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Abstract— While machine learning algorithms are able to
detect subtle patterns of interest in data, expert knowledge may
contain crucial information that is not easily extracted from a
given dataset, especially when the latter is small or noisy. In
this paper we investigate the suitability of Gaussian Process
Classification (GPC) as an effective model to implement the
domain knowledge in an algorithm’s training phase. Building
on their Bayesian nature, we proceed by injecting problem-
specific domain knowledge in the form of an a-priori distribution
on the GPC latent function. We do this by extracting hand-
crafted features from the input data, and correlating them
to the logits of the classification problem through fitting a
prior function informed by the physiology of the problem.
The physiologically-informed prior of the GPC is then updated
through the Bayes formula using the available dataset. We apply
the methods discussed here to a two-class classification problem
associated to a dataset comprising Heart Rate Variability (HRV)
and Electrodermal Activity (EDA) signals collected from 26
subjects who were exposed to a physical stressor aimed at
altering their autonomic nervous systems dynamics. We provide
comparative computational experiments on the selection of
appropriate physiologically-inspired GPC prior functions. We
find that the recognition of the presence of the physical stressor
is significantly enhanced when the physiologically-inspired prior
knowledge is injected into the GPC model.

I. INTRODUCTION

Machine learning (ML) models and data-driven algorithms
are often the prime choice for tackling recognition/detection
problems in bio-engineering applications. While these tech-
niques are largely successful, in many instances outper-
forming human/expert recognition performance [1], they
neglect human-generated expert knowledge and previous
problem-specific findings [2]. Incorporating such domain-
specific knowledge further informs ML models about the
context of the input data, which not only may enhance the
recognition performance, but can also provide the user with
an interpretable model [3]. Previous studies have considered
including domain-specific knowledge into ML algorithms in
various forms. Examples include the proposal for physics-
informed random forest classifier for predictive turbulence
modeling [4] or injecting the domain knowledge in the
form of hierarchies into logistic regression models, with
applications in hospital readmission prediction [5].

Gaussian Process (GP) models [6], in particular, through
their non-parametric Bayesian formulation, facilitate flexible
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introduction of domain-specific knowledge into their learning
algorithms, in the form of an a-priori distribution over
the prediction model. In fact, several studies have looked
at solving recognition problems via the application of GP
models to physiological signals. GP regression has been used
to design a vital-sign early warning system [7], to model
noisy heart rate data [8], and to estimate respiratory rate
[9]. The application of GP regression algorithms to physi-
ological data has also been extended to model multivariate
physiological time series simultaneously [10], and to propose
a patient-specific approach to model time series of manual
observational data in the presence of noise, incompleteness
and artifacts [7]. Another example is the framework proposed
in [11] where the GPs are applied to model the hemody-
namics in task fMRI, resulting in the enhancement of the
detection of brain activity compared to traditional parametric
and non-parametric LTI models. However, among the studies
that applied the GPs to physiological data, the design of
an appropriate a-priori distribution over the GP model that
successfully captures expert knowledge remains a challenge.

In this study, we aim to investigate the design and the
effectiveness of GP prior functions that rely on physiological
expert knowledge and the quantitative information available
in the problem-specific training data. We show that inte-
grating interpretable and medically meaningful knowledge
into the GPC learning algorithm significantly enhances the
recognition accuracy. We apply our GP-based framework to
a dataset where two of the most relevant and used Autonomic
Nervous System (ANS) correlates, Heart Rate Variability
(HRV) and Electrodermal Activity (EDA), are acquired while
subjects experience a physical stressor task. Our results
demonstrate that introducing previous knowledge of ANS
correlates of physical arousal into GP models improves
detection accuracy of physical stress.

II. GAUSSIAN PROCESS CLASSIFICATION WITH
PHYSIOLOGICAL-INSPIRED PRIORS

GPs are a class of machine learning models that by relying
on the Bayes formula enable us to insert prior information
into the learning model. In GPC settings we proceed by
defining a latent variable f ∈ R that represents the clas-
sification logit and by putting a prior distribution over the
latent space in the form of a Gaussian process. That is, given
the input data item x, we define a prior distribution p on f
such that p(f |x) = N (f ;µ(x|α), k(x, x|β)), for a specific
choice of the functional form of the mean function µ and
kernel function k and hyper-parameters α and β. Intuitively,
the mean function µ(x|α) and the kernel function k(x, x|β)
qualitatively encode our prior knowledge of the relationship
between the input data and the subject’s condition, while the



set of hyper-parameters α and β quantifies this relationship.
Throughout this paper we use the squared-exponential kernel
for the choice of k, as this provides flexible and smooth
GPC models that can adapt to different classification tasks
for specific choices of β [12]. The selection of the mean
prior function is discussed in the following subsection. In
this study we focus on two-class classification problem for
simplicity of exposition. However, we can generalise the
formulation to multi-class and regression settings [12].
Consider a dataset D = {(x(i), y(i)) | x(i) ∈ Rn, y(i) ∈
{0, 1}, i = 1, . . . , N}, where N represents the number of
data points. Let x = [x(1), . . . , x(N)] be the combined input
vector, y = [y(1), . . . , y(N)] be the combined class vector and
f = [f (1), . . . , f (N)] be the latent variable vector over x. In
Bayesian inference settings, given a test point x∗ ∈ Rn the
output classification probability on x∗, that is, the probability
that x∗ belongs to class 1, is computed by the GPC model
through the following set of equations [13]:

p(f |D, α, β) =
p(y|f)p(f |x, α, β)

p(y|x)
(1)

p(f̄ |D, x∗, α, β) =

∫
p(f̄ |x, x∗, f , α, β)p(f |D, α, β)df (2)

p(y = 1|D, x∗) =

∫
σ(f̄)p(f̄ |D, x∗, α, β)df̄ (3)

where f̄ ∈ R, σ(·) is the likelihood function (i.e. the sigmoid)
and p(y|f) =

∏N
i=1

[
σ(f (i))y

(i)

(1− σ(f (i)))1−y(i)
]

is the
dataset likelihood. The above set of equations first computes
the posterior distribution over the training data through the
Bayes formula (Eqn 1), which is then used to evaluate the
posterior latent distribution over the test point x∗ (Eqn 2),
and finally the classification probability for x∗ is computed
(Eqn 3). Unfortunately, because of the non-Gaussian like-
lihood used in classification, the posterior p(f |D, α, β) is
not Gaussian, and hence the integrals in Eqns (2) and (3)
cannot be computed analytically [13]. We apply the Laplace
method to approximate the GPC posterior distribution. This
proceeds by computing a Gaussian approximation of the
latent posterior distribution p(f̄ |D, x∗, α, β) of Eqn (2).
Details of the computation can be found in [12].

A. Physiologically-inspired prior
We implement prior information within the GPC by de-

signing a prior mean function µ(x|α) on top of a feature-
extraction pipeline informed by the problem’s physiology.
Given the raw signal s ∈ Rt, where t is the number
of time points, we map it to the feature space through
the function QANS(s) : Rt → Rk, which encodes the
signal processing and feature-extraction routines, where k
is the dimension of the feature space and QANS(s) =
[QANS1(s), QANS2(s), . . . , QANSk(s)]. We investigate
different functional forms to combine the features obtained
from the QANS(s) transformation in the prior space for the
a-priori mean function µ(x|α), namely, zero mean, constant
mean, linear mean, polynomial function and weighted sum
of projected cosines:

µ(x|α) = 0 (4)
µ(x|α) = α (5)

µ(x|α) =

k∑
j=1

αjQANSj(s) (6)

µ(x|α) =

d∑
p=1

k∑
j=1

αpjQANSj(s)
p (7)

µ(x|α) =

d∑
p=1

α(1)
p cos

 k∑
j=1

α
(2)
pj QANSj(s) + α(3)

p

 (8)

where d in Eqn (7) is the degree of the polynomial function
used and in Eqn (8) is the number of projected cosine com-
ponents. The vector α in Eqns (4)–(8) is used to represent all
the hyper-parameters involved in each specific mean function
definition. In the experiments, we learn α from the data using
a maximum likelihood estimation approach [12].

III. MATERIALS AND METHODS

A. Experimental protocol
We apply the GPC classification framework integrated

with a physiologically-inspired prior to a dataset collected
from 26 healthy subjects who were exposed to a physical
stressor. During the experiment, two diverse physiological
conditions were experienced by the subjects, Condition 1,
which is the resting state to ensure hemodynamic stabiliza-
tion, and Condition 2, which is the presence of a physical
stressor known to alternate the ANS dynamics, mostly by
increasing the arousal level perceived by subjects. During the
resting state, the subjects were asked to sit in a comfortable
chair for 4 minutes while watching a black screen. The phys-
ical stressor was administered to the subjects through a well-
known standardised ANS clinic test, the cold pressor test. In
this test, the subjects submerged their left hand up to the
wrist into a tank filled with ice and water with a temperature
of 0-4 degrees centigrade for a period of 3 minutes. During
the experiment, the ECG and EDA signals were acquired
using BIOPAC MP35 device with a sampling rate of 500
Hz. The experiment was approved by the "Comitato Etico
Regionale per la Sperimentazione Clinica della Regione
Toscana". The recordings were carried out in agreement with
the Declaration of Helsinki. Written informed consent was
obtained from all subjects. More details on the dataset can
be found in [14].

B. Definition of physiologically-inspired priors
We formulate the problem of the recognition of physical

arousal as a two-class classification problem, where, given
a vector of ANS physiological correlates QANS(s) =
[QANS1(s), QANS2(s), . . . , QANSk(s)], the goal is to
estimate the condition y of the subject, where y = 0 stands
for resting state and y = 1 for the presence of arousal.
Particularly, in this work, we extracted features from both
the HRV and EDA signals, which are known to be highly
sensitive to ANS dynamics alternations [15], [16].

1) HRV-based feature space (QANSHRV ): The HRV time
series, defined as the beat to beat variation of the instan-
taneous heart rate, has been demonstrated to have strong
correlation with the ANS activity [15]. Through the time
domain analysis of HRV, first and second order statistical
moments, µRR and σ2

RR, are obtained. Moreover, the spectral



quantification of HRV in the low-frequency (LF) and high-
frequency (HF) power bands has been shown to provide
useful means for understanding the interplay between the
two main branches of the ANS activity, i.e. the sympathetic
and the parasympathetic outflows. In fact, the LF and the HF
indices as well as the ratio between them, i.e., (LF/HF), have
been extensively used to interpret the physiological neural
correlates behind cardiovascular oscillations [15].

2) EDA-based feature space (QANSEDA): The electrical
properties of the skin, induced by the activity of the sweat
glands in response to a physiological stimulus, are reflected
in the EDA signal. High amplitudes in the EDA signal occur
during the presence of an elicitation with a high intensity,
therefore demonstrating an indication of sympathetic ner-
vous system activity [16]. The EDA signal is decomposed
into two main components, the tonic and phasic activities,
that have different relationships with the evoked stimulus
[17]. In the literature, characterizing the ANS dynamics
through the quantification of these two main components has
been thoroughly investigated [16], [18]. The tonic activity
representing the overall psycho-physiological state of the
subject is the low-frequency component of skin conductance,
while the high-frequency component is the phasic activity
showing rapid alternations in the electrodermal activity.
Mainly, the phasic component is quantified by the number
of significant phasic driver peaks (nSCR), the sum of SCR
amplitudes (SumAmpSCR), the maximum value of SCR
amplitudes (MaxAmpSCR), the mean value of phasic activity
(PhasicMean) and the standard deviation of phasic activity
(PhasicStd). The quantification of tonic activity involves
the mean, standard deviation and the maximum value of
tonic activity leading to the indices, TonicMean, TonicStd
and TonicMax, respectively. Another index (EDASymp)
showing high correlation with the activity of the sympathetic
nervous system is obtained from the spectral analysis of the
EDA signal. Particularly, we obtain this index by applying a
time-frequency analysis, using short-time Fourier transform
and Welch periodogram, to the preprocessed EDA signal and
integrating the resulting spectrum within a specific frequency
band (0.045− 0.25Hz) [19].

3) HRV, EDA-combined feature space (QANSHE): The
correlation between the high-frequency power of the HRV
with the parasympathetic activity and the EDA spectral
power with the sympathetic outflow led to the proposal of
a new index reflecting the sympathovagal balance in our
recent studies [14], [20]. This, QANSHE , obtained through a
spectral analysis of EDA and HRV signals, has been shown to
outperform the previous indicator of sympathovagal activity,
leading to a better characterization of ANS dynamics.

C. Model training

We group these aforementioned QANS indices into three
sets of features to be fed into the classification algorithm for
the recognition task. Indices calculated from the HRV signal
form Feature Set 1, while Feature Set 2 contains information
from the EDA signal. The indices obtained from both EDA
and HRV signals are grouped into Feature Set 3. In detail:

• Feature Set 1 = QANSHRV = [µRR, σ2
RR , LF, HF,

LF/HF]
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Fig. 1. Classification results in terms of accuracy (%) using three sets of
features with six different choices of mean prior function. For the definition
of the Feature Sets and the functions refer to the text in Section IV.

• Feature Set 2 = QANSEDA =[nSCR, SumAmpSCR,
MaxAmpSCR, PhasicMean, PhasicStd, Tonicmean,
TonicStd, TonicMax, EDASymp]

• Feature Set 3 = [QANSHRV , QANSEDA, QANSHE].
Each of the feature sets was in turn chosen to define a

candidate GPC prior function. During the training phase,
the six different a-priori functions described in Section
III were selected as the mean prior function, µ(x|α). The
classification results are given in terms of the recognition
accuracy after implementing the standard Leave One Subject
Out (LOSO) validation algorithm. Matlab software (R2017b
version) and the Gaussian Processes for Machine Learning
(GPML) toolbox [12] were used to implement GPC model
training and prior function estimation.

IV. RESULTS

The classification results are depicted in Figure 1 for
the three different Feature Sets and the five a-priori mean
functional forms. The results for all feature sets demonstrate
that the GP classifier is not able to satisfactorily distinguish
the resting and arousal sessions when a non-informative
prior function is used. On the other hand, when including
mean prior functions, the GP model increases the recognition
accuracy. More specifically, the highest accuracy (70%) is
achieved when Feature Set 3 is used in combination with
the linear prior function. Interestingly, the results for the
other feature sets also demonstrate that the linear function
outperforms all mean functional forms. There is a significant
increase in accuracy (up to +20%) when the linear function
is chosen for Feature Set 3 compared to the case when no
a-priori mean function is considered. Specifically, this accu-
racy is 20% higher than the constant function and weighted
sum of projected cosines, and 16% higher than the quadratic
and cubic polynomial functions. The recognition accuracy for
Feature Set 2 without the choice of prior function is 58%.
Although this value is 2% higher compared to the form of
weighted sum of projected cosines for the mean function, it
is still 4% lower than the constant mean function and 6%
lower than the linear function. The classification results for
Feature Set 1 also show a significant increase in recognition
(16%) when the appropriate prior function is chosen.

V. DISCUSSION

In this preliminary study, we propose a new approach
for the development of machine learning models that can



efficiently incorporate both data and domain knowledge. This
approach not only enhances the recognition accuracy, but
also potentially provides more understandable models for the
biomedical engineering community and the clinicians.

We focus on GP models due to their non-parametric
Bayesian formulation, which provides a perfect environ-
ment for the inclusion of previously acquired knowledge
or assumptions in the form of prior functions. Particularly,
thanks to specific prior models based on the combination of
well-known quantifiers of ANS dynamics, we can impose
physiologically sound knowledge on the learning model,
which can help in the recognition of different physiological
states. We applied the proposed methodology to the problem
of identifying an arousal state induced by a physical stressor
such as the cold pressor test. The physiological state of 26
healthy volunteers was characterized through the analysis of
HRV and EDA signals. The selected prior models showed
an improved recognition accuracy compared to a zero mean
function, which is commonly adopted in the GPC applica-
tions. Interestingly, but somewhat unsurprisingly, the linear
combination of the selected ANS quantifiers significantly
outperforms the other tested (nonlinear) models. Indeed,
given the fact that our knowledge of the relationship between
the central arousal state and the information provided by
each HRV and EDA metric and their combination is still ill-
defined, only a multi-feature approach can consider all the
possibly relevant information. However, this increases the
complexity of the model by introducing a deterministic noise
which affects learning adversely and increases the risk of
overfitting [21]. A linear model helps to mitigate overfitting
by constraining the model complexity when the number of
variables added to the mean prior function increases. In
addition, the use of a maximum likelihood estimation of the
prior parameters may induce overfitting. This could be solved
by using a full Bayesian approach also for selecting the
parameters of the mean prior function. However, the results
discussed are given for LOSO cross validation and we did
not observe overfitting, in terms of significant differences in
train/test accuracy, in the models obtained. This might be
due to the Bayesian nature of our framework that provides
automatic model regularisation [13].

A further confirmation that the information provided by
a multisignal and multivariate approach is more effective is
evident from the comparison of the results associated with
the three feature sets, which show better performance when
EDA and HRV were both considered.

In conclusion, the proposed approach provides a frame-
work for the design and evaluation of the suitability of
a variety of prior models, which encode problem-specific
knowledge into the GPC model. This can be used to quantify
the relative importance of prior models and observations (i.e.,
data). This enables the use of GPC-based interpretability
measures [22], in the form of an understanding of the relative
contributions of the prior function w.r.t. the data, in the final
classification result. As future work, we plan to extend the
methodology by injecting problem-based prior functions into
the GP regression formulation. This approach will allow us
to consider the dynamics of the physiological signals for
designing the effective form of prior function for each input.
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