run(G(σ), u) | w[1] ∈ S}

• Run(G(σ), u,FT ) = {w ∈ Run(G(σ), u) | ∃j ≥ 0 : w[j] ∈ T}

• Run(G(σ), u,GT ) = {w ∈ Run(G(σ), u) | ∀j ≥ 0 : w[j] ∈ T}

• Run(G(σ), u,¬FT ) = Run(G(σ), u) r Run(G(σ), u,FT )

Now we introduce some notation for MD strategies which is used in proofs of
Section 3 and Section 4.

To each MD strategy σ we associate a function fσ : V2 → V where fσ(v)
returns the (unique) vertex v′ such that σ(v) assigns 1 to v 7→ v′. Conversely,
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each f : V2 → V such that v 7→ f(v) for all v ∈ V2 determines a unique MD
strategy σf where σf (wv) assigns 1 to the transition v 7→ f(v).

Each MD strategy σ for player 2 determines a Markov chain G[σ] where V is
the set of states, and v

x→ u in G[σ] iff v 7→ u in G and one of the following
conditions holds:

• v ∈ V© and v
x7→ u;

• v ∈ V2, x = 1, and fσ(v) = u.

The chains G[σ] and G(σ) are “equivalent” in the sense that the un-
foldings of G(σ) and G[σ] are isomorphic for every initial vertex u ∈
V . For our purposes, it suffices to know that if we define the sets
Run(G[σ], u, S U T ), Run(G[σ], u,X S), Run(G[σ], u,FT ), Run(G[σ], u,GT ),
and Run(G[σ], u,¬FT ) analogously as above, then these sets have the
same probability as their respective counterparts in G(σ). For example,
P(Run(G[σ], u, S U T )) = P(Run(G(σ), u, S U T )). Therefore, if we restrict
our attention to MD strategies, we can safely consider the chain G[σ] instead
of the chain G(σ). This becomes particularly convenient in Section 4.

2.3 The logic PCTL

The logic PCTL, the probabilistic extension of CTL, was introduced by
Hansson & Jonsson in [11]. Originally, the semantics of PCTL was defined
over Markov chains. Here we consider a more general semantics defined over
11

2
-player games, as proposed by de Alfaro & Bianco in [2].

Let Ap = {p, q, . . . } be a countably infinite set of atomic propositions. The
syntax of PCTL formulae is given by the following abstract syntax equation:

Φ ::= tt | p | Φ1∧Φ2 | ¬Φ | X 1% Φ | Φ1 U 1% Φ2

Here p ∈ Ap, % ∈ [0, 1], and 1 ∈ {≤, <,≥, >, =, 6=}.

Let G = (V, 7→, (V2, V©),Prob) be a 11
2
-player game, and let ν : Ap → 2V be

a valuation. The semantics of PCTL is defined below.

[[tt]]ν = V

[[p]]ν = ν(p)

[[Φ1∧Φ2]]
ν = [[Φ1]]

ν ∩ [[Φ2]]
ν

[[¬Φ]]ν = V r [[Φ]]ν

[[X 1%Φ]]ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u,X [[Φ]]ν)) 1 %}
[[Φ1 U 1%Φ2]]

ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u, [[Φ1]]
ν U [[Φ2]]

ν)) 1 %}
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The F1% and G1% operators are defined in the standard way: F1%Φ stands for
tt U 1% Φ, and G1%Φ stands for tt U 1̂1−% ¬Φ, where 1̂ is <, >, ≤, ≥, =, or
6=, depending on whether 1 is >, <, ≥, ≤, =, or 6=, respectively.

Various natural fragments of PCTL can be obtained by restricting the PCTL
syntax to certain modal connectives and/or certain operator/number combina-
tions. The qualitative fragment of PCTL is obtained by restricting the allowed
operator/number combinations to ‘1 0’ and ‘1 1’. Hence, aU <1b ∨ F>0c is a
qualitative PCTL formula.

3 Extended Reachability Objectives

In this section we present several general results about 11
2
-player games with

extended reachability objectives.

Definition 1 Let G = (V, 7→, (V2, V©),Prob) be an (arbitrary) 11
2
-player

game. An extended reachability objective (ERO) is a pair (S, T ), where
S, T ⊆ V are the subsets of safe and terminal vertices.

Let (S, T ) be an ERO. For every HR strategy σ and every u ∈ V we define
the σ-value of u, denoted Valσ(u), as follows:

Valσ(u) = P(Run(G(σ), u, S U T ))

We also define the upper and lower value of u, denoted Val+(u) and Val−(u),
as the sup and inf of the set {Valσ(u) | σ ∈ HR}, respectively. An optimal
maximizing and optimal minimizing strategy for a vertex u is a strategy σ
such that Valσ(u) is equal to Val+(u) and to Val−(u), respectively.

It has been shown in [2] that optimal maximizing/minimizing strategies al-
ways exist in 11

2
-player games with finitely many vertices. Moreover, there are

efficiently constructible optimal maximizing/minimizing MD strategies. These
results are no longer valid for 11

2
-player games with infinitely many vertices.

A brief summary of relevant results is given in Proposition 4. The proof is
based on standard arguments of Markov decision process theory [13,9], and
it is included mainly for the sake of completeness (the only exception is the
last claim (5) for which we did not manage to construct a sufficiently simple
proof; here we give just a pointer to literature). We start with a preliminary
observation.

Definition 2 Let G = (V, 7→, (V2, V©),Prob) be a 11
2
-player game and (S, T )

an ERO. A transition s 7→ t is min-optimal if for every s 7→ t′ we have that
Val−(t) ≤ Val−(t′). A given s ∈ V2 is min-optimizing if it has at least one
min-optimal outgoing transition.

8



Lemma 3 Let G = (V, 7→, (V2, V©),Prob) be a 11
2
-player game and (S, T )

an ERO. Let σf be (some) MD strategy such that the underlying function
f : V2 → V returns a min-optimal transition for every min-optimizing vertex.
A vertex v ∈ V is covered by σf if one of the following conditions is satisfied:

• v ∈ (V rS) ∪ T ;
• v ∈ SrT and for each wt ∈ (SrT )∗ that is reachable from v in G(σf ) we

have that t is either min-optimizing or belongs to V©.

Then σf is an optimal minimizing strategy for every vertex of V which is
covered by σf .

PROOF. Assume the converse. Then there is v ∈ SrT covered by σf such
that Val−(v) < Valσf (v). Let ε = Valσf (v)− Val−(v). We show that

(1) For all k ∈ N, δ > 0, and u ∈ V such that v →∗ wu in G(σf ) for some
wu ∈ (SrT )∗ there is a HR strategy π[k, δ, u] such that
· π[k, δ, u](uw) = σf (uw) for all w ∈ V ∗ such that uw ∈ V ∗V2 and |uw| < k;

· Valπ[k,δ,u](u)− Val−(u) < δ.
(2) For every i ∈ N, let Λi be the set of all w ∈ FPath(G(σf ), v) such that

|w| = k ≤ i and w(k − 1) ∈ (SrT )∗T . Then for every ξ > 0 there is m ∈ N
such that

∑
w∈Λm

P(Run(G(σf ), w)) > Valσf (v)− ξ.

Note that (1) and (2) lead to a contradiction—put ξ = ε/3 and consider the
m of (2). Since the strategy π[m, ε/3, v] of (1) “agrees” with σf on the first

m steps of a play, we obtain that Valπ[m,ε/3,v](v) > Valσf (v)− ε/3 (this is the
inequality of (2)). Hence, the inequality Valπ[m,ε/3,v](v)−Val−(v) < ε/3 of (1)
does not hold, which is a contradiction.

(1): By induction on k:

• k = 1. Let u ∈ V such that v →∗ wu in G(σf ) for some wu ∈ (SrT )∗,
and let δ > 0. Let π be a HR strategy such that Valπ(u)− Val−(u) < δ. It
suffices to put π[1, δ, u] = π.

• Induction step: Let u ∈ V such that v →∗ wu in G(σf ) for some wu ∈
(SrT )∗, and let δ > 0. We distinguish two cases:
· u ∈ V2. Then u is min-optimizing. Let u′ = f(u). If u′ ∈ (V rS) ∪ T ,

we can simply put π[k+1, δ, u] = σf because Valσf (u) = Val−(u) in this
case. Otherwise, we use induction hypothesis and conclude that there is
a strategy π[k, δ, u′] with the respective properties. Now we can define
π[k+1, δ, u] as follows:

π[k+1, δ, u](u) = σf (u)
π[k+1, δ, u](uu′w) = π[k, δ, u′](u′w) for every w ∈ V ∗ such that u′w ∈
V ∗V2.
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Fig. 1. A 11
2 -player game without an optimal minimizing strategy.

· u ∈ V©. Let succ(u) = {t ∈ V | u 7→ t}. For every t ∈ succ(u), we fix some
δt > 0 so that

∑
t∈succ(u) δt < δ. For every t ∈ succ(u) ∩ (SrT ) there is a

strategy π[k, δt, t] with the respective properties. We define π[k+1, δ, u] as
follows:

For every t ∈ succ(u) ∩ (SrT ) we put π[k+1, δ, u](utw) =
π[k, δt, t](tw) for all w ∈ V ∗ such that tw ∈ V ∗V2;
For every t ∈ succ(u) ∩ ((V rS) ∪ T ) and all w ∈ V ∗ such that
tw ∈ V ∗V2 we define π[k+1, δ, u](utw) arbitrarily. One can easily
confirm that Valπ[k+1,δ,u](u)− Val−(u) < δ as needed.

(2): This claim follows directly from the definition of
P(Run(G(σf ), v, S U T )). 2

Proposition 4 Let G = (V, 7→, (V2, V©),Prob) be a 11
2
-player game, u ∈ V ,

and (S, T ) an ERO (let us note explicitly that V can be infinite and some
vertices can have infinitely many successors). The following holds:

(1) An optimal minimizing strategy for u does not necessarily exist, and the
equation inf{Valσ(u) | σ ∈ MD} = Val−(u) does not necessarily hold.

(2) If there is an optimal minimizing strategy for u, then there is also an optimal
minimizing MD strategy for u.

(3) If G is finitely-branching, then there is an optimal minimizing MD strategy
for u.

(4) An optimal maximizing strategy for u does not necessarily exist (even if G
is finitely-branching), but sup{Valσ(u) | σ ∈ MD} = Val+(u).

(5) If there is an optimal maximizing strategy for u, then there is also an optimal
maximizing MD strategy for u.

PROOF.

(1) Consider the game G = (V, 7→, (V2, V©),Prob) where V2 = {u, v}, V© =
{si | i ∈ N}, v 7→ v, u 7→ si, si 7→ u, and si 7→ v for all i ∈ N, and
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Prob((si, v)) = 2−i, Prob((si, u)) = 1 − 2−i for all i ∈ N. Further, consider
an ERO (V, {v}). The structure of G is shown in Fig. 1. We show that there
is no optimal minimizing strategy for u and that

1 = inf{Valσ(u) | σ ∈ MD} > Val−(u) = 0.

It is clear that there is no strategy σ such that Valσ(u) = 0, because from
every successor of u there is a transition to v with a positive probability. We
show that for every δ > 0 there is a HR strategy σ(δ) such that Valσ(δ)(u) <
δ. From this we obtain inf{Valσ(u) | σ ∈ HR} = Val−(u) = 0. For a given
δ > 0, we choose a sufficiently large i ∈ N such that 2

2i < δ. The strategy
σ(δ) is given by σ(δ)(wu) = sj where j = ]u(w) + i (the symbol ]u(w)
denotes the number of occurrences of u in w). It is easy to see that

Valσ(δ)(u) = P(Run(G(σ(δ)), u, V U {v})) =
∞∑
j=i

1

2j
=

2

2i
< δ.

Now, let σ be an MD strategy and let fσ(u) = si. The only run from u
which does not visit v is u, si, u, si, · · · , hence P(Run(G(σ), u, V U {v})) = 1.
This holds for all MD strategies and thus we obtain inf{Valσ(u) | σ ∈
MD} = 1.

(2) Let us fix some optimal minimizing strategy π for u and observe the follow-
ing:

(I) For every vertex wv ∈ (SrT )∗ of G(π) such that u →∗ wv in G(π) we have
that P(Run(G(π), wv, S U T )) = Val−(v). If it was not the case, there
would be some strategy π′ such that Valπ

′
(v) < P(Run(G(π), wv, S U T ),

and hence we could define another strategy π′′ behaving identically as π
except for vertices of the form wvw′ where π′′(wvw′) = π′(vw′). Since
Valπ

′′
(u) < Valπ(u), this contradicts the optimality of π.

(II) For every transition wv
x→ wvv′ of G(π) such that wv ∈ (SrT )∗, u →∗ wv

in G(π), and v ∈ V2 we have that v 7→ v′ is min-optimal. To see this, realize
that

P(Run(G(π), wv, S U T )) =
∑

wv
x→wvv′

x · P(Run(G(π), wvv′, S U T ))

By applying (I) and considering the case when v′ ∈ (V rS) ∪ T we get

Val−(v) =
∑

wv
x→wvv′

x · Val−(v′)

Realize that there cannot be any v 7→ v′′ such that Val−(v′′) < Val−(v)
(it follows directly from Definition 1). This means that all Val−(v′) which
appear in the above sum are equal to Val−(v). Hence, all of the corre-
sponding v 7→ v′ transitions are min-optimal.

Let f : V2 → V be a function satisfying the following condition: for every
v ∈ V2∩S such that u →∗ wv for some w ∈ (SrT )∗ we have that f(v) = v′,

11



where wv
x→ wvv′ is a transition of G(π). It follows from (II) that the vertex

u is covered by σf , and hence we can apply Lemma 3.
(3) If G is finitely branching, all vertices of V2 are min-optimizing. Thus, the

claim follows from Lemma 3.
(4) In Section 4 we give an example of a 11

2
-player BPA game and an ERO for

which no optimal maximizing strategy exists (see Example 6). Since BPA
games are finitely-branching, this example confirms the first part of the
claim.

Now we show that for every HR strategy π and every δ > 0 there is a
MD strategy σ such that Valπ(u) − δ ≤ Valσ(u). Let Λ be the set of all
w ∈ FPath(G(π), u) such that w(k−1) ∈ S∗T where k = |w|. It follows
directly from the definition of Run(G(π), u, S U T ) that there must be a
finite subset Λ′ ⊆ Λ such that

∑
w∈Λ′ P(Run(G(π), w)) ≥ Valπ(u) − δ. Let

W ⊆ V be the subset of all vertices that are visited by a path in Λ′. We
define a finite-state 11

2
-player game F where W ∪ {∗} is the set of vertices

(here ∗ 6∈ W is a fresh symbol), probabilistic vertices are exactly W∩V©, and
transitions ↪→ together with their probabilities are determined as follows:
· For all u, v ∈ W we have that u ↪→ v iff u 7→ v. If, in addition, u ∈ V©,

then u
x

↪→ v iff u
x7→ v.

· For all u ∈ W such that u 7→ v for some v ∈ V r W there is a transition
u ↪→ ∗. If u ∈ V©, then u

x
↪→ ∗ where x is the sum of the probabilities of

all transition u 7→ v where v ∈ V r W .
· There is a transition ∗ ↪→ ∗.
The strategy π induces a strategy for F for reaching T∩W along S∩W with
probability at least Valπ(u)− δ. Using the results for finite games [2] we get
a MD strategy with the same lower bound on the probability of reaching T
along S. This strategy induces at least one MD strategy σ for G such that
Valσ(u) ≥ Valπ(u)− δ.

(5) As we already noted, we did not manage to find a sufficiently simple self-
contained proof for this claim. Nevertheless, it follows easily from Theo-
rem 7.2.11 presented in [13] 1 . 2

4 BPA games

A 11
2
-player BPA game is a tuple ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) where Γ is a

finite stack alphabet, ↪→ ⊆ Γ × Γ≤2 is a set of rules (where Γ≤2 = {w ∈ Γ∗ :
|w| ≤ 2}) such that for each X ∈ Γ there is some X ↪→ α, (Γ2, Γ©) is a
partition of Γ, and Prob is a probability assignment which to each X ∈ Γ©
assigns a rational positive probability distribution on the set of all rules of the
form X ↪→ α.

1 We would like to thank Kousha Etessami for providing us with this reference.
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Each 11
2
-player BPA game ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) determines a unique

11
2
-player game G∆ = (Γ∗, 7→, (Γ2Γ∗, Γ©Γ∗∪{ε}),Prob∆) where the transitions

of 7→ are determined as follows: ε 7→ ε, and Xβ 7→ αβ iff X ↪→ α. The

probability assignment Prob∆ is the natural extension of Prob, i.e., ε
17→ ε and

for all X ∈ Γ© we have that Xβ
x7→ αβ iff X

x
↪→ α. Given a configuration

Xα ∈ Γ∗, we put head(Xα) = X.

Realize that all of the previously introduced game-theoretic notions (strategy,
upper/lower value, etc.) apply to G∆, not directly to ∆. In particular, the
vertices of G∆ are stack configurations of Γ∗, which means that MD strategies
generally depend on the whole sequence of symbols which form a given vertex.
An MD strategy σ is stackless (SMD) if it depends just on the top-of-the-stack
symbol of a given vertex. Also note that G∆ is finitely branching.

In this paper we consider algorithmic issues for EROs in 11
2
-player BPA games.

Since the game G∆ has infinitely many vertices, we need to restrict ourselves
to subclasses of EROs which admit a finite and effective description.

A natural subclass of EROs are termination objectives, where S = Γ∗ and T =
{ε}. In [7,8], it has been shown that 11

2
-player BPA games with termination

objectives have the following properties:

(a) There are optimal SMD minimizing and maximizing strategies.
(b) For each X ∈ Γ, the values Val+(X) and Val−(X) are expressible as the

least solution of an effectively constructible system of non-linear min/max
equations. This allows to express the values Val+(X) and Val−(X) in
(R, +, ∗,≤), i.e., first-order arithmetic of the reals.

(c) The problems whether Val+(α) = x, where x ∈ {0, 1}, and whether
Val−(α) = x, where x ∈ {0, 1}, are solvable in polynomial time.

In this paper we consider 11
2
-player BPA games with a more general subclass

of EROs, where the sets S and T are simple:

Definition 5 A set M ⊆ Γ∗ is simple iff there is a characteristic set C(M) ⊆
Γ such that M =

⋃
Y ∈C(M){Y }Γ∗. An ERO (S, T ) is simple if S and T are

simple.

Note that termination objectives can be encoded as simple EROs, but a given
11

2
-player BPA game must first be modified by introducing a new bottom-of-

the-stack symbol.

The properties (a)–(c) stated above do not hold for 11
2
-player BPA games with

simple EROs. In particular, note the following:

(A) An optimal minimizing SMD strategy may not exist, though there must
be an optimal minimizing MD strategy by Proposition 4 (3). An optimal
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Fig. 2. A 11
2 -player BPA game without an optimal maximizing strategy.

maximizing strategy may not exist at all (see also [7]). The existence of an
optimal maximizing strategy implies the existence of an optimal maximizing
MD strategy by Proposition 4 (5), but it does not imply the existence of an
optimal maximizing SMD strategy.

(B) The system of non-linear min/max equations which was used in [7] for
termination objectives cannot be immediately generalized to simple EROs.
Intuitively, the reason is that the optimal minimizing/maximizing strategy
in a configuration Xα does not depend just on X but also on α, and a small
modification of α may lead to a completely different optimal strategy. This
is because one has to “balance” between the probability of termination and
the probability of hitting a terminal configuration for each stack symbol,
depending on what is achievable for the symbols stored below in the stack.

(C) For a given α ∈ Γ∗, the problems whether Val−(α) = 0, whether Val+(α) =
0, and whether Val−(α) = 1 are solvable in polynomial time. The decidabil-
ity of the problem whether Val+(α) = 1 is left open. Nevertheless, we show
that the problem whether there is an optimal maximizing strategy σ such
that Valσ(α) = 1 is decidable in polynomial time (remember that Val+(α)
can be 1 even if no optimal maximizing strategy exists).

The property (A) is demonstrated in the following example.

Example 6

(i) Let ∆ = ({X, A,D}, ↪→, ({X}, {A, D}),Prob) be a 11
2
-player BPA game,

where

X ↪→ XA, X ↪→ ε, A
1/2
↪→ D, A

1/2
↪→ ε, D

1
↪→ D

Let us consider a simple ERO (S, T ) where C(S) = {X, A} and C(T ) =
{D}. The structure of G∆ is shown in Fig. 2. One can easily verify that
Val+(X) = 1. However, for every HR strategy σ we have that Valσ(X) < 1.

(ii) Let ∆ = ({X, D}, ↪→, ({X}, {D}),Prob) be a 11
2
-player BPA game, where

X ↪→ XD, X ↪→ ε, D
1

↪→ D

Let us consider a simple ERO (S, T ) where C(S) = {X} and C(T ) = {D}.
Then Val+(X) = 1 and there is an optimal maximizing MD strategy, but
there is no optimal maximizing SMD strategy.

14
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Fig. 3. A 11
2 -player BPA game without an optimal minimizing SMD strategy.

(iii) Let ∆ = ({X, Y, Z, H, D}, ↪→, ({Y }, {X, D,H, Z}),Prob) be a 11
2
-player

BPA game, where

X
1

↪→ Y D, Y ↪→ H, Y ↪→ ε, D
1

↪→ D, H
1/2
↪→ Y Z, H

1/2
↪→ D, Z

1
↪→ Z

Let us consider a simple ERO (S, T ) where C(S) = {X, Y, H,Z} and
C(T ) = {D}. The structure of G∆ is shown in Fig. 3. Observe that
Val−(X) = 1/2 and there is an optimal minimizing MD strategy, but for
every SMD strategy π we have that P(Run(G∆[π], X, S U T )) = 1.

Now we present a sequence of results from which Property (C) follows as a sim-
ple consequence, and which allow to design the model-checking algorithm for
11

2
-player BPA games and qualitative PCTL formulae presented in Section 5.

Due to Proposition 4, from now on we can safely consider just MD strate-
gies because they are equivalently powerful as HR strategies in the context of
11

2
-player BPA games and simple qualitative EROs.

For the rest of this section, let us fix a 11
2
-player BPA game ∆ = (Γ, ↪→

, (Γ2, Γ©),Prob) and a simple ERO (S, T ). We use Tε to denote the set T∪{ε}.
For every 1 ∈ {<,>, =} and every % ∈ {0, 1}, let

• [S U 1%T ] be the set of all α ∈ Γ∗ for which there is a MD strategy σ such
that P(G∆[σ], α, S U T ) 1 %.

• [F1%T ] be the set of all α ∈ Γ∗ for which there is a MD strategy σ such that
P(G∆[σ], α,FT ) 1 %.

Remark 7 In general, the sets [S U 1%T ] and [F1%T ] constructed for given 1

and % are different. Now consider a modification ∆′ = (Γ, ;, (Γ2, Γ©),Prob ′)
of the game ∆ obtained by replacing every rule of the form P ↪→ α, where
P ∈ C(T ) ∪ (Γ r C(S)), with a single rule P ; P (if P ∈ Γ©, then P ; P
has probability 1). It is easy to see that the set [S U 1%T ] is the same in ∆′

as in ∆. Moreover, in ∆′ we have that [S U 1%T ] = [F1%T ]. Thus, [S U 1%T ]
can be constructed by computing [F1%T ] in a slightly modified 11

2
-player BPA

game, which leads to simplifications in our proofs.

Our next four theorems show that the sets [F>0T ], [F=0T ], [F=1T ], and
[F<1T ] are regular. The associated finite-state automata have a fixed number
of control states and are effectively computable in polynomial time. We also
study the relationship between MD and SMD strategies in this specific setting.
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Due to Remark 7, all of the presented results can immediately be extended to
the sets [S U >0T ], [S U =0T ], [S U =1T ], and [S U <1T ].

The difficulty of proofs is increasing. The cases [F>0T ] and [F=0T ] are simple,
but the arguments for [F=1T ] and [F<1T ] are more involved.

Theorem 8 There are A,B ⊆ Γ computable in polynomial time such that
[F>0T ] = A∗BΓ∗. Moreover, there is a fixed SMD strategy π such that
P(Run(G∆[π], α,FT )) > 0 for every α ∈ [F>0T ].

PROOF. Let A = {X ∈ Γ | X 7→∗ ε} and B = {X ∈ Γ | X 7→∗

Rβ, where R ∈ C(T ) and β ∈ Γ∗}. A straightforward induction on the length
of α reveals that α ∈ [F>0T ] iff α ∈ A∗BΓ∗. The sets A and B can be com-
puted as the least fixpoints of monotonic functions ΘA and ΘB defined as
follows:

• ΘA(M) = M ∪ {X ∈ Γ | there is X ↪→ β such that β ∈ M∗}
• ΘB(M) = M ∪ {X ∈ Γ | there is X ↪→ β such that β ∈ A∗(M∪C(T ))Γ∗}

One can easily verify that A =
⋃|Γ|

i=1 Θi
A(∅) and B =

⋃|Γ|
i=1 Θi

B(∅).

The function ΘA determines a SMD strategy πA where, for each Xβ ∈ Γ2Γ∗

such that X ∈ Θi+1
A (∅) r Θi

A(∅), we have that fπA(Xβ) = ξβ where X ↪→ ξ
is a rule witnessing the membership of X to Θi+1

A (∅). If X 6∈ A, then
fπA(Xβ) is defined arbitrarily. Note that for every α ∈ A∗ we have that
P(Run(G∆[πA], α,F{ε})) > 0.

Similarly, the function ΘB determines a SMD strategy πB where, for each
Xβ ∈ Γ2Γ∗ such that X ∈ Θi+1

B (∅) r Θi
B(∅) we have that fπB(Xβ) = ξβ

where X ↪→ ξ is a rule witnessing the membership of X to Θi+1
B (∅). If X 6∈ B,

then fπA(Xβ) is defined arbitrarily.

The SMD strategy π can now be defined as follows: for a given Xβ ∈ Γ2Γ∗

we put

• π(Xβ) = πB(Xβ) if X ∈ B;
• π(Xβ) = πA(Xβ) if X ∈ ArB;
• for the other arguments, π(Xβ) is defined arbitrarily (but consistently with

the requirement that π is SMD).

A straightforward induction on the length of α confirms that
P(Run(G∆[π], α,FT )) > 0 for every α ∈ A∗BΓ∗. 2

Theorem 9 There are A,B ⊆ Γ computable in polynomial time such that
[F=0T ] = B∗ ∪ (B∗AΓ∗). Moreover, there is a fixed SMD strategy π such that
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P(Run(G∆[π], α,FT )) = 0 for every α ∈ [F=0T ].

PROOF. We define the sets A and B as follows:

• X ∈ A iff there is a MD strategy σ such that P(Run(G∆[σ], X,FTε)) = 0
• X ∈ B iff there is a MD strategy σ such that P(Run(G∆[σ], X,FT )) = 0

It is easy to verify thatA and B satisfy the property that [F=0T ] = B∗∪B∗AΓ∗.

We show that the sets A and B can be computed as the greatest fixpoint of
a monotonic function Θ : 2Γ × 2Γ → 2Γ × 2Γ, where Θ((M, N)) = (M ′, N ′) is
defined as follows:

• X ∈ M ′ iff X ∈ M r C(T ) and the following conditions are satisfied:
· If X ∈ Γ2, then there is a rule of one of the following forms: X ↪→ Y

where Y ∈ M , or X ↪→ Y Z where either Y ∈ M , or Y ∈ N and Z ∈ M .
· If X ∈ Γ©, then all rules of the form X ↪→ α satisfy either α = Y where

Y ∈ M , or α = Y Z where either Y ∈ M , or Y ∈ N and Z ∈ M .
• X ∈ N ′ iff X ∈ N r C(T ) and the following conditions are satisfied:
· If X ∈ Γ2, then there is a rule of one of the following forms: X ↪→ ε,

or X ↪→ Y where Y ∈ N ∪ M , or X ↪→ Y Z where either Y ∈ M , or
Y, Z ∈ N ∪M .

· If X ∈ Γ©, then all rules of the form X ↪→ α satisfy either α = ε, or α = Y
where Y ∈ N ∪M , or α = Y Z where either Y ∈ M , or Y, Z ∈ N ∪M .

We prove that

(1) (A,B) is a fixpoint of Θ.
(2) If (C, D) is a fixpoint of Θ, then C ⊆ A and D ⊆ B.

(1) Let Θ(A,B) = (A′,B′). It suffices to prove that A ⊆ A′ and B ⊆ B′
because the other inclusions follow directly from the definition of Θ. Let
X ∈ B. Then surely X 6∈ C(T ), and let σ be a MD strategy such that
P(Run(G∆[σ], X,FT )) = 0. If X ∈ Γ©, then for all rules of the form X ↪→ α
we have that α ∈ [F=0T ] = B∗∪B∗AΓ∗. This means that X ∈ B′ by definition
of Θ. If X ∈ Γ2, then the rule X ↪→ α which is selected by the strategy σ at
the vertex X must again satisfy α ∈ [F=0T ] = B∗ ∪B∗AΓ∗. Hence, we obtain
X ∈ B′ by definition of Θ. The inclusion A ⊆ A′ can be shown similarly.

(2) Let Θ((C, D)) = (C ′, D′) = (C, D), and let σ be a MD strategy such that

• for all X ∈ C∩Γ2 we have that fσ(X) = α where X ↪→ α is a rule witnessing
X ∈ C ′;

• for all X ∈ (D r C) ∩ Γ2 we have that fσ(X) = α where X ↪→ α is a rule
witnessing X ∈ D′.
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It is easy to show that for all Y ∈ Γ2, w ∈ Run(G∆[σ], Y ), and i ∈ N0 we
have that

• w(i) ∈ D∗CΓ∗ whenever Y ∈ C;
• w(i) ∈ D∗ ∪D∗CΓ∗ whenever Y ∈ D.

The rest follows from (C ∪D) ∩ C(T ) = ∅.

Hence, the sets A and B can be computed in polynomial time by a simple
iterative algorithm. The SMD strategy π is easy to define. For each Xβ ∈ Γ2Γ∗

such that X ∈ A (or X ∈ BrA) we put fπ(Xβ) = ξβ where X ↪→ ξ is a rule
witnessing that X ∈ A′ (or X ∈ B′, resp.), where (A′,B′) = Θ((A,B)). For the
other arguments, fπ(Xβ) is defined arbitrarily. To see that this definition is
correct, i.e., P(Run(G∆[π], α,FT )) = 0 for every α ∈ B∗ ∪ (B∗AΓ∗), consider
a game ∆̂ obtained from ∆ just by removing all non-probabilistic rules that
are not employed in π. Let (Â, B̂) be the greatest fixpoint of Θ computed in
∆̂. It follows directly from the definition of ∆̂ and Θ that (Â, B̂) = (A,B).
Since ∆̂ contains exactly one rule for every X ∈ Γ2, there is only one strategy
π̂. By applying the above results, we obtain that P(Run(G

∆̂
[π̂], α,FT )) = 0

for every α ∈ B∗ ∪ (B∗AΓ∗). Since the Markov chains G
∆̂
[π̂] and G∆[π] are

isomorphic, we get P(Run(G∆[π], α,FT )) = 0 as needed. 2

Theorem 10 There are A,B, C ⊆ Γ computable in polynomial time such that
[F=1T ] = (B ∪ C)∗AΓ∗.

PROOF. We consider the sets A, B and C defined as follows:

• X ∈ A iff there is a MD strategy σ such that P(Run(G∆[σ], X,FT )) = 1
• X ∈ B iff there is a MD strategy σ such that P(Run(G∆[σ], X,FTε)) = 1

and P(Run(G∆[σ], X,FT )) > 0
• X ∈ C iff there is a MD strategy σ such that P(Run(G∆[σ], X,F{ε})) = 1

The set C can be computed in polynomial time using the algorithm of [8]. Also
observe that [F=1T ] = (B ∪ C)∗AΓ∗ and [F=1Tε] = (B ∪ C)∗ ∪ (B ∪ C)∗AΓ∗.

We prove that the sets A and B are computable in polynomial time. To achieve
that, we define a monotonic function Θ : 2Γ × 2Γ → 2Γ × 2Γ such that (A,B)
is the greatest fixpoint of Θ, and show that Θ (and hence also its greatest
fixpoint) is computable in polynomial time.

We put Θ((R,H)) = (R′, H ′), where R′ (or H ′) is the set of all X ∈ R (or all
X ∈ H, resp.) for which there is a sequence SX ≡ α0, · · · , αn such that

• α0 = X, αn ∈ T ;
• αi 7→ αi+1 for all 0 ≤ i < n;

18



• for every β ∈ Γ∗ such that β either appears in the sequence SX or αi 7→ β
for some αi ∈ Γ©Γ∗ and 0 ≤ i < n we have that β ∈ (H ∪ C)∗RΓ∗ (or
β ∈ (H ∪ C)∗RΓ∗ ∪ (H ∪ C)∗, resp.).

It follows directly from the definition that Θ is monotonic. It remains to show
that (A,B) is the greatest fixpoint of Θ. First, we prove that (A,B) is a
fixpoint. Let Θ((A,B)) = (A′,B′). Since A′ ⊆ A and B′ ⊆ B by definition of
Θ, it suffices to show the opposite inclusions. Let X ∈ A and let σ be a MD
strategy which witnesses that X ∈ A. Let us consider a path of minimal length
in G∆[σ] from X to a configuration of T . Since every configuration reachable
from X along a path which does not visit T belongs to [F=1T ] = (B∪C)∗AΓ∗,
we can conclude X ∈ A′. Similarly, we can show that B ⊆ B′.

Now suppose that Θ((R,H)) = (R′, H ′) = (R,H). We prove that R ⊆ A and
H ⊆ B. For every Y ∈ R (or Y ∈ H), let us fix a sequence SY which witnesses
that Y ∈ R′ (or Y ∈ H ′, resp.). It follows from the definition of Θ that if Y ∈
R′ (or Y ∈ H ′) then all immediate successors of all stochastic configurations
that appear in SY are of the form (H ∪ C)∗RΓ∗ (or (H ∪ C)∗RΓ∗ ∪ (H ∪ C)∗,
resp.).

Due to [8], there is a (SMD) strategy % such that P(Run(G∆[%], X,F{ε})) =
1 for every X ∈ C. Now we define a (MD) strategy π such that
P(Run(G∆[π], Y,F=1T )) = 1 for all Y ∈ R. Let Xξ ∈ Γ2Γ∗. If X ∈ C(T ), we
define fπ(Xξ) arbitrarily. Otherwise, let γ ∈ Γ∗ be the maximal prefix of Xξ
satisfying one of the following conditions:

(1) γ = SY (k) for some Y ∈ R and k ∈ N0;
(2) γ = SY (k) for some Y ∈ H and k ∈ N0 such that η ∈ (H ∪ C)∗RΓ∗, where

Xξ = γη.

If there is no such γ, we either put fπ(Xξ) = %(X)ξ or define fπ(Xξ) arbitrar-
ily, depending on whether X ∈ C or not, respectively. Otherwise, we fix some
Y ∈ R∪H and k ∈ N0 such that (1) or (2) is satisfied and |SY |−k is minimal.
Note that γ cannot be the last configuration of SY because X 6∈ C(T ). Now
we put fπ(Xξ) = SY (k+1)η where Xξ = γη.

For all Y ∈ R∪H and 1 ≤ i ≤ |SY |, we put xi to be either 1 or the probability
of SY (i) 7→ SY (i+1), depending on whether SY (i) ∈ Γ2Γ∗ or not, respectively.

Further, we define δY =
∏|SY |

i=1 xi and δ = min{δY | Y ∈ R∪H}. Clearly δ > 0.

Let Y ∈ R. It follows directly from the definition of π that ev-
ery w ∈ Run(G∆[π], Y ) belongs either to Run(G∆[π], Y,FT ) or
to Run(G∆[π], Y,G((H∪C)∗RΓ∗ r T )). However, almost all w ∈
Run(G∆[π], Y,G((H∪C)∗RΓ∗ r T )) visit infinitely often a configura-
tion of the form Xξ where X ∈ H ∪ R, and from each such Xξ a
configuration of T can be visited with probability at least δ. This
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Fig. 4. The structure of ∆̄.

means that P(Run(G∆[π], Y,G((H∪C)∗RΓ∗ r T ))) = 0, and hence
P(Run(G∆[π], Y,FT )) = 1. Thus, we obtain Y ∈ A.

The inclusion H ⊆ B can be shown similarly. We define a MD strategy π′ such
that P(Run(G∆[π′], Y,FTε)) = 1 for all Y ∈ H. The strategy π′ is defined in
the same way as π. The only difference is that the condition (2) is relaxed to

(2’) γ = SY (k) for some Y ∈ H and k ∈ N0.

Then, for every Y ∈ H we have that each w ∈ Run(G∆[π′], Y ) either hits a
configuration of Tε, or visits only configurations of ((H∪C)∗RΓ∗∪(H∪C)∗)rTε.
Again, one can easily show that the total probability of all runs of the second
type is zero, hence P(Run(G∆[π′], Y,FTε)) = 1 and Y ∈ B as needed.

We proved that (A,B) is the greatest fixpoint of Θ. Observe that Θ((R,H)) =
(R′, H ′) is computable in polynomial time, because the membership conditions
for R′ and H ′ are variants of simple reachability problems for non-probabilistic
BPA that are solvable in polynomial time by standard techniques (for example,
one can efficiently reduce these problems to the model-checking problem for
BPA and a fixed CTL formula, which is decidable in polynomial time [14]). 2

Let us note that, for a given α ∈ [F=1T ], a SMD strategy π such that
P(Run(G∆[π], α,FT )) = 1 does not necessarily exist. A counterexample is
given in Example 6 (ii).

Theorem 11 There are A,B ⊆ Γ computable in polynomial time such that
[F<1T ] = A∗ ∪ (A∗BΓ∗).

PROOF. Let us define the sets A and B as follows:

• X ∈ A iff there is a MD strategy σ such that P(Run(G∆[σ], X,F{ε})) > 0
• X ∈ B iff there is a MD strategy σ such that P(Run(G∆[σ], X,¬FTε)) > 0

It is easy to show that [F<1T ] = A∗ ∪ (A∗BΓ∗). The set A is constructible
in polynomial time by employing the algorithm of Theorem 8. For the rest of
this proof we fix some X ∈ Γ and examine the conditions under which X ∈ B.
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We say that Y ∈ ΓrC(T ) is a type-I witness if there are two MD strategies σ, π
such that P(Run(G∆[σ], X,F({Y }Γ∗))) > 0 and P(Run(G∆[π], Y,FTε)) = 0.
The existence of such Y , σ, and π is obviously a sufficient condition for
X ∈ B, because the strategies σ and π can be combined into a single
MD strategy σ′ which behaves like σ until a configuration α such that
P(Run(G∆[π], α,FTε)) = 0 is reached, and then it behaves like π. Obviously,
P(Run(G∆[σ′], X,¬FTε)) > 0, because any configuration of the form Y γ can
play the role of α. Also note that the existence of a type-I witness can be
decided in polynomial time using Theorem 8 and Theorem 9.

Unfortunately, X ∈ B does not necessarily imply the existence of a type-I
witness, as illustrated in the following example: Let us consider a 11

2
-player

BPA game ∆̄ = ({A, B, C}, ↪→, (∅, {A, B, C}),Prob) where

A
1

↪→ BC, B
3/4
↪→ BB, B

1/4
↪→ ε, C

1
↪→ C.

Note that G∆̄ closely resembles a one-dimensional asymmetric random walk
(see Fig. 4). Let T = {C}Γ∗. Since Γ2 = ∅ in ∆̄, there is only one strategy (the
empty strategy ∅). By applying standard result for one-dimensional random
walks (see, e.g., [10]) we obtain that P(Run(G∆̄[∅], A,¬FTε)) > 0. However,
for every Y ∈ {A, B} we have that P(Run(G∆̄[∅], Y,FTε)) > 0.

We say that Y ∈ ΓrC(T ) is a type-II witness if there is a 11
2
-player BPA

game ∆′ = (D, (D ∩ Γ2,D ∩ Γ©), �,Prob ′) and two MD strategies σ, π such
that

• Y ∈ D ⊆ Γ, D ∩ C(T ) = ∅;
• � ⊆ ↪→, where Z

x
� γ iff Z ∈ D ∩ Γ© and Z

x
↪→ γ;

• P(Run(G∆[σ], X,F({Y }Γ∗))) > 0 and P(Run(G∆′ [π], Y,¬F{ε})) > 0.

In the example above, B is a type-II witness for A ∈ B where
({B}, (∅, {B}), �,Prob ′) is the associated 11

2
-player BPA game.

Again, the existence of a type-II witness is obviously a sufficient condition
for X ∈ B, because the strategies σ and π can be combined into a single
MD strategy σ′ such that P(Run(G∆[σ′], X,¬FTε)) > 0. Also note that the
existence of a type-II witness can be decided in polynomial time as follows:

• We compute the largest candidate for D, which is the greatest fixpoint of
Θ : 2Γ → 2Γ, where Z ∈ Θ(M) iff either Z ∈ Γ© r C(T ) and α ∈ M∗ for
all Z ↪→ α, or Z ∈ Γ2 r C(T ) and α ∈ M∗ for some Z ↪→ α.

• If D = ∅, there is no type-II witness for X ∈ B. Otherwise, we put ∆′ =
(D, (D ∩ Γ2,D ∩ Γ©), �,Prob ′) where
· Z � γ iff Z ↪→ γ, Z ∈ Γ, and γ ∈ D∗

· Z
x
� γ iff Z ∈ D ∩ Γ© and Z

x
↪→ γ
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It follows directly from the definition of Θ that ∆′ is indeed 11
2
-player BPA

game.
• Now we decide if there are Y ∈ D and MD strategies σ, π with the required

properties. The existence of σ can be easily checked in polynomial time (cf.
Theorem 8). The existence of π can be decided in polynomial time by the
algorithm presented in [8].

Now we prove that if X ∈ B, then there is a type-I or type-II witness.

Let X ∈ B and let us fix a MD strategy σ such that
P(Run(G∆[σ], X,¬FTε)) > 0. For every � ⊆ ↪→, we denote L� the
set of all w ∈ Run(G∆[σ], X,¬FTε) such that the set of all rules that induce
infinitely many transitions of w is exactly �. Since there are only finitely
many subsets � ⊆ ↪→ and

⋃
�⊆↪→ L� = Run(G∆[σ], X,¬FTε), there must

be some � ⊆ ↪→ such that P(L�) > 0. For the rest of this proof, let us fix
such a �.

Let D be the set of all Z ∈ Γ such that Z � γ for some γ ∈ Γ∗. Observe that
D ∩ C(T ) = ∅. Now we distinguish two possibilities:

(i) There is a rule Z � γ such that γ 6∈ D∗. Then γ = PQ
where P ∈ D and Q 6∈ D. We show that P is a type-I wit-
ness. Since P(Run(G∆[σ], X,F({P}Γ∗))) > 0, it suffices to prove that
P(Run(G∆[π], P,FTε)) = 0 for a suitable MD strategy π.

First we show that for every δ > 0 there is a configuration of the form
PQβ such that P(Run(G∆[σ], PQβ,F{Qβ})) < δ. Assume the converse.
Then the probability of hitting a configuration starting with Q from a config-
uration starting with PQ is at least δ for some fixed δ > 0. Since all w ∈ L�

visit a configuration starting with PQ infinitely often, each w ∈ L� must
visit a configuration starting with Q infinitely often, because P(L�) would
be zero otherwise. However, this is a contradiction with Q 6∈ D.

For every configuration of the form PQβ we define a MD strategy
πQβ by putting fπQβ

(γ) = fσ(γQβ) for every γ ∈ Γ2Γ∗. It is easy
to see that P(Run(G∆[πQβ], P,F{ε})) = P(Run(G∆[σ], PQβ,F{Qβ})).
Since inf{P(Run(G∆[πQβ], P,F{ε})) | PQβ ∈ Γ∗} = 0, we can apply
Proposition 4 (3) and conclude that there is MD strategy π such that
P(Run(G∆[π], P,F{ε})) = 0.

(ii) For every rule Z � γ we have that γ ∈ D∗. First, observe that for every
V ∈ D ∩ Γ© and every V ↪→ η we have that V � η. This is because V

appears infinitely many times along every run of L�, and hence P(L�)
would be zero if some V ↪→ η was used only finitely many times in every
run of L�. This means that ∆′ = (D, (D ∩ Γ2,D ∩ Γ©), �,Prob ′), where

V
x
� η iff V ∈ D∩Γ© and V

x
↪→ η, is a 11

2
-player BPA game. We show that

there is a type-II witness Y ∈ D where ∆′ is the associated 11
2
-player BPA

game.
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For every w ∈ L�, let vw = w(0), · · · , w(i) be the finite prefix of w
where i ∈ N0 is the least index such that for every j ≥ i we have that
w(j) → w(j + 1) is induced by a rule of � and |w(i)| ≤ |w(j)|. For a given

v ∈ FPath(G∆[σ], X), let L�
v be the set of all w ∈ L� such that vw = v.

Since P(L�) > 0 and there are only countably many v ∈ FPath(G∆[σ], X),

there is some v ∈ FPath(G∆[σ], X) such that P(L�
v ) > 0. For the rest of

this proof, we fix such a v.
Let v = v(0), · · · , v(i), where v(i) = Y β. Obviously

P(Run(G∆[σ], X,F({Y }Γ∗))) > 0. It remains to find a suitable MD
strategy π such that P(Run(G∆′ [π], Y,¬F{ε})) > 0. For every γ ∈ Γ2Γ∗

we put fπ(γ) = fσ(γβ). Now it suffices to realize that every w ∈ L�
v is of

the form w ≡ v(0), · · · , v(i−1), α0β, α1β, · · · , where α0 = Y . Thus, each

w ∈ L�
v determines a unique run R(w) = α0, α1, · · · of Run(G∆′ [π], Y ).

Since w does not hit T ∪ {β}, the run R(w) does not hit Tε. Let

R(L�
v ) = {R(w) | w ∈ L�

v }. It is easy to show that

P(R(L�
v )) =

P(L�
v )

P(Run(G∆[σ], v))

Hence, P(R(L�
v )) > 0. Since R(L�

v ) ⊆ Run(G∆′ [π], Y,¬F{ε}), we obtain
that P(Run(G∆′ [π], Y,¬F{ε})) > 0 as needed. 2

Example 6 (iii) demonstrates that, for a given α ∈ [F<1T ], a SMD strategy π
such that P(Run(G∆[π], α,FT )) < 1 does not necessarily exist.

5 Model-checking Qualitative PCTL for 11
2
-player BPA Games

In this section we show that the results about 11
2
-player BPA games with ex-

tended reachability objectives (see Section 3) can be used to design an essen-
tially optimal model-checking algorithm for the qualitative fragment of PCTL
and 11

2
-player BPA games. For technical convenience, we restrict ourselves to

simple valuations, where ν(p) is a simple set for each p ∈ Ap (see Definition 5).

Infinite sets of stack configurations will be represented by deterministic finite-
state automata (DFA) which read the stack bottom-up. Formally, a DFA is a
tuple F = (Q, Σ, δ, q̂, F ) where Q is a finite set of control states, Σ is a finite
input alphabet, δ : (Q × Σ) → Q is a total transition function, q̂ ∈ Q is the
initial state, and F ⊆ Q is a subset of final states. The function δ is extended
to the elements of Q × Σ∗ in the natural way. A word w ∈ Σ∗ is accepted by
F iff δ(q0, w) ∈ F .

Let ∆ be a 11
2
-player BPA game with the stack alphabet Γ, and let F be a
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DFA with the input alphabet Γ. We say that a stack configuration α ∈ Γ∗

is recognized by F iff the reverse of α is accepted by F . Note that stack
configurations are traditionally written as words starting with the top-of-the-
stack symbol, but for technical reasons we prefer to read them in the bottom-
up (i.e., right to left) direction.

In the proof of our next theorem we use the standard technique of simulating
DFA in the stack alphabet (see, e.g., [6]).

Theorem 12 Let ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) by a 11
2
-player BPA game. Let

ν be a simple valuation and Φ a qualitative PCTL formula. Then there is a
DFA FΦ of size |∆| · 2O(|Φ|) constructible in time which is polynomial in |∆|
and exponential in |Φ| such that for all α ∈ Γ∗ we have that α |=ν Φ iff α is
recognized by FΦ.

PROOF. We proceed by induction on the structure of Φ. The cases when
Φ ≡ p, Φ ≡ Φ1 ∧ Φ2, and Φ ≡ ¬Φ1 follow immediately.

Let Φ ≡ X =1Φ1, and let F1 = (Q1, Γ, δ1, q̂, F1) be the DFA associated with
Φ1. The automaton F associated with Φ should then recognize exactly all
α ∈ Γ∗ such that for every transition α → β we have that β is recognized
by F1. Hence, we put F = (Q1 ∪ Q′

1, Γ, δ, r̂, Q′
1), where Q′

1 = {q′ | q ∈ Q1}
and the transition function δ is constructed as follows: Let q ∈ Q1, A ∈ Γ,
and let t = δ1(q, A). If for all rules A ↪→ γ we have that δ1(q, γ

r) ∈ F1

(where γr denotes the reverse of γ), then δ(q, A) = δ(q′, A) = t′. Otherwise,
δ(q, A) = δ(q′, A) = t. The initial state r̂ of F is either q̂′ or q̂, depending on
whether ε is recognized by F1 or not, respectively.

The cases when Φ ≡ X <1Φ1, Φ ≡ X =0Φ1, and Φ ≡ X >0Φ1 are handled
similarly.

Now, let us consider the case when Φ ≡ Φ1 U =1Φ2. Note that α |=ν Φ1 U =1Φ2

iff there is no strategy σ such that P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) < 1. Let
F1 = (Q1, Γ, δ1, q̂, F1) and F2 = (Q2, Γ, δ2, r̂, F2) be the DFA associated with
Φ1 and Φ2. We construct another DFA F which accepts exactly those α ∈ Γ∗

for which there exists a strategy σ such that P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) <
1. The desired DFA is then obtained simply by complementing the automaton
F . First we construct a 11

2
-player BPA game ∆̄ which is obtained from ∆ by

encoding the automata F1, F2 into the stack alphabet and simulating them
“on-the-fly”. Formally, ∆̄ = (Γ̄, ;, (Γ̄2, Γ̄©),Pr) where Γ̄ = (Γ ∪ {ε})×Q1 ×
Q2, Γ̄2 = Γ2×Q1×Q2, Γ̄© = (Γ©∪{ε})×Q1×Q2 and the transition relation
; together with Pr are defined as follows (A, q, and r range over Γ, Q1, and
Q2, respectively):

• (A, q, r)
x
; ε iff A

x
↪→ ε;

24



• (A, q, r)
x
; (B, q, r) iff A

x
↪→ B

• (A, q, r)
x
; (B, q′, r′)(C, q, r) iff A

x
↪→ BC, δ1(q, C) = q′ and δ2(r, C) = r′;

• (ε, q, r)
1
; (ε, q, r).

For every configuration α ∈ Γ∗ of the form An · · ·A1 there is a unique
configuration [α] ∈ Γ̄∗ of the form (An, qn, rn) · · · (A1, q1, r1)(ε, q̂, r̂) where
q1 = q̂, r1 = r̂, and for all 0 ≤ i < n we have that δ1(qi, Ai) = qi+1 and
δ2(ri, Ai) = ri+1. Note that for every α ∈ Γ∗, the subgraphs of G∆ and G∆̄

which consist of all vertices reachable from α and [α] are isomorphic. Let
S, T ⊆ Γ̄∗ be the simple sets where

• C(S) = {(x, q, r) | x ∈ Γ ∪ {ε}, δ1(q, x) ∈ F1, r ∈ Q2}
• C(T ) = {(x, q, r) | x ∈ Γ ∪ {ε}, q ∈ Q1, δ2(r, x) ∈ F2}.

Now it is easy to see that {α ∈ Γ∗ | ∃σ : P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) < 1}
is equal to the set K = {α ∈ Γ∗ | ∃σ : P(Run(G∆̄(σ), [α], S U T )) < 1}. By
Theorem 11 (see also Remark 7), there effectively exist the sets A,B ⊆ Γ̄ such
that K = {α ∈ Γ∗ | [α] ∈ A∗∪(A∗BΓ̄∗)}. Hence, the automaton F recognizing
the set K can now be constructed as follows: we put F = (Q, Γ, δ, t̂, F ) where

• Q = Q1 ×Q2 × {0, 1}.
• For all A ∈ Γ, q ∈ Q1, r ∈ Q2, and i ∈ {0, 1} we put δ((q, r, i), A) =

(δ1(q, A), δ2(r, A), j), where
· j = 0 iff either i = 0 and (q, r, A) ∈ A ∪ B, or i = 1 and (q, r, A) ∈ B;
· j = 1 iff either i = 0 and (q, r, A) ∈ Γ r (A ∪ B), or i = 1 and (q, r, A) ∈

Γ r B.
• The initial state t̂ is either (q̂, r̂, 0) or (q̂, r̂, 1), depending on whether

(ε, q̂, r̂) ∈ A ∪ B or not, respectively.
• F = Q1 ×Q2 × {0}.

The cases when Φ ≡ Φ1 U =0Φ2, Φ ≡ Φ1 U >0Φ2, and Φ ≡ Φ1 U <1Φ2 are
handled similarly, using Theorem 8, 9, and 10, respectively.

The complexity of the whole algorithm is easy to evaluate (it suffices to con-
sider the worst subcase Φ ≡ Φ1 U 1%Φ2). 2

Since the model-checking problem for qualitative PCTL and fully probabilistic
BPA (i.e., the subclass of 11

2
-player BPA games where Γ2 = ∅) is known to

be EXPTIME-hard [4], we obtain the following:

Corollary 13 The model-checking problem for qualitative PCTL and 11
2
-

player BPA games is EXPTIME-complete. For each fixed formula, the prob-
lem becomes solvable in polynomial time.
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6 Conclusions

We have shown that the sets of all configurations of a given 11
2
-player BPA

game for which there exists a strategy such that the probability of all runs sat-
isfying a given simple ERO is greater than zero, equal to zero, equal to one,
and less than one, are regular. Moreover, the corresponding finite-state au-
tomata have a fixed number of control states and are effectively constructible
in polynomial time. With the help of this result, we derived EXPTIME-
completeness of the model-checking problem for 11

2
-player BPA games and

qualitative PCTL formulae.

One natural question we left open is the decidability of the problem whether
Val+(α) = 1 for a given configuration α of a given 11

2
-player BPA game. Note

that Theorem 10 entails the decidability of a slightly different problem—we
ask whether there is a strategy such that the probability of all runs satisfying a
given simple ERO is equal to one. If this is the case, then obviously Val+(α) =
1. However, it can happen that Val+(α) = 1 even if no optimal maximizing
strategy exists (see Example 6 (i)).

Note that the proofs of Theorem 10 and Theorem 11 are not fully constructive
in the sense that the associated MD strategies are not explicitly designed (we
are interested just in their existence). Although the transitions chosen by these
strategies for a given Xα generally depend both on X and α, we conjecture
that the required information is actually finite and can effectively be encoded
by a finite-state automaton.
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[5] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown
automata. In Proceedings of LICS 2004, pages 12–21. IEEE Computer Society
Press, 2004.
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