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1. Introduction

Asynchronous hardware designs have received much attention recently due to their potential for energy
savings, and consequently their suitability for deployment in embedded and mobile devices such as
smartcards. Fundamental differences of timing in asynchronous hardware render conventional hardware
description languages inappropriate for their modelling and make the design susceptible to deadlock and
race conditions. Verification of asynchronous hardware is therefore an important area of study.

Asynchronous circuits are usually modelled using asynchronous concurrent systems, a fundamental
semantic model for concurrency formalisms such as process algebras and Petri nets based on labelled
transition systems [22]. Classically, asynchrony has two meanings: clock asynchrony (versus lock-step
synchrony) and communication asynchrony (versus rendez-vous). Asynchronous circuits contain both
these features. At the level of executions, concurrency can be modelled as interleaving concurrency or
true concurrency, with the latter making finer distinctions about causality of events. True concurrency
and related formalisms [15, 22, 30] are widely considered as the most appropriate for modelling of asyn-
chronous circuits. Petri nets [16, 21, 12] and Signal Transition Graphs (STGs) [2, 31, 3] are frequently
used. Software tools such as Petrify [31] exist, which support the analysis of safety and liveness, and also
increasingly automatic synthesis [3] of asynchronous circuits. Such graph-based models, however, are
not compositional, and therefore have no native support for componentwise reasoning about correctness.

Process algebras, on the other hand, are compositional. In the past they have been used, together with
associated verification tools, for the modelling and verification of asynchronous circuits; we mention
CCS [13, 23], LOTOS [8], and CSP [11, 26]. An important advantage of process algebras is that they
are not only good at modelling asynchronous circuits in detail, but can also describe the function of the
circuits at a higher level of abstraction. Thus, we can program a circuit in a high-level language (i.e. a
language with synchronous blocking communication and data manipulation) and then compile down to
the real circuit (low-level asynchronous non-blocking communication using signal transition). This is
the approach taken by Balsa and related systems (e.g. Tangram [1]), called silicon compilation. Thus,
process algebras support hierarchical description that is frequently employed in large-scale industrial
designs.

This paper is part of an effort to formulate a rigorous approach for the verification of asynchronous
circuit designs developed using the Balsa asynchronous circuit synthesis system [6]. Balsa (and similarly
Tangram) use as their high-level language some variant of CSP. Thus, conventional CSP theory suffices
for the high-level verification, i.e. for functional correctness, and the FDR2 model checker [7] for CSP
can be applied at that level in a straightforward way [26]. At the lower level, asynchronous circuits
are usually modelled and analysed with the help of tailored asynchronous verification theories, such
as trace theory [5], receptive processes [10] or XDI theory [24]. To tackle the state-space explosion
problem, asynchronous verification theories [5, 24] usually adopt a compositional approach (i.e. in the
style of assume/guarantee). This is possible largely because, at the lower level, the communication is
asymmetric (input/output distinction) and non-blocking, which is not the case for most process algebras.

In this paper, we formulate a compositional verification theory for asynchronous circuits, called
protocol conformance verification, and embed it in a standard process algebra theory such as that of CSP
and its semantic models. This embedding enables componentwise automatic verification in the style of
assume/guarantee reasoning using the FDR2 model checker. Our model is based on the intuition of the
XDI model and Receptive Process Theory (RPT) [24, 9, 10], but extends previously known results by
addressing advanced progress conditions (relative starvations). One advantage of our approach is that it
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avoids the complexity of Dill’s Complete Trace Structure construction [5].
In the rest of the paper, we specifically target CSP [19], but many of the results also apply to other

process algebras. First, in Section 2, 3, and 4, we give a general labelled transition system (LTS)
semantic model for asynchronous concurrent systems, which permits the analysis of safeness (i.e. choke)
and progress (i.e. illegal stop, divergence and relative starvation) conditions. We justify the model by
showing how it can be faithfully translated into CSP using an infinite traces model of CSP [20] and a
simple but novel idea of a scheduler. The construction of the scheduler (see examples in Section 6)
helps to avoid the need to impose process receptiveness and results in a simple proof of the semantic
correspondence. Chokes are modelled as a special class of deadlock, which are distinguished from
another class of good deadlock: termination. This frees CSP divergence, consequently used to model
divergence and relative starvation. Relative starvation is thus a type of local livelock. The challenge here
is that CSP needs to distinguish good divergences from bad divergences (i.e. relative starvation). Using
these new ideas, we reduce asynchronous circuit verification problems to CSP refinement checks, which
are automatic, and prove the correctness of our approach.

Next, in Section 5, we introduce a new compositional verification theory based on the notion of
protocols and conformance. Due to relative starvations, the environment and system in our theory are not
symmetrical. The compositionality proof is accomplished purely using set-theoretical techniques. The
whole approach is illustrated by a real-world case study of the False Variable circuit (Section 6). Finally,
in Section 7, the correspondence of our theory with trace theory (i.e. prefix-closed trace structures),
receptive process theory and XDI is investigated.

2. Asynchronous concurrent systems

In this section we introduce our model of asynchronous concurrent systems, which is based on labelled
transition systems (LTS). The model represents the behaviour of circuits built from logical gates in a
compositional fashion. The meaning of this is made precise in Section 7, where we demonstrate that
our theory coincides with and extends [5, 9, 10, 24]. Therefore, it supports asynchronous circuit veri-
fication which typically involves checking of safeness and progress conditions. We do not model true
concurrency in the sense of independence relation, but nevertheless make fine causality distinctions.

The definition of the model is as follows. An IOTS (Input/Output Transition System) is a tuple
(I, O, S, T, s0), consisting of:

• A finite set of input events, I, called the input alphabet.

• A finite set of output events, O, called the output alphabet (I and O are disjoint and their union is
A).

• A finite set of states, S ∪ {Choke}, where Choke /∈ S.

• A transition relation T : S × (A ∪ {τ}) ↔ (S ∪ {Choke}). τ is the invisible event. Given a state
and an event, T nondeterministically produces a new state.

• s0 ∈ S ∪ {Choke} is the initial state.

Note that we make a distinction between input and output actions, and also distinguish a silent (invis-
ible) action τ . In the rest of the paper, (||) is the image operation on relations. Let e denote a non-τ event,
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a denote a τ or non-τ event, and ∆ denote a subset of A. t and u are finite traces, i.e. finite sequences
of non-τ events (including the empty sequence, ε)1, i.e. t, u ∈ A∗. t and u are the infinite variants, i.e.
t, u ∈ Aω. Juxtaposition is used for sequence concatenation, e.g. tu.

Next, we define the following constructs.

Definition 2.1. Given an IOTS (I, O, S, T, s0) and its states s and s′:

• s a−→ s′ iff state s has an outgoing transition labeled by a to s′.

• s a−→ iff there exists a state s′ in the IOTS such that s a−→ s′.

• For a state s, the set of enabled inputs is ETSI = {e : I | s e−→ }, the set of enabled outputs is
ETSO = {e : O | s e−→ }, and the set of enabled (visible) events is ETS = ETSI ∪ ETSO.

• s −→ iff there exists a state s′ and event a in the IOTS such that s a−→ s′. When ¬(s −→ ), we say
s is a sink state (i.e. a deadlock state).

• a−→ s′ iff there exists a state s in the IOTS such that s a−→ s′, and we say s′ is caused by a.

• A path is a finite sequence of alternating states and events, s0a1s1a2...ansn (∈ S × (Aτ × S)∗),
where (si−1, ai, si) ∈ T for all 1 ≤ i ≤ n. A loop is a path whose starting and ending states are the
same. The number of steps in a path is the length of the event sequence contained in the path. A
path consisting of a single state, e.g. s, is a zero step path.

• A state s is reachable iff there is a zero or nonzero step path from s0 to s.

• A state s is stable, i.e. stable(s), iff ¬(s τ−→ ).

• A state s is divergent, i.e. divergent(s), iff there is a zero or nonzero step τ -path going from s to a
state s′ such that s′ is in a τ -loop.

• A state s is infinite output enabled (ioe) iff there is a zero or nonzero step output-path (i.e. a path
consisting of only output transitions) going from s to a state s′ such that s′ is in an output-loop (i.e.
a loop consisting of only output transitions).

• s ε=⇒ s′ iff there is a zero or nonzero step τ -path going from s to s′.

• s e=⇒ s′ iff there exist s0 and s1 such that s0
e−→ s1, s ε=⇒ s0 and s1

ε=⇒ s′.

• s t=⇒ s′, where t = et0, iff there is s0 such that s e=⇒ s0 and s0
t0=⇒ s′.

• s t=⇒ iff there is an infinite sequence of states s0s1s2... such that s e0=⇒ s0, s0
e1=⇒ s1, s1

e2=⇒ s2 ...,
where t = e0e1e2....

• t ¹A projects a trace t onto an alphabet A by removing from t all the events not in A while maintaing
the order. It gives us another trace in A∗. ¹A can be lifted to operate on infinite traces or sets of
traces.

1Sometimes a and e are also used to denote singleton sequence and singleton trace.
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Definition 2.2. An IOTS is divergence-free iff no divergent state is reachable in it. An IOTS is choke-
free iff Choke is not reachable. A IOTS is deadlock-free iff no deadlock state is reachable. A IOTS is
τ -free iff there is no reachable state that has an outgoing τ transition.

An asynchronous circuit, modelled as an IOTS, is regarded as a hierarchical system of modules,
composed from logical gates using process-algebraic operators such as parallel composition.

Formally, a LAG (Logical Abstract Gate) is a τ -free and choke-free IOTS. This ensures that we can
use any formalism (e.g. Petri net [2, 31] or process algebra [19]) to specify it, as long as the formalism
can be given an LTS semantics. From LAGs, a LAC (Logical Abstract Circuit) can be built using hiding
and parallel operators:

LAC::= LAG | LAC ‖ LAC′ | LAC \ ∆O

In the above, ∆O is the set of actions to be hidden and ‖ is the alphabetised parallel operator. We view
a LAC as an asynchronous circuit in which the coupling between the components is defined via their
alphabets. To avoid two components outputting on the same wire, output alphabets should be disjoint.
Parallel composition can only compose such non-interfering LACs, i.e. O(LAC) ∩ O(LAC′) = {}. On
the other hand, components are allowed to share inputs (i.e. broadcast communication in an isochronic
fork). If an event is both an input and output (i.e. for different components), it will be an output for
the circuit. Hiding can only hide events in the output alphabet of LAC, i.e. ∆ ⊆ O(LAC). If the input
alphabet is empty, the LAC is called a complete or closed circuit.

Definition 2.3. Given non-interfering IOTS1 and IOTS2, IOTS1 ‖ IOTS2 gives another IOTS, (I, O, S ∪
{Choke}, T ∪ K, s0), where O = O1 ∪ O2, I = (I1 ∪ I2) \ O, A = A1 ∪ A2, S = S1 × S2,

s0 =

{
Choke s0

1 or s0
2 is Choke

(s0
1, s0

2) otherwise

T : S × A ∪ {τ} ↔ S is the least relation satisfying the rules (note that s, s′ and si below range over
non-choke states):

s1
a−→ s′1 a/∈A2

(s1,s2)
a−→ (s′1,s2)

s2
a−→ s′2 a/∈A1

(s1,s2)
a−→ (s1,s′2)

s1
e−→ s′1 s2

e−→ s′2
(s1,s2)

e−→ (s′1,s
′
2)

and K : S × O ∪ {τ} ↔ {Choke} is the least relation satisfying the rules:

s1
e−→ s′1 ¬(s2

e−→ ) e∈O1∩I2
(s1,s2)

e−→ Choke
s1

a−→ Choke
(s1,s2)

a−→ Choke

s2
e−→ s′2 ¬(s1

e−→ ) e∈O2∩I1
(s1,s2)

e−→ Choke
s2

a−→ Choke
(s1,s2)

a−→ Choke

Except for the ones related to Choke (the last four rules), the transition rules are consistent with those for
the alphabetised parallel operator in CSP. Choke is a special state: choke states are created by a mismatch
of input and output, and local choke implies global choke.

The hiding operator relabels every to-be-hidden event in an LTS to τ , just like in CSP.
Assume an infinite set of LAC variables (typed by their input and output alphabets) X ranged over

by x. A Generalized Context GC is defined as:
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GC ::= LAG | x | GC ‖ GC′ | GC \ ∆

where any variable x in GC must have a unique occurrence.
Often, we use ~x to represent the vector of variables in GC, and, to make them explicit, GC can be

equivalently written as GC[~x]. If there is no LAG occurring in GC (i.e. GC is made up of only variables
and operators), we say it is a super-combinator, written as SC[~x]. If GC has only one variable, we say it
is a context and the variable is its hole, written as C[·].

Definition 2.4. ~LAC is compatible with GC[~x] iff each LAC in ~LAC has the same alphabet as that of the
corresponding x in ~x.

Given GC[~x] and a vector ~LAC of compatible LACs, substituting ~LAC for ~x in GC gives us a new
LAC, written as GC[ ~LAC]. It is easy to see that any LAC can be written in the form of SC[ ~LAG].

Theorem 2.1. ([5])
Given SC[ ~LAG], it has a normal form, (‖[ ~LAG′]) \ ∆, where ~LAG and ~LAG′ are of the same dimension
and ‖ is a super-combinator consisting of only parallel operators, such that:

1. the corresponding members of ~LAG and ~LAG′ are renaming-isomorphic

2. and that SC[ ~LAG] and (‖[ ~LAG′]) \ ∆ are isomorphic.

Given IOTS and IOTS′, we say that they are renaming-isomorphic iff there is a 1-to-1 renaming2 on
one of them such that the resulting IOTS is isomorphic to the other.

3. The CSP model

In this paper we assume familiarity with CSP [19]. Recall that the main CSP operators are: a → P
(prefix) , 2 (external choice), u (internal choice), |[A]| (interface parallel), ‖ (alphabetised parallel), |||
(interleaving parallel), µ l.F(l) (recursion), Skip and Stop. Appendix A summarises the CSP operators
used in this paper.

Stable failures and failure/divergences are the main semantic models of CSP [19] used in this section.
They are both finite trace models. However, we have also utilised a newly developed infinite trace CSP
model [20], the SBDF model. In this model, the denotation of each process consists of three components
(F, I, D). F is the failures set as in the stable failures model, I is the infinite traces set, and D is the
divergences set. SBDF gives, for the first time, a congruence that preserves all the divergences in CSP
processes. This result will become crucial in Section 4, when we are dealing with the translation of
circuits with advanced progress requirements, i.e. freedom of relative starvations.

We now show how the model of asynchronous circuits introduced in Section 2 can be translated into
CSP using a simple construction of a scheduler. A scheduler helps to model the Choke state as a special
type of CSP deadlock, thus avoiding the need to impose receptiveness requirement on processes.

The basic idea is that all events (including τ ) are split into two events, e.g. e into ei and eo, and τ into
τ i and τ o 3. eo (or τ o) is used by the sending side (one LAG) of e while ei and τ i by the receiving side
(one or more LAGs).
2A renaming is 1-to-1 iff it will not make any two different events become the same event.
3Note that, unlike τ , τ i and τ o should be treated as normal events.
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For instance, given LAG = (I, O, S, T, s0), it can be translated into CSP via the mapping:

CSP(LAG) =̂ P(s0)4,

where

P(s) = 2(e, s′) : {(e, s′) | s e−→ s′} • if e ∈ I then ei → P(s′) else eo → P(s′).

Then, a complete circuit, LAC, is translated into Ω(LAC) = CSP(LAC) ‖ scheduler(O ∪ {τ}),
a synchronous parallel composition (i.e. synchronization on all events) of a scheduler and CSP(LAC),
where:

scheduler(X) = 2 a : X • ao → ai → scheduler(X).

Note that only complete LACs need to be translated since the verification theory introduced in Sec-
tion 5 will reduce any verification problem to checks on some complete LAC. The scheduler synchronizes
with all the signal transitions in LAC to control their occurrences. It first checks the signal transitions
available for sending in the current state, selects one, e.g. ao, and then forces it onto the receiving side
using ai. In case of deadlocks when forcing ai, this implies that the Choke state is reached. Otherwise,
i.e. deadlock is reached when selecting ao, this implies termination of the circuit execution.

The translation of LAC is given by:

CSP(LAC1 ‖ LAC2) = CSP(LAC1) |[ Ii
1 ∩ Ii

2 ]| CSP(LAC2)
CSP(LAC \ ∆) = (CSP(LAC) |[ ∆o ∪∆i ]| scheduler(∆))[e : ∆ • ei ← τ i, eo ← τ o]

In the above, |[∆]| is the (binary) interface parallel operator [19]. Its two arguments synchronize on,
and only on, events in ∆. Note that, before hiding (i.e. \ ∆), we need to supply a local scheduler on
to-be-hidden events and hiding is defined in terms of renaming to τ i and τ o (which are visible).

Example 3.1. Let us consider a simple example of LAC (see diagram below) consisting of three LAGs
(here inverters), A, B, and C, which are connected by three wires, a, b, and c. More specifically, LAC =
(A ‖ B) \ {a} ‖ C.

a . u p

c . u p

a . d n

c . d n

a ( 0 ) b ( 1 )

c ( 0 )

A

a . u p

b . d n

a . d n

b . u p

B

b . d n

c . u p

b . u p

c . d n

C

A B C

L A C

4We assume here that recursion will not introduce extra τ events.
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Then, by definition of the translation mapping we derive that CSP(A) is:

PA = a.upo → c.upi → a.dno → c.dni → PA

since a is A’s output and c is A’s input. Similarly, CSP(B) and CSP(C) are:

PB = a.upo → b.dni → a.dno → b.upi → PB
PC = b.dno → c.upi → b.upo → c.dni → PC

Next, CSP((A ‖ B) \ {a}) is SUB = ((PA |[ {} ]| PB) |[ {ai, ao} ]| scheduler({a}))[ai ← τ i, oo ← τ o].
Note that PA and PB are composed through parallel but synchronise on an empty set since A and B share
no common input. The local scheduler scheduler({a}) will wait on ao from PA and force ai onto PB.
The local scheduler and the renaming of ao and ai to τ o and τ i implement the hiding on A ‖ B.

Finally, CSP(LAC) = SUB |[ {} ]| PC and Ω(LAC) = (SUB |[ {} ]| PC) |[ {bi, bo, ci, co, τ i, τ o} ]|
scheduler({b, c, τ}). Note that LAC is a complete circuit and its set of outputs is {b, c}, since a is
hidden.

Splitting events and introducing a scheduler may seem unnatural. However, it should be viewed,
instead, in the context of real circuit applications, where an event is usually associated with a wire.
A wire connects two components, where each component has a different local name for the wire (one
for input and another for output). When specifying a protocol, it is good practice to use the local names
rather than the global name, since this implies independence from the wiring configuration and facilitates
reuse. Therefore, when composing a set of protocols, we still need some mechanism to encode the wiring
configuration and link them together5. A scheduler is a very natural solution. Section 6 illustrates how
one can use schedulers to verify choke-freedom of an asynchronous circuit.

Definition 3.1. Given a complete LAC and its translation Ω(LAC), a state s in Ω(LAC) is transient iff
there exists an event a ∈ Oo ∪ {τ o} such that ( a−→ s).

Proposition 3.1. Given a complete LAC and its translation Ω(LAC), all transient states have exactly one
incoming transition and one or zero outgoing transitions.

Proof:
Induction on the structure of LAC. ut

Proposition 3.2. Given a complete LAC and its translation Ω(LAC), the transitions labeled by ao, where
a ∈ O ∪ {τ}, are from non-transient states to transient states; the transitions labeled by ai are from
transient states to non-transient states.

Proof:
Induction on the structure of LAC. ut

Proposition 3.3. Given a complete LAC and its translation Ω(LAC), there exists a bijection f from the
set of non-choke states of LAC to the set of non-transient states of Ω(LAC), and a bijection k from the
set of transitions of LAC to the set of transient states of Ω(LAC), such that:

5For instance, it can be implemented using the linked parallel operator of CSP.
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• for any transition s a−→ s′ of LAC, where s′ 6= Choke, there is a pair of transitions f (s) ao−→
k(s, a, s′) and k(s, a, s′) ai−→ f (s′) in Ω(LAC), and

• for any transition s a−→ Choke of LAC, there is a transition f (s) ao−→ k(s, a, s′) and k(s, a, s′) is a
sink state in Ω(LAC).

Proof:
Since LAC can be written as SC[ ~LAG], the set of states of LAC is the cartesian product of the sets of
states of ~LAG. Since our translation to CSP preserves the process structure, Ω(SC[ ~LAG]) is a network of

~CSP(LAG) combined with the scheduler, with the LTS of each CSP(LAG) isomorphic to that of LAG.
The scheduler has two states. It is not difficult to see that each state~s of SC[ ~LAG] is related to two states
in Ω(SC[ ~LAG]). ut

Theorem 3.1. Given a LAC and its translation Ω(LAC), LAC is choke-free iff Ω(LAC) is free of deadlock
transient states, or iff Ω(LAC) has no deadlock trace ending with some ao, i.e. goodsched(O) vF Ω(LAC)
in the stable-failures model, and

goodsched(O) = Stop u 2 a : O ∪ {τ} • (ao → ai → goodsched(O)).

Proof:
Use Proposition 3.3. ut

Theorem 3.2. Given a LAC and its translation Ω(LAC), LAC is divergence-free iff Ω(LAC) \ {τ i, τ o}
is divergence-free in the failure/divergences model.

Proof:
Use Proposition 3.3. ut

4. Safeness and progress conditions

Compared to synchronous circuits, the design of asynchronous circuits faces a major challenge, namely
glitches [4]. A glitch happens when there exists an assignment of delays that can cause an unwanted
signal transition to occur in the circuit. A phenomenon known as transmission interference is a type of
glitch.

In our framework, each component in a complete circuit is assigned a ‘legal’ behaviour, which spec-
ifies both its possible output behaviours and acceptable input behaviours. For instance, for a buffer
component, an input will enable its further output. If the input is always enabled, consecutive inputs will
cause transmission interference by enabling multiple copies of output events. This can be avoided by
defining the legal behaviour to enable the input only after the current output finishes (i.e. output event
occurs). Therefore, when an undesirable signal transition is produced (i.e. consecutive inputs), it will be
detected due to the choke on the receiving component (i.e. the buffer). Choke-freedom corresponds to
safeness, one of the main correctness requirements of asynchronous circuits.

However, the above framework is inadequate for capturing two important but less well-understood
types of circuit design errors: illegal stops and relative starvation. An illegal stop occurs when there
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exists an execution scenario in the (complete) circuit such that no component in the circuit will produce
any transitions, i.e. a stop, while some components are still waiting for the incoming signals. A relative
starvation on a component occurs when there exists an execution scenario such that the component
is waiting for the incoming signals while the rest of the circuit (i.e. its environment) lapsed into an
infinite sequence of internal activities (i.e. a livelock). Unlike choke and illegal stop, which are global
phenomena of a complete circuit, relative starvation is a local phenomenon. A complete circuit is free
of relative starvations iff there is no relative starvation on any of its components. A circuit free of illegal
stops and relative starvations satisfies what is called progress conditions. In other words, safeness makes
sure no unexpected input will ever occur, while progress makes sure that expected input will eventually
occur. The LAG and LAC models are inadequate in this respect because they only have a global view of
livelocks (i.e. divergence) and do not differentiate illegal livelocks/stops from the legal ones.

Similarly to the approach adopted in [24], we can extend a LAG by labeling its states to indicate
when it has a progress requirement on the environment. Thus, a stop or relative livelock will be legal iff
it happens when none of the components in the circuit have any progress requirement on the environment.

Therefore, we arrive at the following generalized models that incorporate LAGs and LACs. A GLAG
(Generalised Logical Abstract Gate) is:

GLAG = (LAG, Q, QH)

where Q (⊆ S) labels the set of quiescent states of LAG, and QH (⊆ Q) labels the set of quiescent hunger
states. A state of LAG is quiescent iff it may stop to produce output. A state is a hunger state iff it may
need progress requirement on the environment. A state is a quiescent hunger state iff it may be quiescent
and in a hunger state simultaneously.

Labelling states to indicate quiescence seems redundant here, since in our model stops have been
intuitively captured by the emptiness of ETSO (i.e. the set of enabled output events); they are ‘must’
stops. Our reason for introducing quiescence is that we need to introduce a special operation on GLAGs,
DT , which will render the interpretation based on ETSO invalid and introduce ‘may’ stops.

First, it is necessary to add well-formedness conditions by requiring:

• All ‘must’ stop states in the LAG must be quiescent as well.

Example 4.1. For example, with I = {req, rpl}, O = {ack, ask}, and Q and QH states marked, the LTS
below describes a GLAG that, when requested by the environment, will ask for help from a helper. After
getting the helper’s reply it sends back acknowledgement to the environment.

r e q

a s k

rp l

a c k

Q

Q H

The initial state (marked by Q) is a quiescent state because it is waiting for an input that may or may
not arrive. The state marked by QH is a quiescent hunger state because the input it is waiting for must
eventually arrive.
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A GLAG defines a finite-state labelled transition system. A GLAG with a deterministic LTS is called
transparent, e.g. the above example.

Definition 4.1. Given a GLAG or LAG, it is transparent iff T is a partial function.

A GLAG with a nondeterministic LTS can be transformed to a transparent GLAG using a deter-
minization operation, DT , similar to the subset construction.

Definition 4.2. Given GLAG, DT(GLAG) constructs another GLAG, GLAG′, such that

• I′ = I, O′ = O, S′ = P(S), s′0 = {s0}

• Q′ = {s′ | ∃ s ∈ s′ • s ∈ Q} and QH′ = {s′ | ∃ s ∈ s′ • s ∈ QH}

• T ′ = {(s′0, e) 7→ s′1 | s′1 = Re(|s′0|) ∧ e ∈ ets(s′0)}

where Re = {s0 7→ s1 | (s0, e) 7→ s1 ∈ T} and ets(s′) = {o : O | ∃ s ∈ s′ • o ∈ ETS(s)} ∪ {i : I | ∀ s ∈
s′ • i ∈ ETS(s)}.

Like subset construction, a state of GLAG′ is denoted by a subset of states of GLAG and Re is a
relation between states that are connected by e-labelled transition in GLAG. Unlike subset construction,
at a state s′ of GLAG′ an input is enabled iff the input is enabled at every element of s′ in GLAG; an
output is enabled iff the output is enabled in GLAG at at least one element of s′. This is defined in the
enabledness function ets.

DT can be lifted to operate on a vector of GLAGs. We can now state an important proposition about
DT; other propositions about this operation can be found in Section 5.

Proposition 4.1. DT is closed on the well-formed GLAGs.

Based on GLAGs, we can define GLACs (Generalised Logical Abstract Circuits) as follows:

GLAC ::= GLAG | GLAC ‖ GLAC′ | GLAC \ ∆ .
The definitions of super-combinators and transition rules of LACs can be carried over to those of GLACs.

A GLAC is a set of properly coupled GLAGs. It is in a quiescent state iff all its GLACs are in
quiescent states. It is in a quiescent hunger state iff all its GLAGs are in quiescent states and at least one
of them is also in a quiescent hunger state.

Definition 4.3. A state in a complete GLAC is an illegal stop iff it is a quiescent hunger state. A complete
GLAC is free of illegal stops iff no illegal stop is reachable in GLAC.

Given a complete circuit SC[ ~GLAG], its syntactic structure also implies a particular point of view on
the circuit behaviour, which becomes obvious if we look at its normal form, (‖[ ~GLAG′]) \ ∆. A′ \ ∆
defines the point of view of SC[ ~GLAG] (here, A′ is the alphabet of ‖[ ~GLAG′]). By changing the subset
∆, we can change the point of view. For example, given the complete circuit ‖[ ~GLAG′], if we want to
take the point of view of GLAG′i in ~GLAG′, then the new system should be ‖[ ~GLAG′] \ (A′ \ A′i), where
A′i is the alphabet of GLAG′i.
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Definition 4.4. Given a complete circuit ‖[ ~GLAG] and a variable x occurring in its super-combinator (i.e.
‖[~x]), ‖[ ~GLAG] is free of relative starvation on x iff ‖[ ~GLAG] \ (A \ Ax) cannot reach a divergent state,
where GLAGx (i.e. the one corresponding to x in ~GLAG) is in a quiescent hunger state, or equivalently,
cannot have a divergence trace that can reach a quiescent hunger state of GLAGx.

Definition 4.5. A complete circuit SC[ ~GLAG] is free of relative starvations iff there is no relative star-
vation on any variable x occuring in SC.

To model quiescence and quiescent hunger states in CSP, we introduce a new pair of input/output
events:

√i and
√o. Like τ i and τ o, they are just normal events (not like

√
in CSP). Whenever a GLAG

is in a quiescent state, it indicates quiescence by enabling
√o events. Whenever a GLAG is not in a

quiescent hunger state, it indicates its willingness to accept quiescence by enabling
√i events. Unlike

other output events of GLACs, but like
√

of CSP,
√o will be in the alphabet of all GLAGs contained in

a GLAC and be synchronized upon. Based on these events, we can adapt the translation functions, CSP
and Ω, to complete GLACs as follows (only the modified rules are listed):

Ω(GLAC) = CSP(GLAC) ‖ scheduler(O ∪ {τ,√})

CSP(GLAC1 ‖ GLAC2) = CSP(GLAC1) |[ (Ii
1 ∩ Ii

2) ∪ {
√i,

√o} ]| CSP(GLAC2)

and CSP(GLAG) =̂ P(s0), where

P(s) = 2(e, s′) : {(e, s′) | s e−→ s′} • if e ∈ I then ei → P(s′) else eo → P(s′)
2 if s /∈ Q then Stop else

√o → (if s /∈ QH then
√i → Stop else Stop).

P(s) is modified by adding the second operand of the binary external choice operator to handle quiescence
and hunger states.

All the above changes will not affect Theorem 3.2 concerning divergences. However, now we have
two types of sink transient states in Ω(GLAC), one caused by

√o and the other by ao where a 6= √
. They

can be checked collectively and we have the following.

Theorem 4.1. Given GLAC and its translation Ω(GLAC), GLAC is free of chokes and illegal stops iff
Ω(GLAC) is free of sink transient states caused by ao, or iff Ω(GLAC) has no deadlock trace ending with
ao, i.e. goodsched(O) vF Ω(GLAC) in the stable-failures model, and

goodsched(O) = Stop u 2 a : O ∪ {τ,√} • (ao → ai → goodsched(O)).

Proof:
Use Proposition 3.3 which can be largely carried over to the new Ω, except for the part related to

√
.

• From GLAC to Ω(GLAC). For any quiescent hunger state s in GLAC, all the GLAGs in GLAC
will also be in quiescent states. From the translation above, the non-transient state t = f (s) in
Ω(GLAC) should have a transition labeled by

√o to one transient state, say t′. Since at state s
there is at least one GLAG, say GLAG, in quiescent hunger states and not having

√i transition
in Ω(GLAG), it disables the transition in Ω(GLAC) due to the multiway synchronization on

√i.
Hence, t′ is a sink state.
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• From Ω(GLAC) to GLAC. If a non-transient state t can transit to a state t′ using
√o, it implies all

the GLAGs in GLAC are in the quiescent state due to multiway synchronization of CSP on
√o. So

f−1(t) is a quiescent state of GLAC. Since t′ is a sink state, it implies that at state f−1(t) there is at
least one GLAG in quiescent hunger states. Hence, f−1(t) is a quiescent hunger state in GLAC.

ut

Theorem 4.2. Given a complete circuit ‖[ ~GLAG] (free of chokes and illegal stops) and a variable x
occurring in its super-combinator (i.e. ‖[~x]), ‖[ ~GLAG] is free of relative starvations on x iff

K(DT(GLAGx)) vSBDF Ω(‖[ ~GLAG] \ (A \ Ax)) \ {τ i, τ o,
√o,

√i},

where K(GLAG) =̂ k(s0), and

k(s) = 2(e, s′) : {(e, s′) | s e−→ s′} • eo → ei → k(s′)
u if s ∈ QH then Stop else (µ l.(l) u Stop).6

Proof:
Recall that, in the SBDF model, a process is denoted by (F, I, D) and refinement is component-wise
supersethood. As the process on the RHS of refinement is free of chokes and illegal stops, the traces
(including the infinite traces I) of K(DT(GLAGx)) should be a superset of that of the RHS (due to the
fact that all the traces removed after the DT operation have a prefix leading to Choke state, c.f. the
enabledness function ets in Definition 4.2). In any state s of DT(GLAGx), no matter how the conditional
(if s ∈ QH) evalutes, Stop (maximal failures) will be associated with the state by internal choice. That
means the failures set of K(DT(GLAGx)) will be a superset of the RHS. If D of K(DT(GLAGx)) is also
a superset of the RHS, then the refinement will hold. Since K(DT(GLAGx)) diverges (i.e. µ l.(l)) on and
only on the traces that cannot reach GLAGx’s QH state (due to the fact that the DT operation will not
change the set of traces that can reach QH), we have D of K(GLAGx) contains D of the RHS iff the RHS
does not diverge on GLAGx’s quiescent hunger states. ut

5. Protocol conformance verification

An asynchronous circuit is regarded as a hierarchical modular system. Atomic components (i.e. GLAGs)
and composite components (i.e. GLACs) in it are modules at different levels of the hierarchy. We asso-
ciate each of them with a protocol.

A protocol can be defined as an arbitrator positioned at the boundary of the system (i.e. GLACs) and
environment (see below) and observing the interaction between the system and environment.

Definition 5.1. An environment is a complete context, i.e. a context that, once filled, becomes a complete
circuit.

The arbitrator must be transparent to avoid arbitrariness in judgement, and it must be able to dis-
tinguish the actions of the system from the actions of the environment. Formally, a protocol is given
by:

6Recursion µ l.(l) defines a single state process having only a τ self-loop, i.e. pure divergence.



X. Wang, M. Kwiatkowska / On process-algebraic verification of asynchronous circuits 13

PROT =̂ ((IE, IS), LAGD, (QE, QS))

where LAGD is a transparent LAG with O = {} (i.e. an observer), IE ∪ IS = I and QE ∪ QS = S (i.e. in
any state of PROT at least one side can quiesce).

Well-formedness conditions on LAGs need to be extended as follows:

• All states with ETS ∩ IE = {} in the LAG must be in QE as well.

• All states with ETS ∩ IS = {} in the LAG must be in QS as well.

The relationship between protocols and components (i.e. GLACs) should be understood in the fol-
lowing way:

• As an assume/guarantee approach to specifying the behaviour of components: a circuit component
produces correct outputs so long as the environment provides legal inputs. This is a ‘better than’
relationship, i.e. less assumption and more guarantee.

• When modelling a component in a system, we do not need to model the full behaviour of the
component; we only need to model the particular ‘use’ of the component in the system, that is, the
protocol of the component. This is an under-approximation; we may get false negatives.

Given a protocol, we can derive a pair of instrumentation systems, one acting as the environment to
instrument systems for their conformance to the protocol, and the other acting as the system to instrument
environments for their conformance.

Definition 5.2. Given PROT = ((IE, IS), (I, {}, S ∪ {Choke}, T, s0), (QE, QS)), define

SYS(PROT) = ((IE, IS, S ∪ {Choke}, T, s0), QS, QS \ QE)

and
ENV(PROT) = [·] ‖ TM(PROT),

where TM(PROT) = TL(((IS, IE ∪ {d}, S ∪ {Choke}, T, S0), QE, QE \ QS)), and TL(GLAG) give us
another GLAG whose LTS is exactly like that of GLAG but with a d-labelled self-loop inserted at all Q
states.

TM(PROT) derives a testing machines from given PROT . Relative to four undesirable observables,
i.e. divergences, chokes, illegal stops and relative starvations (referred to DCIRs), protocol conformance
is defined using the correct instrumentation of a component by ENV and SYS as follows.

Definition 5.3. Given PROT , GLAC conforms to PROT iff GLAC is of the same alphabet as SYS(PROT)
and ENV(PROT)[GLAC] is free of DCIRs. Dually, an environment C[·] conforms to PROT iff its hole is
of the same alphabet as SYS(PROT) and C[SYS(PROT)] is free of DCIRs.

Based on the definition of protocol and conformance, a hierarchical system, represented as a n-level
(syntax) tree with each node associated with a protocol, can be verified in the following way: each leaf
component (i.e. a GLAG at level 1) is assumed or verified to conform to the associated protocol. Then,
for each node at level 2, which is the parent of a number of leaf nodes, we use its protocol to derive ENV
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and instrument the parallel composition of the sons’ protocols. If correct, it implies that the component
at level 2 conforms to its protocol. This algorithm proceeds until it reaches the root level (i.e. level n).
Therefore, we can break a large global verification problem (concerning the root node protocol and the
whole hierarchy) into a set of small local problems (each concerning only one parent node protocol and
its son node protocols). The correctness of the verification method is ensured by Theorem 5.1 at the end
of this section.

However, before we can state the proof of this theorem, we first need to define a refinement (i.e.
better than) relation (¹S) between components. The idea is that Theorem 5.1 can be derived from the
fact that ENV and SYS are, respectively, the worst environment and system conforming to a protocol (i.e.
Proposition 5.5).

Definition 5.4. Given GLAC and GLAC′ of the same alphabet, GLAC ¹S GLAC′ (i.e. GLAC refines, or
is better than, GLAC′) iff, in any compatible environment C[·], C[GLAC′] is free of DCIRs implies that
C[GLAC] is free of DCIRs. When GLAC ¹S GLAC′ and GLAC′ ¹S GLAC, we say GLAC and GLAC′

are ¹S-equivalent.

Definition 5.5. Given environments C[·] and C′[·] with holes of the same alphabet, C[·] ¹E C′[·] (i.e.
C refines, or is better than, C′) iff, for any compatible GLAC, C′[GLAC] is free of DCIRs implies that
C[GLAC] is free of DCIRs. When C[·] ¹E C′[·] and C′[·] ¹E C[·], we say C and C′ are ¹E-equivalent.

Proposition 5.1. ¹S and ¹E are preorders.

Proof:
Follows from Definition 5.4 and 5.5. ut

An important property is that replacing a component by a better one, in any context, will only improve
the system, which is obtained from the following.

Proposition 5.2. ¹S is a pre-congruence.

Proof:
Suppose GLAC ¹S GLAC′. Given any compatible context C[·], it is easy to see C[GLAC] ¹S C[GLAC′]
since for any compatible environment E[·] of C[GLAC] and C[GLAC′], E[C[·]] is a compatible environ-
ment of GLAC and GLAC′, and so E[C[GLAC]] ¹S E[C[GLAC′]]. ut

We are now ready to prove the main theorem. Our proof will be set-theoretical, and will use the
following partitioning of the (finite and infinite) trace sets.

Definition 5.6. Given a GLAC in a restricted form (i.e. without hiding), denoted NC =̂ ‖[ ~GLAG], as-
sume it has an alphabet A = I ∪ O, an initial state s0, and quiescent and quiescent-hunger state sets Q
and QH. Then, A∞ = Aω ∪ A∗ can be partitioned by:

UIA = {t′ | ∃ t, u : A∗ ∃ s : S ∃ i : I • s0 t=⇒ s ∧ t′ = tiu ∧ ¬ (s i−→ )}
UOA = {t′ | ∃ t, u : A∗ ∃ o : O • s0 t=⇒∧ t′ = tou ∧ ∀ s : S • (s0 t=⇒ s ⇒ ¬ (s o−→ )} \ UIA)
TRC = A∞ \ (UIA ∪ UOA)



X. Wang, M. Kwiatkowska / On process-algebraic verification of asynchronous circuits 15

where u is any event sequence including ε and infinite sequences. UIA (Unexpected Input Arrival) is the
extension closure of the set of choke traces. UOA (Unexpected Output Arrival) is the set of impossible
traces (due to impossible output) that do not belong to UIA. TRC is the set of safe traces (i.e. not violating
safeness). TRC can be further partitioned into:

EIN = {t | ∃ s • s0 t=⇒ s ∧ s ∈ QH} \ UIA
EON = {t | ∀ s : s0 t=⇒ s • s /∈ Q} \ UIA
PT = {t | ∃ s • s0 t=⇒ s ∧ s ∈ Q \ QH} \ (UIA ∪ EIN)
PI = {t | ∀ t : t < t • ∃ s • s0 t=⇒ s} \ UIA

EIN (Expected Input Never arrive) is the set of safe hunger traces (i.e. environment is not allowed to
stop after these traces). EON (Expected Output Never arrive) is the set of safe non-stopping traces (i.e.
system is not allowed to stop after these traces). PT is the set of safe stoppable traces (i.e. both system
and environment are allowed to stop). PI is the set of safe infinite traces.

Proposition 5.3. Given GLAG′ = DT(GLAG), GLAG′ and GLAG are ¹S-equivalent.

Proof:
The DT operation is essentially a subset construction procedure. It preserves all trace sets: UIA, UOA,
EIN, EON, PT , and PI. ut

Proposition 5.4. Given PROT, SYS(PROT), TM(PROT)7, and a relation on trace sets defined as:

S E S′ iff S ⊆ S′ ∧ S = S′ ¹IE∪IS
,

then all the following are true: UIA(SYS) E UOA(TM),
UOA(SYS) E UIA(TM),
TRC(SYS) E TRC(TM),
EIN(SYS) E EON(TM),
EON(SYS) E EIN(TM),
PT(SYS) E PT(TM),
PI(SYS) E (PI(TM) \ dDIV(TM)), and
dDIV(TM) ⊆ PI(TM),
where dDIV(TM) = {t | ∃ s : s0 t=⇒ s • s ∈ Q} · {dω}.

Proof:
Follows from Definition 5.6. ut

Proposition 5.5. Given PROT , ENV(PROT) is the least refined (i.e. worst) environment conforming to
PROT , and SYS(PROT) is the least refined system conforming to PROT .

Proof:
First, let us prove that ENV(PROT) and SYS(PROT) both conform to PROT , i.e. ENV(PROT)[SYS(PROT)]
(that is, TM(PROT) ‖ SYS(PROT)) is DCIR-free. For divergences, this is obvious since there is no hid-
ing of any events. For chokes, the transition functions of the system and the environment are both based
7SYS and TM are used as abbreviations of SYS(PROT) and TM(PROT) in the remainder.



16 X. Wang, M. Kwiatkowska / On process-algebraic verification of asynchronous circuits

on the same deterministic T; their interaction cannot generate chokes. For illegal stops, a stop state must
be in QS ∩ QE, but any quiescent hunger state is in (QS ∪ QE) \ (QS ∩ QE). So it is impossibe to have
illegal stops. For relative starvations, the result is obvious on the environment side since the system does
not diverge at all. On the system side, the only possible divergences of the environment are caused by d
self-loops, but at that time the environment and the system are both in a QE state, on which the system
is not hungry, so this causes no relative starvation on the system. Thus, ENV(PROT) and SYS(PROT)
conform to PROT as environment and system respectively.

Next, let us prove that SYS(PROT) (with alphabet A = IS ∪ IE) is the least refined conforming one.
Without loss of generality, assume a GLAC in normal form, GLAC =̂ NC \ ∆ where NC =̂ ‖[ ~GLAG],
is worse than SYS(PROT) but ENV(PROT)[GLAC] is DCIR-free. Then there must be a compatible
environment E[·] such that E[SYS] is DCIR-free while E[GLAC] is not. Without loss of generality, assume
the environment is also in normal form, i.e. E[·] =̂ (‖[ ~GLAG′] || [·]) \ ∆′, and ∆ is disjoint from the
alphabet A′ of ‖[ ~GLAG′] || [·]. Therefore, ‖[ ~GLAG′] ‖ (NC \ ∆) \ ∆′ is the same as CC \ (∆ ∪ ∆′)
where CC =̂ ‖[ ~GLAG′] ‖ NC.

In case E[GLAC] is not divergence-free, assume that a trace t of CC causes divergence. Then t ¹A
cannot be in UIA(SYS) (since it implies E[SYS] will have a choke on a prefix of t ¹A), and neither in
UOA(SYS) ⊆ UIA(TM) (since it implies ENV(PROT)[GLAC] will have a choke). t ¹A should be in
TRC(SYS). But if it is so, and t ¹A′ is infinite, t ¹A′ will cause divergences in E[SYS]. Thus, t ¹A′ (and
t ¹A) should be finite. However, this implies that ENV[GLAC] has divergences. Contradiction. Hence,
E[GLAC] must be divergence-free.

In case E[GLAC] is not choke-free, assume t is a minimal trace of CC causing chokes. As above, t ¹A
cannot be in UIA[SYS] (due to choke-freedom of E[SYS]), nor in UOA(SYS) (due to choke-freedom of
ENV[GLAC]). It should be in TRC(SYS) (⊆ TRC(TM)). But if it is so, and the choke is in ~GLAG′, this
will imply there is a similar choke in E[SYS]. If, otherwise, it is on ~GLAG, this will imply ENV[GLAC]
will have a similar choke. Contradiction. Thus E[GLAC] must be choke-free.

In case E[GLAC] is not free of illegal stops, assume t is one of its illegal stop traces of CC. Then
t ¹A∪∆ must be in TRC(NC) (from the fact that E[GLAC] is choke-free) and t ¹A in TRC(SYS) (due to
choke-freedom of E[SYS] and ENV[GLAC]). Furthermore, t ¹A∪∆ should be in EIN(NC)∪PT(NC) (due
to the definition of illegal stops). If it is in PT(GLAC), then t ¹A should be in EON(SYS) (otherwise
E[SYS] will have the same illegal stop). But t ¹A cannot actually be in EON(SYS) (⊆ EIN(TM)) since
that implies ENV[GLAC] is not free of illegal stops. Therefore, t ¹A∪∆ must be in EIN(NC). However,
at this time t ¹A cannot be in EON(SYS) ∪ PT(SYS) (⊆ (EIN(TM) ∪ PT(TM))), since that implies
ENV[GLAC] is not free of illegal stops. Then the only possible choice is both t ¹A∪∆ in EIN(NC) and
t ¹A in EON(SYS) (⊆ EIN(TM)). But this is also impossible, since it implies ENV[GLAC] is not free of
illegal stops. Contradiction. Thus E[GLAC] must be free of illegal stops.

Finally, in case E[GLAC] is not free of relative starvations, assume t is one of its CC’s traces causing
relative starvations. Then t ¹A′ must be infinite (due to divergence-freedom of E[GLAC]), t ¹A must be in
TRC(SYS) and t ¹A∪∆ must be in TRC(NC) (the same argument as before). These imply that the relative
starvations should be on, and only on, the ~GLAG side (otherwise, E(SYS) will have similar relative
starvations). t ¹A cannot be infinite (and in PI(SYS) ⊆ PI(ENV)), since that implies ENV(GLAC)
has similar relative starvations. However, if t ¹A is finite, then it should be in PT(SYS) ∪ EON(SYS)
(otherwise being in EIN(SYS) implies E[SYS] will have relative starvations.) Thus (t ¹A)dω should be in
PI(ENV), which will cause relative starvations in ENV(GLAC) (on ~GLAG). Contradiction. Hence, we
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can conclude that SYS(PROT) is the least refined system conforming to PROT.
The least refinedness of ENV(PROT) follows by duality. We omit the details. ut

Theorem 5.1. Assume a vector of protocols ~PROT , a generalised context GC[~x], and a protocol PROT ′,
then ENV(PROT ′)[GC[SYS( ~PROT)]] is free of DCIRs implies ∀ ~GLAC • ( ~GLAC conforms to ~PROT ⇒
GC[ ~GLAC] conforms to PROT ′), and vice versa.

Proof:
Follows from Proposition 5.5. ut

The theorem tells us that, in order to verify a system consisting of a vector of components, i.e.
GC[ ~GLAC], it suffices to verify the system with these components replaced by their protocols. Since a
protocol is usually much smaller than its component, the theorem ensures significant leverage in dealing
with the state-space explosion problem.

6. An example

Let us give an example to illustrate how we use schedulers and protocol conformance to verify real-world
circuits. The system (i.e. GLACFV ) is the gate-level circuit in Figure 1 that implements the FalseVariable
component in Balsa [6]. We verify that the circuit does not conform to the protocol (i.e. PROTFV ) in
Figure 2(a).8

We only need to consider safeness here since we will show that ENV(PROTFV)[GLACFV ] is not
choke-free. Therefore, GLACs and LACs can be used interchangeably below.

C

T

READ PORT

ANDn

WDr0

WDr

Sr

Sa

RDr

RDa

WDa fork’

fork

Ir Or

Oa
Ia

Oand
Iand1

IandN2

Oc
Ic1

Ic2

In1

In2
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I

O1

O2

O1’
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Figure 1. FalseVariable implementation (GLACFV )

8The circuit and the protocols in Figure 1 and 2 are provided to us by Luis Plana, Doug Edwards and Andrew Bardsley of
Manchester University.
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The system GLACFV is the parallel composition of 6 components. Besides classic gate elements
such as AND, Muller-C, fork, etc., the circuit also contains a special T component and a READPORT
component (i.e. LAC(T) and LAC(READPORT)). We do not care about the internal implementation of
the T component or the READPORT component. The circuit is obtained as the parallel composition
shown below:

GLACFV = LAG(C) ‖ LAG(fork) ‖ LAC(READPORT) ‖ LAG(fork′) ‖ LAG(ANDn) ‖ LAC(T).

The protocol of the system (PROTFV ) is specified using the STG (Signal Transition Graph) [2, 31] in
Fig 2(a). Translating the STG in Fig 2(a) to CSP, we obtain the process:

protocolFV = (writer ||| reader); WDa.down; protocolFV
writer = (WDr.up ||| RDr.down); WDa.up; (WDr.down ||| WDr0.down)
reader = (WDr0.up; Sr.up; RDr.up ||| WDr.up); RDa.up

; Sa.up; Sr.down; RDr.down; RDa.down; Sa.down

Note that the + and - symbols in Figure 2 denote respectively the up and down signal transition on the
wires. In the CSP translation, up and down are used instead. ||| is an interleaving operator, while ; is the
sequential composition operator9. Sequential composition binds stronger than choices, while choices are
stronger than parallel composition.

(a) (b)

Figure 2. The protocols of FV and T components (PROTFV and PROTT )

9To be consistent with theoretical CSP [19], a; a′ should be written as a → Skip; a′ → Skip. However, for some CSP variants
in asynchronous circuit community, Skip can be omitted. For this example, we follow the latter approach.
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T’s protocol is given using the STG in Fig 2(b), and READPORT (with abstraction) works like an
AND gate. We simply assume the two components conform to their protocols, whose CSP translations
are:

protocolT = Ir.up; Or.up; Oa.up;
(Or.down; Oa.down ||| Ia.up; Ir.down); Ia.down; protocolT

readport = (In1.up ||| In2.up); Out.up; readport′

readport′ = ( In1.down; (Out.down ||| In2.down)
2 In2.down; (Out.down ||| In1.down) )
; readport

For classic gate elements, although it is possible to specify the components’ full behaviour (LAG(x)),
it is complicated to do so and the results may be hard to justify without resorting to low-level electronic
details. Sometimes, it is much easier to directly give the protocols, and our intuition will suffice to justify
them.

There are two forks in the circuit; their protocol is:

fork0 = I.up; (O1.up ||| O2.up); fork1
fork1 = I.down; (O1.down ||| O2.down); fork0

The Muller-C element has the protocol:

protocolC = (Ic1.up ||| Ic2.up); O.up; protocolC′

protocolC′ = (Ic1.down ||| Ic2.down); O.down; protocolC

The protocol of the one-input negated AND gate is very different from that of READPORT , though
they are both variants of AND elements. This is a good example of verification using protocols instead
of the full specification of elements.

andN = IandN2.up; (Iand1.up ||| IandN2.down); Oand.up; andN′

andN′ = Iand1.down; Oand.down; andN

For all these elements, our intuition can easily justify that the components (LAG(X)) conform to their
protocols (PROT(X)). Therefore, to verify that GLACFV conforms to PROTFV , i.e. choke-freedom of
ENV(PROTFV)[GLACFV ], we only need to show, using Theorem 5.1, that

INSTRM = SYS(PROT(C)) ‖ SYS(PROT(fork)) ‖
SYS(PROT(READPORT)) ‖ SYS(PROT(fork′)) ‖
SYS(PROT(ANDn)) ‖ SYS(PROT(T)) ‖ TM(PROTFV)

is free of chokes.
TM and SYS functions above essentially transform a protocol to a CSP process with an isomorphic

LTS. The only change is on the alphabets, i.e. the wire connections, which will be embodied in the
specification of the scheduler. Thus, the above instrumentation system can be implemented as the CSP
system:
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test system = scheduler ‖ protocolFV ‖ protocolC ‖ fork0 ‖ readport ‖ fork0′ ‖ andN0 ‖ protocolT

The specification of the scheduler is as below:

CN = {(WDr0, Ir), (Oc, WDa), (WDr, I), (O1, Ic2),
(O2, In2), (O1′, IandN2), (O2′, In1), (Oand, Ic1),
(Ia, Iand1), (Or, Sr), (Sa, Ia), (RDr, I′)}

scheduler(CN) =
2 x : dom CN • x?z → CN(x)!z → scheduler(CN)

where CN is the function encoding wire connections.
Next, we supply the process test system to FDR2 [7], where checking deadlock freedom is fully

automatic, and indeed discover deadlocks. The deadlocking trace, and consequently the choke trace, is:

(WDr.up, I.up) (O2.up, In2.up) (WDr0.up, Ir.up)
(Or.up, Sr.up) (RDr.up, I′.up) (O2′.up, In1.up)
(Out.up, RDa.up) (Sa.up, Oa.up) Ia.up

Note that a choke trace is a sequence of (eo, ei) pairs ending with some eo. The final eo is the signal
transition that has been outputted but caused choke on the receiving component (i.e. the ANDn gate
here). Therefore, according to Definition 5.3, the circuit in Figure 1 does not conform to protocol of
Figure 2(a).

This example only illustrates safeness. More case studies are needed to analyse progress conditions.
However, it should be noted that the construction of schedulers can be automated, and hence the circuit
verification has the potential to be fully automatic. To handle relative starvation automatically, the FDR2
model checker will need to be modified to capture all the divergences in a process, which was claimed to
be no problem by Roscoe [20].

7. Formal relation to other theories

We have obtained a compositional verification theory for asynchronous circuits based on protocol con-
formance, general enough to capture safeness and progress conditions. As we will demonstrate next, our
theory coincides with and extends three important models for asynchronous circuits.

7.1. Trace Theory

Trace theory is based on modelling components/circuits as Prefixed Closed Trace Structures,

PCTS =̂ (I, O, S, F)

where I and O are the finite input alphabet and output alphabet respectively (A =̂ I ∪ O), and S and F
are the set of success traces and the set of failure traces (they are regular subsets of A∗). Their union
T =̂ S ∪ F is the set of all traces. S is prefix-closed. T must be non-empty, receptive and prefix-closed.
There are three operations on PCTSs: parallel composition, hiding and renaming. A PCTS with S empty
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is called degenerated. It corresponds to an LTS with a single Choke state. A PCTS with F empty is
called failure-free. A PCTS is complete iff its input alphabet is empty.

Based on PCTSs, trace theory developed a verification theory using CPCTS (Canonical PCTS) de-
scribed below.

Definition 7.1. ([5])
A CPCTS is a PCTS with F = ((S · I ∪ {ε}) \ S) · A∗. It can be abbreviated as (I, O, S).

Thus, CPCTS is extension-closed (i.e. chaos after a failure) and output-curtailment closed (i.e. failure
caused by input) on F, and S and F are disjoint. One operation M (mirror) is defined on non-degenerated
CPCTSs. It simply swaps the input and output alphabets, as follows:

M((I, O, S)) =̂ (O, I, S)

Proposition 7.1. ([5])
Given a complete CPCTS, it is either failure-free or degenerated.

Relative to the implementation of choke-free systems, trace theory demonstrated that each PCTS has
a ¹-equivalent CPCTS substitute.

Definition 7.2. ([5])
PCTSi ¹ PCTSs iff PCTSi is a safe substitute (i.e. without introducing more failures) of PCTSs in any
context. PCTSi and PCTSs are ¹-equivalent iff PCTSi ¹ PCTSs and PCTSs ¹ PCTSi.

The CPCTS substitutes are calculated using AM (Auto-failure Manifestation) and FE (Failure Ex-
clusion) transformations on PCTSs. An auto-failure of a PCTS is a failure trace ending with an output
event. Given a PCTS, AM will make its F output-curtailment closed; FE will make its S and F disjoint.

Proposition 7.2. ([5])
Given AMFE(PCTS) =̂ FE(AM(PCTS)), AMFE(PCTS) is a CPCTS and PCTS and AMFE(PCTS) are
¹-equivalent.

Using CPCTSs modelling specifications and PCTSs modelling implementations, their refinement
can be checked using the following result.

Theorem 7.1. ([5])
Given PCTS and non-degenerated CPCTS, PCTS ¹ CPCTS iff M(CPCTS) ‖ PCTS is failure-free.

Trace theory is closely related to our protocol conformance theory. If only chokes are considered,
the two can be shown equivalent. First, a PCTS can be extracted from each LAC as follows:

PCTS(LAC) =̂ (I, O, S, F)
S = L(LAC, S)
F = (L(LAC, {Choke}) ∪ (S · I \ S)) · A∗

Recall that a LAC is a finite-state LTS. Augmented with a set of states denoting the accepting states,
the LAC will become a finite state automaton. Thus, L(LAC, S) is the language of the automaton with
the set of non-choke states S as accepting. It gives us the set of success traces. L(LAC, {Choke}) is the
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language of the automaton with the choke states as accepting. It gives us the set of failure traces. It is
obvious that PCTS(LAC) has prefix-closed success-trace set (due to the fact that Choke is a sink state).
Their union is non-empty, receptive and prefix-closed. The complication of the failure trace set is largely
due to receptiveness requirements of trace theory.

Lemma 7.1. PCTS(LAC) is not degenerated.

Theorem 7.2. PCTS(LAC ‖ LAC′) = PCTS(LAC) ‖ PCTS(LAC′).

Theorem 7.3. PCTS(LAC \ C) = PCTS(LAC) \ C.

Lemma 7.2. PCTS(DT(LAG)) = FE(PCTS(LAG)), PCTS(LAG) = AM(PCTS(LAG)), and for a trans-
parent LAG, PCTS(LAG) is a CPCTS.

Although there is some duality between environments and systems, they are different types of entities
in our theory and relative starvations and divergences are not symmetrical on them. Thus, we cannot use
a mirror operator in our verification. However, if only chokes and illegal stops are considered, the
symmetry and completeness can be recovered, and we can formulate a reduced verification theory using
a mirror operator 10.

Definition 7.3. The mirror operation is defined on transparent GLAGs by:

M(GLAG) = ((I′, O′, S′, T ′, s′0), Q′, QH′)

• I′ = O, O′ = I, S′ = S, s′0 = s0, T ′ = T ,

• Q′ = S \ QH and QH′ = S \ Q.

Proposition 7.3. M is closed on the transparent LAGs and LAG = M(M(LAG)).

Lemma 7.3. Given a transparent LAG, PCTS(M(LAG)) = M(PCTS(LAG)).

Similarly, with only chokes, ¹S and ¹E collapse to a single preorder ¹, and we have a similar
verification theorem:

Theorem 7.4. Given LAC and a transparent LAG, LAC ¹ LAG iff M(LAG) ‖ LAC is free of chokes and
illegal stops.

In trace theory, efforts have been made to extend the verification to progress conditions. The approach
is based on so called complete trace structures (CTS), which are not prefix-closed. However, due to
the reliance on nondeterministic Buchi automata and infinite games, the method does not possess the
intuitive simplicity of the XDI model and induces high complexity in verification, e.g. even for checking
the healthiness of a specification (i.e. receptiveness).

10Note that both M and DT are defined only on GLAGs, but the induced version on LAGs is self-evident.
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7.2. Receptive Process Theory and the XDI model

Receptive process theory (RPT) models components/circuits as:

((I, O, S, F), Q)

where I and O are the finite input alphabet and output alphabet respectively (I ∪ O = A), and S and F
are the set of safe traces and the set of divergence traces11. S is prefix-closed, and F is extension-closed
and output-curtailment closed. They are disjoint. Their union T =̂ S ∪ F is the set of all traces. T must
be non-empty, receptive and prefix-closed. Thus, (I, O, S, F) constitutes a CPCTS.

Finally, Q is the set of quiescence traces. It is a subset of S and satisfies an extensibility property,
namely, that every safe trace is output extendable (by zero or more output events) to a quiescence trace
and there is no infinitely output extendable safe trace (ioe). Hence, S can be derived from Q (that is, due to
output extendability, S is the prefix-closure of Q); a trace is a divergence trace iff it is an extension-closed
trace (due to the non-existence of ioe). Therefore, RPT can be abbreviated as < I, O, F ∪ Q >.

Two operations are defined on RPT. Hiding (i.e. on outputs) is defined as usual. It will not introduce
divergences due to ioe. Parallel composition is the usual parallel operator with one exception, namely
that parallel will introduce ioe and therefore those have to be treated differently, i.e. as divergence traces.
Note that in RPT divergences are like chokes in trace theory: some kind of autofailure manifestation
transformation needs to be performed on them.

The special treatment of ioe is actually based on an interesting assumption on systems and envi-
ronments. According to their ability of infinite output, systems can be classified as either proactive or
reactive. A proactive system is one that is self-motivated and may infinitely output without any input.
A reactive system is one that is motivated by the environment, and will stop output (eventually) if the
environment does not continue to input. A subclass of reactive systems is called passive if it can absorb
infinite input without output, e.g. an observer.

In RPT, all systems are assumed to be reactive systems, and proactive systems are treated as a class
of bad reactive systems. If systems only model components, this seems reasonable. But one impor-
tant weakness (besides the inability to model an oscillator) is that RPT will not be able to model non-
terminating complete (or closed) systems. In our theory, proactive systems are the normal cases. The
only requirement is that their proactivity cannot be hidden since it may introduce divergences.

Let IOE be the set of ioe states (see Definition 2.1) of a GLAC. Define:

RPT(GLAC) =̂ (CPCTS, L(GLAC, Q) \ F)
CPCTS = AMFE(I, O, L(GLAC, S), L(GLAC, {Choke} ∪ IOE) ∪ (S · I \ S)).

Lemma 7.4. RPT(GLAG) = RPT(DT(GLAG)).

Theorem 7.5. RPT(GLAC ‖ GLAC′) = RPT(GLAC) ‖ RPT(GLAC′).

Theorem 7.6. RPT(GLAC \ C) = RPT(GLAC) \ C.

11In this paper, we assume the regularity of S and F in RPT to facilitate a comparison with trace theory and our theory. Note
also that we use different symbols to identify these sets than in the original theory.
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Verhoeff [25, 24] proposed another model, called the XDI model. Each XDI specification (SPEC =̂
< I, O, f >) corresponds to a protocol in our paper (PROT =̂ ((IE, IS), LAGD, (QE, QS))) such that
I = IE, O = IS, and

f (t) =





> t ∈ UOA(SYS)
∇ t ∈ EON(SYS)
2 t ∈ PT(SYS)
4 t ∈ EIN(SYS)
⊥ t ∈ UIA(SYS)

where t ∈ (I ∪ O)∗. It is not difficult to see that healthiness conditions 1-7 of [24] are satisfied. The
reflection operator can also be shown to correspond to the mirror operator in Definition 7.3. Later, Ver-
hoeff and Mallon [14] extended the model to the X2DI model. X2DI removes the healthiness conditions
6 and 7. A X2DI specification roughly corresponds to a transparent GLAG without the well-formedness
condition on quiescences.

Both XDI and RPT theories do not handle relative starvations (largely due to the fact that they are
finite trace models). However, they both investigate ‘delay insensitive’ (in the sense of having a special
event reordering rule) circuits, which are not covered in this paper.

Process spaces [17, 18] are another interesting theory that uses the duality between the environment
and system to perform verification. It tackles both safeness and progress in an abstract uniform frame-
work and the parallel operator is abstracted as a conjunction. However, one weakness is that, in order
to interpret process spaces as a theory of asynchronous circuits, we need to add healthiness conditions
(e.g. receptiveness). It is not always obvious what the healthiness conditions should be, especially when
several correctness conditions are combined.

8. Conclusion and future work

We have proposed a compositional verification theory for asynchronous concurrent systems, which can
be integrated into standard process algebra theories. More specifically,

• Our theory extends XDI and RPT theories to infinite traces and enables us to capture a new class
of errors, relative starvations, undetectable in previous models. Our proof of the compositionality
theorem is purely set-theoretical.

• We formulate our theory in a way that is amenable to direct translation to process algebra, and,
with the help of the newly introduced infinite traces model of CSP, called SBDF , we give a formal
translation from these systems to the process algebra CSP, and show the semantic correspondence
(up to isomorphism).

• We reduce asynchronous circuit verification problems to CSP refinement checks, and prove their
correctness. This allows us to exploit the power of the process algebra model-checking tools, e.g.
FDR2.

From a practical point of view, the protocol/scheduler approach is natural to use, and the extra states
introduced by the scheduler are negligible in verification. The main cause of state space explosion in



X. Wang, M. Kwiatkowska / On process-algebraic verification of asynchronous circuits 25

asynchronous circuit verification is unnecessary interleaving. With FDR2, we have shown scalability
in verifying certain classical asynchronous circuit problems. For instance, using chase compression (a
reduction method inspired by partial order semantics), the verification time of the tree arbiter example
becomes linear in the size of the tree and we achieve automatic verification of tree arbiters up to 210

ways [27]. Recently, based on analysing concurrency and composition structure of processes, we were
able to formulate advanced state space reduction techniques for FDR2 which were inspired by asyn-
chronous circuits verification studied here [29].

However, due to the interleaving nature of the CSP/FDR approach, some aspects of concurrency/causality
information are not readily available and fully utilised by our reduction. To make the reduction more ef-
fective, a true concurrency approach to CSP is needed, e.g. based on [22].
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A. CSP operators and models

The set of CSP operators used in this paper is:

Prefix operator: e → P
Sequential composition: P; Q
Internal choice: P u Q
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External choice: P 2 Q
Hiding: P \ ∆
Interleaving: P ||| Q
Interface parallel: P |[∆ ]| Q
Renaming: P[R]
Recursion: µ l.F(l)
Replicated internal choice: u x : S • P
Replicated external choice: 2 x : S • P
Replicated interleaving: ||| x : S • P

In classical CSP [19], stable failures and failure/divergences are the major semantic models used.
They are both finite trace models. However, there is a newly developed infinite trace CSP model [20],
the SBDF model, which preserves all the divergence traces in CSP processes.

Given an LTS, the set of finite traces FT is {t | s0 t=⇒}. The set of infinite traces IT is {t | s0 t=⇒}.
The set of divergence traces D is {t | ∃ s • divergent(s) ∧ s0 t=⇒ s}. The set of stable failures F is
{(t,∆) | ∃ s • stable(s) ∧ s0 t=⇒ s ∧ ∀ e ∈ ∆ • ¬ (s e−→ )}. Given a set of finite sequences, lmt()
outputs a set of infinite sequences, each being the limit of a chain of increasing (wrt prefix order) finite
sequences belonging to the set. Define I =̂ IT ∪ lmt(D).

Definition A.1. (SBD, SBDF)
SBD(LTS) = (FT, I, D) and SBDF(LTS) = (F, I, D).

The semantics of some simple processes are below:

SBD(µ l.(e → l)) = ({e}∗, {eω}, {})
SBD(u i : N • P(i)) = ({e}∗, {}, {}), where P(0) = Stop and P(n) = e → P(n− 1)
SBDF(µ l.(l) u Stop) = ({(ε,∆) | ∆ ⊆ A}, {}, {ε})
SBDF(µ l.((a → l) 2 (b → Stop))) =

({(t,∆) | t ∈ {a}∗{b} ∧ ∆ ⊆ A} ∪ {(t, ∆) | t ∈ {a}∗ ∧ ∆ ⊆ (A \ {a, b})}, {aω}, {})


