
Language Equivalence of Probabilistic Pushdown
Automata

Vojtěch Forejta, Petr Jančarb, Stefan Kiefera, James Worrella

aDepartment of Computer Science, University of Oxford, UK
bDept of Computer Science, FEI, Techn. Univ. Ostrava, Czech Republic

Abstract

We study the language equivalence problem for probabilistic pushdown au-
tomata (pPDA) and their subclasses. We show that the problem is interre-
ducible with the multiplicity equivalence problem for context-free grammars,
the decidability of which has been open for several decades. Interreducibility
also holds for pPDA with one control state.
In contrast, for the case of a one-letter input alphabet we show that pPDA
language equivalence (and hence multiplicity equivalence of context-free gram-
mars) is in PSPACE and at least as hard as the polynomial identity testing
problem.

Keywords: pushdown systems, language equivalence, probabilistic systems

1. Introduction

Equivalence checking is the problem of determining whether two systems are
semantically identical. This is an important question in automated verification
and, more generally, represents a line of research that can be traced back to the
inception of theoretical computer science. A great deal of work in this area has
been devoted to the complexity of language equivalence for various classes of
infinite-state systems based on grammars and automata, such as basic process
algebras (BPA) and pushdown processes. We mention in particular the land-
mark result showing the decidability of language equivalence for deterministic
pushdown automata (dPDA) [24]; the problem is well-known to be undecidable
for general (nondeterministic) PDA.

An input word determines a unique computation of a dPDA, whereas the
computation of a PDA on an input word can have many branches. In this
paper we are concerned with probabilistic pushdown automata (pPDA), where
we only allow probabilistic branching. Here two pPDA are language equivalent
if they accept each word with the same probability. The decidability of the
language equivalence problem for pPDA is still open, even in the case with no
ε-transitions, to which we restrict ourselves in this paper.

The language theory of probabilistic pushdown automata has been studied
in [1], where their equivalence with stochastic context-free grammars (CFGs)

Preprint submitted to Elsevier April 21, 2014

is proved. There is also a growing body of work concerning the complexity of
model checking and equivalence checking of probabilistic pushdown automata,
probabilistic one-counter machines and probabilistic BPA (see, e.g., [5, 10, 11,
13]).

It was shown recently in [17] that the language equivalence problem for
probabilistic visibly pushdown automata is logspace equivalent to the problem of
polynomial identity testing, that is, determining whether a polynomial presented
as an arithmetic circuit is identically zero. The latter problem is known to be
in coRP.

The contribution of this paper is the following. For general pPDA we show
that language equivalence is polynomially interreducible with multiplicity equiv-
alence of CFGs. The latter problem asks whether in two given grammars every
word has the same number of derivation trees. The decidability question for
multiplicity equivalence is a long-standing open problem in theory of formal
languages [21, 19, 18, 15]. Our construction works by turning nondeterministic
branches of a CFG into carefully designed probabilistic transitions of a pPDA,
and vice versa. A consequence of this reduction is that the equivalence problem
for pPDA is polynomially reducible to the equivalence problem for pPDA with
one control state. We note that a corresponding polynomial reduction from the
general case to the one-state case would be a breakthrough in the case of deter-
ministic PDA since one-state dPDA equivalence is known to be in P (see [14],
or [8] for the best known upper bound).

We further show that in the case of a one-letter input alphabet the lan-
guage equivalence problem is decidable in polynomial space. We use the fact
that in this case the problem reduces to comparing distributions of termina-
tion probabilities within i steps (i = 0, 1, 2, . . .). By using an equation system
for generating functions we reduce the latter problem to the decision problem
for the existential fragment of the theory of the reals (which is known to be in
PSPACE but not known to be PSPACE-complete). Moreover, we show that the
hardness result from [17] carries over; i.e., language equivalence for one-letter
pPDA is at least as hard as the polynomial identity testing. Very recent work [7]
considers (non)probabilistic dPDA with a one-letter input alphabet, allowing for
ε-transitions. They show, among other results, that the equivalence problem for
such dPDA is P-complete.

As a byproduct of the mentioned results, we obtain that multiplicity equiv-
alence of CFG with one-letter input alphabet is in PSPACE. The previously
known decidability result, which is based on elimination theory for systems of
polynomial equations, did not provide any complexity bound, see [19, 18, 15]
and the references therein.

2. Definitions and results

By N,Q,R we denote the set of nonnegative integers, the set of rationals,
and the set of reals, respectively. We denote the set of words over a finite
alphabet Σ by Σ∗. We denote the empty word by ε and write Σ+ = Σ∗ r {ε}.

2

By |w| we denote the length of w ∈ Σ∗, so that |ε| = 0. For k ∈ N we put
Σ≤k = {w ∈ Σ∗; |w| ≤ k}.

Given a finite or countable set A, a probability distribution on A is a function
d : A → [0, 1] ∩ Q such that

∑
a∈A d(a) = 1. The support of a probability

distribution d is the set support(d) := {a ∈ A : d(a) > 0}. The set of all
probability distributions on A is denoted by D(A). A Dirac distribution is one
whose support is a singleton.

2.1. Probabilistic Labelled Transition Systems

A probabilistic labelled transition system (pLTS) is a tuple S = (S,Σ,−→),
where S is a finite or countable set of states, Σ is a finite input alphabet, whose
elements are also called actions, and −→ ⊆ S ×Σ×D(S) is a transition relation
satisfying that for each pair (s, a) there is at most one d such that (s, a, d) ∈ −→.

We write s
a−→ d to say that (s, a, d) ∈ −→, and s

a,x−−→ s′ when there is s
a−→ d

such that d(s′) = x. We also write s −→ s′ to say that there exists a transition

s
a−→ d with s′ ∈ support(d). We say that an action a is enabled in a state s ∈ S

if s
a−→ d for some d; otherwise a is disabled in s. A state s ∈ S is terminating

if no action is enabled in s.
Let S = (S,Σ,−→) be a pLTS. An execution on a word a1a2 . . . ak ∈ Σ∗,

starting in a given state s0, is a finite sequence s0
a1,x1−−−→ s1

a2,x2−−−→ s2 · · ·
ak,xk−−−→ sk.

Given s0 and a1a2 . . . ak, the probability of such an execution is
∏k
i=1 xi.

2.2. Probabilistic Pushdown Automata

A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q,Γ,Σ, ↪−→)
where Q is a finite set of control states, Γ is a finite stack alphabet, Σ is a finite
input alphabet, and ↪−→ ⊆ Q× Γ× Σ× D(Q× Γ≤2) is a finite set of rules. We
require that for each (q,X, a) ∈ Q × Γ × Σ there be at most one distribution

d such that (q,X, a, d) ∈ ↪−→. We write qX
a
↪−→ d to denote (q,X, a, d) ∈ ↪−→;

informally speaking, in the control state q with X at the top of the stack we
can perform an a-transition to the distribution d.

A configuration of a pPDA ∆ = (Q,Γ,Σ, ↪−→) is a pair (q, β) ∈ Q × Γ∗;

we often write qβ instead of (q, β). We write qX
a,x
↪−−→ rβ if qX

a
↪−→ d where

d(rβ) = x.
When speaking of the size of ∆, we assume that the probabilities in the

transition relation are given as quotients of integers written in binary.
A pPDA ∆ = (Q,Γ,Σ, ↪−→) generates a pLTS S(∆) = (Q× Γ∗,Σ,−→) as

follows. For each β ∈ Γ∗, a rule qX
a
↪−→ d of ∆ induces a transition qXβ

a−→ d′

in S(∆), where d′ ∈ D(Q× Γ∗) is defined by d′(pαβ) = d(pα) for all p ∈ Q and
α ∈ Γ≤2 (and thus d′ is 0 elsewhere). We note that all configurations with the
empty stack, written as pε or just as p, are terminating states in S(∆). (Later
we will assume that the empty-stack configurations are the only terminating
states.)

The probability that ∆ accepts a word w ∈ Σ∗ from a configuration qα is the
sum of the probabilities of all executions on w, starting in qα in S(∆), that end
in a configuration with the empty stack. We denote this probability by P∆

qα(w).

3

p pX pXX pXXX pXXXX

q qX qY X qY Y X qY Y Y X

a, 0.5

a, 0.5

a, 0.5

a, 0.5

a, 0.5

a, 0.5

a, 0.5 a, 0.5

a, 0.4

a, 0.1a, 0.5

a, 0.5 a, 0.5 a, 0.5 a, 0.5

b, 1

b, 1

b, 1

b, 1

b, 1

b, 1

b, 1

b, 1

Figure 1: A fragment of S(∆) from Example 1.

A probabilistic basic process algebra (pBPA) ∆ is a pPDA with only one
control state. In this case we often write just α instead of qα for a configuration.

2.3. The Language Equivalence Problem

We study the language equivalence problem for pPDA. The problem asks
whether two configurations q1α1 and q2α2 of a given pPDA ∆ accept each
input word with the same probability, i.e., whether the functions P∆

q1α1
(·) and

P∆
q2α2

(·) are the same. If yes, we also say that q1α1 and q2α2 are equivalent
in ∆.

Example 1. Consider the pPDA ∆ = ({p, q}, {X,Y }, {a, b}, ↪−→) with the fol-
lowing rules:

pX
a,0.5
↪−−−→ pXX pY

a,1
↪−−→ pY qX

a,0.1
↪−−−→ qY X qY

a,0.5
↪−−−→ qY Y

pX
a,0.5
↪−−−→ pε, pY

b,1
↪−→ pε qX

a,0.5
↪−−−→ qε qY

a,0.5
↪−−−→ qε

pX
b,1
↪−→ pX qX

a,0.4
↪−−−→ pXX qX

b,1
↪−→ qX qY

b,1
↪−→ qY

The restriction of ∆ to the control state p yields a pBPA. A fragment of the
pLTS S(∆) is shown in Figure 1. The configurations pXX and qY X are equiv-
alent in ∆, since for every word w we have P∆

pXX(w) = P∆
qY X(w); this can be

derived by observing that for all words w and i ≥ 1 the probability of being in
pXi or qY i−1X after reading w is the same independently of whether we start
from pXX or from qY X (a formal proof of this observation can be given by a
straightforward induction on the length of w).

In what follows we impose two restrictions on the language equivalence prob-
lem; both are without loss of generality. We say that a pPDA ∆ = (Q,Γ,Σ, ↪−→)
is non-blocking if for each (q,X, a) ∈ Q×Γ×Σ there is (precisely) one distribu-

tion d such that qX
a
↪−→ d; hence each action is disabled only in the empty-stack

configurations in S(∆). We assume that our pPDA are non-blocking. Given an
arbitrary pPDA ∆ = (Q,Γ,Σ, ↪−→) we obtain an equivalent non-blocking pPDA

4

∆′ as follows: we add a fresh stack symbol ⊥ and for every (q,X, a) where there
is no d such that (q,X, a, d) ∈ ↪−→ (which includes the case X = ⊥) we add
the rule (q,X, a, d) where d(q⊥) = 1. Hence P∆′

qα (w) = 0 if α contains ⊥, and

P∆
qα(w) = P∆′

qα (w) for all q ∈ Q, α ∈ Γ∗, w ∈ Σ∗.
We further suppose that the initial configurations q1α1 and q2α2 satisfy that

α1 = X1 and α2 = X2 for some X1, X2 ∈ Γ. The general instance with q1α1

and q2α2 can be reduced to this form by adding some auxiliary stack symbols
and rules, whose number is proportional to k = max{|α1|, |α2|}: we just arrange
that some freshly added configurations q1Y1, q2Y2 have the only possibility to
move to q1α1, q2α2, respectively, by a fixed word ak.

2.4. Grammars and the multiplicity problem

A context-free grammar, a grammar for short, is a tuple G = (V,Σ, R, S)
where V is a finite set of nonterminals (or variables), Σ is a finite set of terminals,
R ⊆ V × (V ∪ Σ)+ is a finite set of production rules, and S ∈ V is a start
symbol. We write production rules in the form A → α where α 6= ε, i.e., we
assume that grammars are ε-free. The relation ⇒ on (V ∪ Σ)∗, capturing a
derivation step, is defined as follows: if A → α is in R then βAγ ⇒ βαγ (for
any β, γ ∈ (V ∪ Σ)∗). A sequence α0 ⇒ α1 ⇒ · · · ⇒ αk is a derivation, of αk
from α0. A derivation step βAγ ⇒ βαγ is a leftmost derivation step if β ∈ Σ∗.
A derivation α0 ⇒ α1 ⇒ · · · ⇒ αk is leftmost if αi ⇒ αi+1 is a leftmost step
for each i ∈ {0, 1, . . . , k−1}.

For a grammar G = (V,Σ, R, S) and a word w ∈ Σ∗ we define the multiplic-
ity mG(w) ∈ N ∪ {∞} of w in G as the number of distinct leftmost derivations
of w from S. We say that G is a finite-multiplicity grammar if mG(w) <∞ for
all w ∈ Σ∗. Two finite-multiplicity grammars G1, G2 are said to be multiplicity
equivalent if mG1

(w) = mG2
(w) for all w ∈ Σ∗.

If a grammar has a rule S −→ S then mG(w) ∈ {0,∞} for all w ∈ Σ∗,
and multiplicity equivalence coincides with classical equivalence of grammars.
Therefore multiplicity equivalence is undecidable in general. However for finite-
multiplicity grammars, the decidability of multiplicity equivalence is a long-
standing open problem [19]. This equivalence is known to be decidable only for
subclasses of grammars, e.g., for unary grammars, i.e., grammars with |Σ| = 1,
see [19, 18, 15] and the references therein.

2.5. Results

The results of this paper are captured by the next two theorems.

Theorem 1. The following problems are interreducible in polynomial time,
without changing the input alphabet or terminal alphabet, respectively:

1. language equivalence for pPDA;

2. language equivalence for pBPA;

3. multiplicity equivalence for (ε-free) finite-multiplicity grammars.

5

Theorem 2. The language equivalence problem for pPDA with a one-letter in-
put alphabet, the language equivalence problem for pBPA with a one-letter input
alphabet, and the multiplicity problem for (ε-free) finite-multiplicity grammars
with a one-letter terminal alphabet, are all:

1. in PSPACE, and

2. at least as hard as polynomial identity testing (the ACIT problem, see the
next subsection).

2.6. Arithmetic Circuit Identity Testing

Recall that an arithmetic circuit is a finite directed acyclic multigraph C
whose vertices, called gates, have indegree 0 or 2. Vertices of indegree 0 are
called input gates; each input gate is labelled with 0, 1, or a variable from the
set {xi : i ∈ N}. Vertices of indegree 2 are called internal gates; each such
gate is labelled with one of the arithmetic operations +, ∗ or −. Since C is a
multigraph, both inputs of a given gate can stem from the same source. We
assume that there is a unique gate with outdegree 0 called the output. Any
circuit C has a naturally related polynomial polC . A circuit C is variable-free
if all inputs gates are labelled 0 or 1; polC is constant in this case.

The Arithmetic Circuit Identity Testing (ACIT) problem asks if polC is the
zero polynomial, for a given circuit C. ACIT is known to be in coRP but it
is open if it is in P; it is even open if there is a sub-exponential algorithm for
this problem [2]. Utilising the fact that a variable-free arithmetic circuit of
size O(n) can compute 22n , Allender et al. [2] give a logspace reduction of the
general ACIT problem to the special case of variable-free circuits. Furthermore,
ACIT can be reformulated as the problem of deciding whether two variable-
free circuits using only the arithmetic operations + and ∗ compute the same
number [2].

2.7. Overview of the next sections

Theorem 1 is shown by adapting several existing constructions, and is post-
poned to Section 4. We start with proving Theorem 2 in Section 3: in Section 3.1
we show membership in PSPACE, and then show a polynomial reduction yield-
ing the hardness result in Section 3.2.

3. Language Equivalence of pPDA with one input letter

In this section we consider unary pPDA ∆ = (Q,Γ, {a}, ↪−→), i.e., those
whose input alphabet is a singleton {a}. In unary pPDA the next configuration
is probabilistically determined solely by the current configuration. Here we elide

the letter a in transitions, writing qX
p
↪−→ rα instead of qX

a,p
↪−−→ rα, and qβ

p−→ rγ

instead of qβ
a,p−−→ rγ.

6

3.1. Membership in PSPACE

In this subsection we prove the following lemma, establishing Point 1. in
Theorem 2:

Lemma 1. The language equivalence problem for unary pPDA is in PSPACE.

We show this by a polynomial reduction to the decision problem
for ExTh(R), the existential fragment of the first-order theory of the reals, which
is in PSPACE but not known to be PSPACE-hard. Hence language equivalence
for unary pPDA is not PSPACE-hard unless ExTh(R) is PSPACE-complete.

We will first note that in the unary case language equivalence coincides with
the equality of termination-time distributions. For comparing two distributions,
i.e., two countable sequences of nonnegative real numbers from [0, 1], it is con-
venient to use the framework of generating functions. This allows us to create
a system of equations with precisely one solution in the case of almost surely
terminating unary pBPA. The equivalence question will thus reduce to decid-
ing truth in ExTh(R). The case of general unary pBPA is then handled by a
reduction to the case of almost surely terminating pBPA. The result can then
be extended to unary pPDA by using the direction 2.⇒1. of Theorem 1 (to be
proven in Section 4).

3.1.1. Distribution of termination time of runs

Let us assume a fixed unary (non-blocking) pPDA ∆ = (Q,Γ, {a}, ↪−→). We
note that our model of unary pPDA is essentially equivalent to a model which is
also called “pPDA” in the literature, see e.g., [4] and the references therein. As
there is only one action in our unary pPDA ∆, the pLTS S(∆) can be viewed
as an infinite-state Markov chain. Let a run of ∆ be an execution in S(∆) that
is either infinite or ending with an empty-stack configuration. If a run is finite
(i.e., it reaches an empty-stack configuration), we say that it terminates. For
each configuration qα, by Run(qα) we denote the set of runs starting in qα. A
probability measure P can be defined over Run(qα) in the standard way, see
e.g., [4] for the formal details.

To each configuration qα we associate the random variable Tqα : Run(qα)→
N ∪ {∞} that maps each run to the number of its steps, called the termination
time of the run. For each i ∈ N we have that P(Tqα = i), i.e., the probability
that a run from qα terminates in i steps, is equal to P∆

qα(ai). From this point
of view, language equivalence means equality between the (sub-)distributions of
Tq1α1

and Tq2α2
. We note that some bounds on P(Tqα > i) were derived in [4],

but equivalence seems not to have been analysed so far.

3.1.2. Almost surely terminating pBPA

We first restrict our attention to almost surely terminating pBPA ∆ =
({q},Γ, {a}, ↪−→), i.e., we assume P(Tα < ∞) = 1 for each α ∈ Γ∗; for short
we write Tα instead of Tqα since q is the only control state. Later we extend
the proof to all unary pBPA, which together with Theorem 1 (to be proven in
Section 4) will complete the proof.

7

Given X,Y ∈ Γ, our (language equivalence) problem is to decide whether
the distributions of TX and TY coincide, or whether there is i ∈ N such that
P(TX = i) 6= P(TY = i). To this end it is convenient to use the framework of
generating functions.

3.1.3. Equation systems for generating functions, with unique solutions

For a random variable T over N we define gT : [0, 1]→ [0, 1] by

gT (z) := E(zT) =

∞∑
i=0

P(T = i) · zi

where E denotes the expectation with respect to P.
Using the superscript (i) to denote the i-th derivative, we note that gT = gT ′

implies g
(i)
T (0) = g

(i)
T ′ (0), and thus P(T = i) = P(T ′ = i). The next proposition

follows immediately.

Proposition 1. The distributions of T, T ′ are the same iff gT = gT ′ .

Convention. By T + T ′ we refer to a random variable with the distribution

P(T + T ′ = i) =

i∑
j=0

P(T = j) · P(T ′ = i−j).

We further assume an almost surely terminating pBPA ∆ = ({q},Γ, {a}, ↪−→).
For α ∈ Γ∗ we often write gα instead of gTα .

Proposition 2. For X,Y ∈ Γ, the distributions of TXY and TX + TY are the
same, and gXY (z) = gX(z) · gY (z).

Proof. The first part follows by observing that a terminating run from XY
naturally corresponds to a terminating run from X followed by a terminating
run from Y . For the rest we observe that

∞∑
i=0

P(TX + TY = i) · zi =

∞∑
i=0

i∑
j=0

P(TX = j) · P(TY = i−j) · zj · zi−j

= (

∞∑
i=0

P(TX = i) · zi) · (
∞∑
i=0

P(TY = i) · zi).

We illustrate our equation systems by an example first.

Example 2. Let us consider a unary pBPA given by X
0.3
↪−−→ XY , X

0.7
↪−−→ ε, and

Y
0.6
↪−−→ X, Y

0.4
↪−−→ ε. We can easily check that

gX(z) = E(zTX) = 0.3 · E(zTX | rule X
0.3
↪−−→ XY is taken in the first step) +

+ 0.7 · E(zTX | rule X
0.7
↪−−→ ε is taken in the first step) =

= 0.3 · E(z1+TX+TY) + 0.7 · E(z1) = z · (0.3 · gX(z) · gY (z) + 0.7) .

8

Similarly we can derive gY (z) = z · (0.6 · gX(z) + 0.4).
For any z ∈ [0, 1], the pair (gX(z), gY (z)) is thus a fixed point of the function

z · f where f(x1, x2) = (0.3x1x2 + 0.7, 0.6x1 + 0.4).

Generally, for our assumed almost surely terminating pBPA ∆ =
({q},Γ, {a}, ↪−→) we define the quadratic function f : [0, 1]Γ → [0, 1]Γ by

fX(x) :=
∑

X
p

↪−→Y Z

pxY xZ +
∑
X

p

↪−→Y

pxY +
∑
X

p

↪−→ε

p for x ∈ [0, 1]Γ. (1)

Reasoning as in Example 2, we note that the vector g(z) := (gX(z))X∈Γ satisfies
g(z) = z · f(g(z)) for each z ∈ [0, 1], i.e., g(z) is a fixed point of z · f . Using
Proposition 4 we will show that the fixed point is unique. The proof refers to
several results in the literature. We first sketch one elementary fact separately,
after recalling the notion of Jacobian matrices.

Consider a function F : Rk → Rk, i.e., a k-tuple (F1, F2, . . . , Fk) with
Fi : Rk → R. Assume moreover that the partial derivatives of each Fi exist
throughout Rk. For x = (x1, x2, . . . , xk), we denote by F ′(x) the Jacobian
matrix of F (x), i.e., the (k × k)-matrix with F ′ij(x) := ∂

∂xj
F i(x).

Proposition 3. Let F : Rk → Rk be a quadratic function (hence Fi(x1, . . . , xk)
is a sum of terms of the type cxjx`, cxj, or c, where c ∈ R). For u,v ∈ Rk we
have F (u)− F (v) = F ′((u + v)/2)(u− v).

Proof. We can write Fi(x) = xTBx + `x + c, where we view x as a column
vector, xT is the transpose of x, B is a symmetric real k × k-matrix, ` ∈ Rk is
a row vector, and c ∈ R.

By symmetry of B we get F ′i (x) = 2xTB + `, and thus
Fi(u)− Fi(v) = uTBu− vTBv + `(u− v) = (u + v)TB(u− v) + `(u− v) =
F ′i ((u + v)/2)(u− v).

Proposition 4. For each z ∈ [0, 1], the function z · f : [0, 1]Γ → [0, 1]Γ has a
unique fixed point in [0, 1]Γ. (By f we refer to the function (1), defined for ∆.)

Proof. We first handle the case z = 1. It is known (see [9, 11]) that the least
nonnegative fixed point of f is equal to the vector of termination probabilities
(of runs starting from X ∈ Γ), which is 1 := (1, 1, . . . , 1) by our assumption.
Hence there is no other fixed point of f in [0, 1]Γ.

By f ′(x) we denote the Jacobian matrix of f(x), i.e., the Γ×Γ-matrix with
f ′XY (x) := ∂

∂xY
fX(x). We claim that the spectral radius of (the real-valued

nonnegative square matrix) f ′(1) is at most one. Towards a contradiction, sup-
pose that f ′(1) is greater than one. It follows from a fact about nonnegative
matrices, see [3, Corollary 2.1.6], that f ′(1) has an irreducible principal subma-
trix M with the same spectral radius. The matrix M being a principal submatrix
means that M is a Γ′×Γ′-matrix with MXY = f ′XY (1) for all X,Y ∈ Γ′, where
Γ′ is a subset of Γ. The matrix M being irreducible means that the graph that
has Γ′ as the set of vertices and {(X,Y) | X,Y ∈ Γ′,MXY > 0} as the set of
edges is strongly connected.

9

As the spectral radius ofM is greater than one, it follows from the correctness
of the algorithm in [11, Figure 8] that P(TX < ∞) < 1 for some X ∈ Γ′. This
contradicts our assumption that ∆ is almost surely terminating. So the spectral
radius of f ′(1) is indeed at most one.

We now fix z < 1 and define F (x) := z · f(x) (for x ∈ [0, 1]Γ); by F ′(x)
we denote the Jacobian matrix of F (x). Then the spectral radius of F ′(1) =
z·f ′(1) is strictly less than one. Although the spectral radius itself is not a norm,
it follows from Theorem 5.3.5 of [20] that there is a vector norm ‖·‖ : RΓ → R
whose induced matrix norm satisfies

∥∥F ′(1)
∥∥ < 1. Since F is a quadratic

function, by Proposition 3 we have F (u)− F (v) = F ′((u + v)/2)(u− v).
Considering the mentioned norm, for all u,v ∈ [0, 1]Γ we have

‖F (u)− F (v)‖ =
∥∥F ′((u + v)/2)(u− v)

∥∥ ≤ ∥∥F ′((u + v)/2)
∥∥ ‖u− v‖≤

≤
∥∥F ′(1)

∥∥︸ ︷︷ ︸
<1

‖u− v‖ ,

where the last inequality holds since all coefficients in F ′(x) are nonnegative.
The Banach fixed-point theorem now implies that F has a unique fixed point
in [0, 1]Γ.

3.1.4. Completing the proof of Lemma 1

We have shown that the question if X1, X2 ∈ Γ are not equivalent (in our
assumed almost surely terminating pBPA ∆) reduces to the question if the
closed formula

∃z ∈ [0, 1]∃x ∈ [0, 1]Γ (x = z · f(x) ∧ xX1
6= xX2

)

is true in ExTh(R). The latter condition is decidable in polynomial space, see
[6, 22].

Now we show how to generalize the claim of Lemma 1 to pBPA in which
the probability of nontermination can be positive. Let us fix a (general) unary
pBPA ∆ = ({q},Γ, {a}, ↪−→). Given X1, X2 ∈ Γ, our problem is to decide
whether the distributions of TX1

and TX2
coincide. We solve this by a reduc-

tion to the case of almost surely terminating unary pBPA; using a result from [4],
we construct an almost surely terminating pBPA ∆• whose distribution of ter-
mination time is closely related to the distribution in ∆.

For the definition of ∆•, the notion of termination probabilities is crucial:
For α ∈ Γ∗ we write [α] := P(Tα < ∞), i.e., [α] is the probability that a run
starting in α terminates. Note that for X,Y ∈ Γ we have [XY] = [X] · [Y]. Let
Term := {X ∈ Γ | [X] > 0}. The set Term can be computed in polynomial
time by a standard (qualitative) reachability analysis. We now define ∆• as the
unary pBPA with the stack alphabet Γ• := Term where the transition rules ↪−→•
are induced as follows: if X

x
↪−→ α and α ∈ Γ≤2

• (hence also X ∈ Γ•) then

X
x·[α]/[X]
↪−−−−−→• α. We use T •α for the random variable that maps the runs of ∆•

starting in α ∈ Γ∗• to their termination time. We have the following proposition
from [4]:

10

Proposition 5 (Proposition 6 of [4]). The pBPA ∆• is almost surely terminat-
ing, i.e., we have P(T •α < ∞) = 1 for all configurations α ∈ Γ∗•. Moreover, for
all X ∈ Γ• and all i ∈ N we have that P(TX = i | ε is reached) = P(T •X = i),
where the left-hand side refers to ∆ and the right-hand side to ∆•.

It follows that for all X ∈ Γ and all i ∈ N we have P(TX = i) = [X] ·
P(T •X = i) , and hence for the generating functions we get gTX (z) := E

(
zTX

)
=

[X] · gT•X (z) . Let f• : [0, 1]Γ• → [0, 1]Γ• be the quadratic function defined as
f in (1), but now for ∆•. By similar reasoning as before it follows that two
configurations X1, X2 ∈ Γ are not equivalent if and only if the closed formula

∃z ∈ [0, 1]∃x ∈ [0, 1]Γ•
(
x = z · f•(x) ∧ [X1] · xX1

6= [X2] · xX2

)
(2)

is true in ExTh(R). The termination probabilities are in general irrational. But
by Theorem 18 of [12] (see also the proof of Theorem 21 of [12])1 we have the
following proposition:

Proposition 6. Let t ∈ (0, 1]Term be the vector of termination probabilities,
i.e., t := ([X] | X ∈ Term). Let x = (xX | X ∈ Term) be a vector of variables.
One can compute in polynomial space a formula Φ(x) ∈ ExTh(R) of polynomial
length and with free variables x so that for all u ∈ RTerm we have that Φ(u)
holds if and only if u = t.

Using Proposition 6 one can express the termination probabilities and the
coefficients of the function f• in ExTh(R). Hence a polynomial space com-
putation rephrases (2) as a closed ExTh(R)-formula of polynomial length. By
appealing again to decision procedures for ExTh(R) [6, 22], we have established
the claim of Lemma 1 for all unary pBPA. Theorem 1 (to be proven in Section 4)
thus completes a proof of Lemma 1, and also of Point 1. in Theorem 2.

3.2. Hardness for Polynomial Identity Testing

In this section we prove the hardness result expressed in Point 2. in The-
orem 2. We recall from Section 2 that we can view the ACIT problem as the
decision problem that asks if two variable-free circuits with the operations +, ∗
output the same number. After we prove Lemma 2 below and Theorem 1, Point
2. in Theorem 2 will be established.

Lemma 2. ACIT is polynomially reducible to the language equivalence problem
for unary pPDA.

Proof. Our proof closely follows a proof given in [17] for (non-unary) probabilis-
tic visibly pushdown automata.

Let C and C ′ be two circuits where each non-input gate is labelled with +
or ∗. By the depth of a gate we mean its distance from the output gate. We

1In fact, in [12] the formalism of Recursive Markov Chains (RMCs) is used. RMCs and
pPDAs (with unary alphabet) are equivalent in a precise sense, see also [12].

11

assume that the circuits have the following form (to which they can be safely
transformed in polynomial time): the inputs of a depth-i gate both have depth
i+1, +-gates have even depths, ∗-gates have odd depths, and the input gates
all have the same depth d. Thus in each circuit any path from an input gate to
the output gate has length d. Let C have the gates g1, . . . , gm, with g1 being
the output gate, and let C ′ have the gates gm+1, . . . , gn, with gm+1 being the
output gate.

We define a unary pPDA ∆ = (Q,Γ, {a}, ↪−→) with Q = {q0, q1, . . . , qn} and
Γ = {X0, X1, . . . , Xn}; the rules ↪−→ are constructed as follows:

• For each +-gate gi = gj + gk we include a transition qiX
1/2
↪−−→ qjX and

qiX
1/2
↪−−→ qkX for all X ∈ Γ.

• For each ∗-gate gi = gj ∗ gk we include a transition qiX
1
↪−→ qjXkX for all

X ∈ Γ.

• For each 1-labelled input gate gi we include a transition qiXj
1
↪−→ qj for all

j ∈ {0, . . . , n}.

(The 0-labelled input gates do not give rise to any transitions.)
We will show that each of q1X0, qm+1X0 accepts at most one word with

positive probability, and that q1X0 and qm+1X0 are equivalent if and only if C
and C ′ output the same number.

To this end, we define a sequence of words w0, w1, . . . , wd ∈ {a}∗ in reversed
order as follows: wd = a; if e < d is even then we = awe+1; if e < d is odd
then we = awe+1we+1. We also define the numbers M0,M1, . . . ,Md as follows:
Md = 1; if e < d is even then Me = 2Me+1; if e < d is odd then Me = (Me+1)2.

Claim. Let i ∈ {1, . . . , n} and X ∈ Γ. Let e denote the depth of gate gi and
Ni ∈ N the output number of gi. Then we have P∆

qiX
(we) = Ni/Me. Moreover,

P∆
qiX

(w) = 0 for all w 6= we.

The claim obviously implies that q1X0 and qm+1X0 are language equivalent
(accepting w0 with the same probability) iff C,C ′ output the same number (by
g1 and gm+1). Now we prove the claim, by which the proof of the lemma will
be finished. We first observe that

if the pLTS S(∆) has a path from qiXj to qk, then j = k . (3)

We prove Claim by (reverse) induction on the depth e of gi. If e = d then gi is
an input gate; if labelled with 1 then P∆

qiX
(wd) = 1 = Ni/Md and P∆

qiX
(w) = 0

for all w ∈ {a}∗ r {wd}; if labelled with 0 then P∆
qiX

(w) = 0 = Ni/Md for all
w ∈ {a}∗. Let us now assume e < d.

12

• Let gi := gj + gk be a gate of (even) depth e. Then we have:

P∆
qiX(we) =

1

2
P∆
qjX(we+1) +

1

2
P∆
qkX

(we+1) (by the rules of ∆)

=
1

2
· Nj
Me+1

+
1

2
· Nk
Me+1

(by the induction hypothesis)

= Ni/Me (by definition)

We also have P∆
qiX

(ε) = 0 and P∆
qiX

(av) = 1
2P

∆
qjX

(v) + 1
2P

∆
qkX

(v) = 0 if

v 6= we+1 (and thus av 6= we); here we also use the induction hypothesis.

• Let gi := gj ∗ gk be a gate of (odd) depth e. Then we have:

P∆
qiX(we) = P∆

qjXkX
(we+1we+1) (by the rules of ∆)

= P∆
qjXk

(we+1) · P∆
qkX

(we+1) (by the observation (3))

=
Nj
Me+1

· Nk
Me+1

(by the induction hypothesis)

= Ni/Me (by definition)

We have P∆
qiX

(ε) = 0; moreover, P∆
qiX

(av) > 0 implies that v = we+1we+1,
by the induction hypothesis.

4. Proof of Theorem 1

In this section we prove Theorem 1, for convenience restated here; the proofs
are shown by suitable modifications of standard constructions from the litera-
ture.

Theorem 1. The following problems are interreducible in polynomial time,
without changing the input alphabet or terminal alphabet, respectively:

1. language equivalence for pPDA;

2. language equivalence for pBPA;

3. multiplicity equivalence for (ε-free) finite-multiplicity grammars.

The direction 2.⇒1. is trivial. We prove 1.⇒3. in Section 4.2, and 3.⇒2.
in Section 4.3, but first we define the following convenient generalisation of
grammars.

4.1. Multigrammars

A multigrammar2 is a quadruple (V,Σ, R, S) like a grammar, but we have
R ⊆ V × N+ × (V ∪ Σ)+, where N+ = {1, 2, . . . }. A grammar is the special

case with R ⊆ V × {1} × (V ∪ Σ)+. We write X
k−→ α if (X, k, α) ∈ R, and

2An equivalent formalism would involve algebraic formal power series, but we wish to
emphasise the proximity to grammars, which is a standard concept.

13

we call k the multiplicity of the rule. Multigrammars inherit the notions of
derivations etc. from grammars. The multiplicity of a derivation is the product
of the multiplicities of the applied rules. Finally, the multiplicity mG(w) of a
word w ∈ Σ∗ in a multigrammar G is defined as the sum of the multiplicities
of all leftmost derivations of w in G. (This is consistent with the definition
given for grammars.) When discussing complexity questions, we assume that
the multiplicities of the rules are given in binary.

Lemma 3. A multigrammar G = (V,Σ, R, S) can be transformed to a gram-
mar G′ = (V ′,Σ, R′, S) in polynomial time so that for all words w ∈ Σ∗ we have
mG(w) = mG′(w).

Proof. If X
2`−→ α is a rule of G, where ` ∈ N+, then we add fresh nonterminals,

say A,A′, remove the rule X
2`−→ α, and add the rules X

1−→ A, X
1−→ A′, A′

1−→ A,

and A
`−→ α. If X

2`+1−−−→ α is a rule of G then we proceed similarly but we also

add the rule X
1−→ α. We repeat this construction until the multiplicity of each

rule is 1.

4.2. Reduction from pPDA to Grammars (1.⇒3. in Theorem 1)

Let us consider a (non-blocking) pPDA ∆ = (Q,Γ,Σ, ↪−→) and two configura-
tions p1X1 and p2X2. We aim to construct two multigrammars G1, G2 so that
p1X1 and p2X2 are equivalent in ∆ iff G1 and G2 are multiplicity equivalent.

We assume that there is a control state q⊥ such that whenever qε (an empty-
stack configuration) is reached from p1X1 or p2X2 then q = q⊥. This could be
easily achieved by considering the initial configurations p̄1X1 and p̄2X2 for newly
added control states p̄1, p̄2, when we add a fresh stack symbol ⊥ and transitions

p̄1X1
a,1
↪−−→ p1X1⊥, p̄2X2

a,1
↪−−→ p2X2⊥, t⊥

a,1
↪−−→ q⊥ for all t ∈ Q and a ∈ Σ. We

thus do not lose generality by the above assumption.
Let M ∈ N be the smallest number such that all probabilities in ↪−→ are

integer multiples of 1/M ; the binary representation of M is polynomial in the
size of ∆. We now construct multigrammars G1 = (V,Σ, R, 〈p1X1q⊥〉) and
G2 = (V,Σ, R, 〈p2X2q⊥〉) with V := {〈pXq〉 | p, q ∈ Q, X ∈ Γ} and with the
rules constructed as follows:

• for every pX
a,x
↪−−→ qY Z and every r, s ∈ Q we include the multigrammar

rule 〈pXs〉 xM−−→ a〈qY r〉〈rZs〉;

• for every pX
a,x
↪−−→ rZ and every s ∈ Q we include 〈pXs〉 xM−−→ a〈rZs〉;

• for every pX
a,x
↪−−→ s we include 〈pXs〉 xM−−→ a.

For any w ∈ Σ∗ and 〈pXq〉 ∈ V , each leftmost derivation 〈pXq〉 ⇒ · · · ⇒ w
with multiplicity x ·M |w| corresponds to an execution in S(∆) going from pX
to q on w that has probability x, and vice versa. Hence for all w ∈ Σ∗ we have
mG1

(w) = M |w| · P∆
p1X1

(w) and mG2
(w) = M |w| · P∆

p2X2
(w). Therefore p1X1

and p2X2 are equivalent in ∆ iff G1 and G2 are multiplicity equivalent. The

14

multigrammars G1, G2 can be transformed to grammars by Lemma 3; we have
thus proven the direction 1.⇒3. in Theorem 1.

4.3. Reduction from Grammars to pBPA (3.⇒2. in Theorem 1)

A multigrammar G = (V,Σ, R, S) is said to be in Greibach normal form

(GNF) if each rule is of the form X
k−→ aβ where a ∈ Σ and β ∈ V ∗; if, moreover,

|β| ≤ 2 for each rule then G is in 2-GNF. The following lemma is crucial for our
proof; recall that we have restricted ourselves to ε-free (multi)grammars.

Lemma 4. A multigrammar G = (V,Σ, R, S) with finite multiplicity can be
transformed in polynomial time into a multigrammar G′ = (V ′,Σ, R′, S) in 2-
GNF so that for all w ∈ Σ∗ we have mG(w) = mG′(w).

Proof. We first note that a standard conversion of grammars to GNF (as given,
e.g., in [16], pp. 277–279) is exponential. We thus modify a construction sug-
gested in [23] and later presented differently in [25, 1]. Care is needed to ensure
correct manipulation of the multiplicities of the rules.

Let G = (V,Σ, R, S) be a multigrammar with finite multiplicity. Without
loss of generality we assume that each nonterminal can derive a terminal word,
and that each nonterminal is reachable from S, i.e., it occurs in some α ∈
(V ∪ Σ)+ derivable from S. (A standard procedure removing the rules with
“redundant” nonterminals that do not satisfy these conditions does not affect
the multiplicities mG(w).) We first eliminate the “unit rules”, i.e., the rules of

the form X
k−→ Y with X,Y ∈ V . If there is such a rule then there must be a rule

X
k−→ Y such that there is no unit rule with Y on the left-hand side. (Otherwise

there would be a cycle of unit rules, we would have X ⇒ · · · ⇒ X, contradicting

the assumption of finite multiplicity of G.) Let Y
`1−→ α1, . . . , Y

`j−→ αj (where

j > 0) be all the rules with Y on the left-hand side. We remove X
k−→ Y

and add the rules X
k`1−−→ α1, . . . , X

k`j−−→ αj . By “adding the rules” we mean

possibly increasing their multiplicities: it might happen that a rule X
m−→ αi

has been already present in the multigrammar; in this case it is replaced with

X
m+k`i−−−−→ αi. This transformation obviously keeps all mG(w) unchanged. We

thus further assume that G has no unit rules.
We now transform the multigrammar G = (V,Σ, R, S) to a multiplicity-

equivalent multigrammar G• = (V•,Σ, R•, S) where V• := V ∪ {BXY | X,Y ∈
V } for fresh nonterminals BXY . The set R• is constructed as follows:

• each rule in R of the form X
k−→ aα where a ∈ Σ is included in R•;

• if X
k−→ aα is in R, and a ∈ Σ, then Y

k−→ aαBXY is included in R•, for
each Y ∈ V ;

• if Y
k−→ Xβ is in R then BXY

k−→ β is included in R•;

• if Z
k−→ Xγ is in R, then BXY

k−→ γBZY is included in R•, for each Y ∈ V .

15

We note that each rule Z
k−→ δ in R• satisfies the following: if Z ∈ V then

δ = aδ′ for some a ∈ Σ, and if Z ∈ V• r V then δ = xδ′ for some x ∈ (Σ ∪ V).
We illustrate the crux of the fact that G and G• are multiplicity equivalent

by an example. Suppose a leftmost derivation of a word w ∈ Σ∗ in G, namely

S ⇒ · · · ⇒ uY δ ⇒ uZγδ ⇒ uXβγδ ⇒ uaαβγδ ⇒ · · · ⇒ w (4)

where the depicted segment uses the rules Y
k1−→ Zγ, Z

k2−→ Xβ, X
k3−→ aα.

The segment can be written in G• as

uY δ ⇒ uaαBXY δ ⇒ uaαβBZY δ ⇒ uaαβγδ

using the rules Y
k3−→ aαBXY , BXY

k2−→ βBZY , BZY
k1−→ γ. It is clear that any

leftmost derivation S ⇒ · · · ⇒ w in G is naturally composed of segments as
depicted in (4); each segment uses rules in which the right-hand side starts with
a nonterminal except the last rule in which the right-hand side starts with a
terminal. We can thus easily check that each leftmost derivation of w in G has a
corresponding derivation in G•, with the same multiplicity; the latter derivation
is leftmost except that rewriting B ∈ (V• r V) is always performed preferen-
tially. On the other hand, each such derivation in G• (a leftmost derivation
of w modified so that B ∈ (V• r V) is always rewritten preferentially) has a
corresponding leftmost derivation in G, with the same multiplicity. This makes
clear that G and G• are multiplicity equivalent.

The multigrammar G• may still contain rules whose right-hand sides start

with a nonterminal; these rules are of the form BXY
k−→ Zγ where Z ∈

V . Each such rule can be removed and replaced with the rules BXY
k`1−−→

γ1γ, . . . , BXY
k`n−−→ γnγ where Z

`1−→ γ1, . . . , Z
`n−→ γn are all rules with

Z on the left-hand side; we recall that each γi starts with a terminal. This
transformation preserves the multiplicities.

It is now clear that it suffices to handle the case in which all rules in G =
(V,Σ, R, S) have the right-hand sides starting with a terminal. For each a ∈ Σ

we add a fresh nonterminal Na and the rule Na
1−→ a, and in each right-hand

side of the form bα, for b ∈ Σ, we replace each occurrence of a in α with Na.
The resulting grammar, for convenience again described as G = (V,Σ, R, S), is
in GNF.

It remains to achieve the 2-GNF restrictions. For each rule r = (X
k−→

aY1 · · ·Ym) with m ≥ 2 we introduce fresh nonterminals F r1 , . . . , F
r
m−1, remove

the rule r and add the rules X
k−→ aF r1 , F

r
1

1−→ Y1F
r
2 , . . . , F

r
m−1

1−→ Ym−1Ym.
This transformation also preserves the multiplicities. Let E denote the set of all

new nonterminals (of the form F ri). For each rule F
1−→ Y Z with F ∈ E we have

Y ∈ V , and for all rules X
k−→ γ with X ∈ V we have that γ = a or γ = aZ

where a ∈ Σ and Z ∈ V ∪ E . Now for each rule F
1−→ Y Z with F ∈ E we do the

following: we remove the rule, and add the rules F
k1−→ γ1Z, . . . , F

k`−→ γ`Z,

where Y
k1−→ γ1, . . . , Y

k`−→ γ` are all rules with Y on the left-hand side. This

16

transformation preserves the multiplicities and results in a multigrammar in
2-GNF.

Completing 3.⇒2. in Theorem 1.

Lemma 4 allows us to start with multigrammars G1 = (V,Σ, R, S1) and
G2 = (V,Σ, R, S2) in 2-GNF; the unification of the sets V and R, if different in
G1 and G2, is achieved by taking the disjoint union. For X ∈ V and a ∈ Σ we
put dX,a :=

∑
X

k−→aβ
k; then we define p := 1/maxX,a dX,a.

We now define the pBPA ∆ = ({q}, V ∪ {⊥},Σ, ↪−→), where ⊥ 6∈ V ∪ Σ and
the rules of ∆ are constructed as follows:

• for each (X
k−→ aβ) ∈ R we add X

a,kp
↪−−→ β;

• for all X ∈ V and a ∈ Σ with dX,ap < 1, we add X
a,1−dX,ap
↪−−−−−−→ ⊥;

• for each a ∈ Σ we add ⊥
a,1
↪−−→ ⊥.

We observe that the pBPA ∆, starting with X, simulates exactly the leftmost
derivations of the grammar starting with X. So we have for all w ∈ Σ∗ that
P∆
S1

(w) = mG1(w) ·p|w| and P∆
S2

(w) = mG2(w) ·p|w|. Hence G1 and G2 are mul-
tiplicity equivalent if and only if S1 and S2 are equivalent in ∆. This completes
the proof of Theorem 1.

5. Conclusions

We have studied the language equivalence problem for probabilistic push-
down automata, showing that the problem is interreducible with the problem
of multiplicity equivalence for context-free grammars whose decidability is a
long-standing open question. We have also provided complexity bounds for the
restriction of the problem to a unary input alphabet.

Our results indicate that significant effort will have to be put into resolving
the decidability status of the language equivalence problem. Another possibil-
ity for further work is to try to extend our results to probabilistic pushdown
automata with ε-steps.

Acknowledgements. Vojtěch Forejt is also affiliated with Masaryk University,
Czech Republic. Petr Jančar has been supported by the Grant Agency of the
Czech Rep., project GAČR:P202/11/0340. Stefan Kiefer is supported by a
Royal Society University Research Fellowship.

References

[1] S. P. Abney, D. A. McAllester, and F. Pereira. Relating probabilistic gram-
mars and automata. In ACL, pages 542–549. ACL, 1999.

17

[2] E.E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Bro Miltersen.
On the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–
2006, 2009.

[3] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM, 1994.

[4] T. Brázdil, S. Kiefer, A. Kučera, and I.H. Vařeková. Runtime analysis
of probabilistic programs with unbounded recursion. In Proceedings of
ICALP, volume 6756 of LNCS, pages 319–331. Springer, 2011.

[5] T. Brázdil, A. Kučera, and O. Stražovský. Deciding probabilistic bisim-
ilarity over infinite-state probabilistic systems. Acta Inf., 45(2):131–154,
2008.

[6] J. Canny. Some algebraic and geometric computations in PSPACE. In
STOC’88, pages 460–467, 1988.

[7] D. Chistikov and R. Majumdar. Unary pushdown automata and straight-
line programs. In Proceedings of ICALP, 2014. To appear.

[8] W. Czerwinski and S. Lasota. Fast equivalence-checking for normed
context-free processes. In FSTTCS 2010, pages 260–271, 2010.

[9] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic push-
down automata. In LICS’04, pages 12–21. IEEE, 2004.

[10] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic
pushdown automata: Expectations and variances. In LICS’05, pages 117–
126. IEEE, 2005.

[11] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic
grammars, and monotone systems of nonlinear equations. J. of the ACM,
56(1):1–66, 2009.

[12] K. Etessami and M. Yannakakis. Model checking of recursive probabilistic
systems. ACM Trans. Comput. Logic, 13(2):12:1–12:40, 2012.

[13] Vojtěch Forejt, Petr Jančar, Stefan Kiefer, and James Worrell. Bisimilar-
ity of probabilistic pushdown automata. In Deepak D’Souza, Telikepalli
Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18
of LIPIcs, pages 448–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2012.

[14] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for de-
ciding bisimilarity of normed context-free processes. Theor. Comput. Sci.,
158(1&2):143–159, 1996.

18

[15] J. Honkala. Decision problems concerning algebraic series with noncom-
muting variables. In Structures in Logic and Computer Science, volume
1261 of LNCS, pages 281–290. Springer, 1997.

[16] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, 3rd edition, 2007.

[17] S. Kiefer, A.S. Murawski, J. Ouaknine, and J. Worrell. On the complexity
of equivalence and minimisation for Q-weighted automata. Logical Methods
in Computer Science, 9(1:08):1–22, 2013.

[18] W. Kuich. On the multiplicity equivalence problem for context-free gram-
mars. In Results and Trends in Theoretical Computer Science, volume 812
of LNCS, pages 232–250. Springer, 1994.

[19] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer,
1986.

[20] J.M. Ortega. Matrix theory: a second course. Springer, 1987.

[21] D. Raz. Deciding multiplicity equivalence for certain context-free lan-
guages. In Developments in Language Theory, pages 18–29, 1993.

[22] J. Renegar. On the computational complexity and geometry of the
first-order theory of the reals. Parts I–III. J. of Symbolic Computation,
13(3):255–352, 1992.

[23] D.J. Rosenkrantz. Matrix equations and normal forms for context-free
grammars. Journal of the ACM, 14(3):501–507, 1967.

[24] G. Sénizergues. L(A)=L(B)? decidability results from complete formal sys-
tems. Theor. Comput. Sci., 251(1-2):1–166, 2001.

[25] F.J. Urbanek. On Greibach normal form construction. Theoretical Com-
puter Science, 40:315–317, 1985.

19

