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Abstract Probabilistic timed automata (PTAs) are a formalism for modelling systems whose

behaviour incorporates both probabilistic and real-time characteristics. Applications include

wireless communication protocols, automotive network protocols and randomised security

protocols. This paper gives an introduction to PTAs and describes techniques for analysing a

wide range of quantitative properties, such as “the maximum probability of the airbag failing

to deploy within 0.02 seconds”, “the maximum expected time for the protocol to terminate”

or “the minimum expected energy consumption required to complete all tasks”. We present

a temporal logic for specifying such properties and then give a survey of available model-

checking techniques for formulae specified in this logic. We then describe two case studies

in which PTAs are used for modelling and analysis: a probabilistic non-repudiation protocol

and a task-graph scheduling problem.

1 Introduction

Automated verification techniques, such as model checking, provide powerful methods for

rigorously analysing the correctness of systems. Increasingly, this analysis must also take

into account quantitative aspects of the systems being verified, including both real-time

characteristics and probabilistic behaviour. Embedded systems, for example, whether in

communication and multimedia devices or in automotive and avionic control systems, often

operate under timing constraints. The need for automated formal verification techniques in

this domain is clear, as evidenced by the take-up of timed automata verification tools such as

UPPAAL [13]. On the other hand, many real-life systems also exhibit stochastic behaviour,
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due, for example, to component failures, unreliable communication media or the use of ran-

domisation. Probabilistic verification tools such as PRISM [51] and MRMC [45] have been

widely used to analyse many systems with stochastic behaviour. Another vital ingredient in

system modelling is nondeterminism, which is often used to capture concurrency between

parallel components and to under-specify or abstract certain aspects of a system.

Probabilistic timed automata (PTAs) [35,54,11] are a modelling formalism for systems

that exhibit probabilistic, nondeterministic and real-time characteristics. In many applica-

tion domains, all three aspects need to be modelled; these include wireless communication

protocols such as Bluetooth or Zigbee, automotive network protocols such as FlexRay, ran-

domised security protocols, e.g. for anonymity or non-interference, and many others. The

interplay between these different aspects can be subtle, making automated verification tech-

niques and tool support essential. Verification of PTAs permits analysis of a wide range of

quantitative properties, from reliability to performance, e.g.:

– “the maximum probability of an airbag failing to deploy within 0.02 seconds”;

– “the minimum probability that a packet is correctly delivered with 1 second”;

– “the maximum expected time for the protocol to terminate”.

PTAs can also be augmented with additional quantitative information in the form of costs

or rewards. The resulting model is sometimes referred to as priced probabilistic timed au-

tomata and allows reasoning about a wide range of additional properties, e.g.:

– “the maximum expected number of lost packets within the first hour”;

– “the minimum expected energy consumption for completion of all tasks”;

– “the maximum number of queued requests after 10 seconds of operation”.

This paper provides an introduction to PTAs and the techniques that have been developed to

specify and verify properties such as those listed above.

Paper structure. This paper is organised as follows. After background material in Section 2,

Section 3 introduces the model of PTAs and discusses various issues relating to their use

and analysis. Then, Section 4 presents a probabilistic temporal logic to represent properties

of PTAs and Section 5 surveys the various techniques that can be used to perform model

checking of this logic. Section 6 describes two case studies illustrating the usage of PTAs

and their associated model-checking algorithms: a probabilistic non-repudiation protocol

and a task-graph scheduling problem. Throughout the paper we give pointers to the relevant

literature on PTAs and describe related work.

2 Background

We use R≥0 to denote the set of non-negative real numbers, Q≥0 for the set of non-negative

rationals and N for the set of natural numbers. A discrete probability distribution over a

countable set Q is a function µ : Q→[0,1] such that ∑q∈Q µ(q) = 1. For a function µ :

Q→R≥0 we define Support(µ) = {q ∈ Q | µ(q)>0}. Then, for an arbitrary set Q, we define

Dist(Q) to be the set of functions µ : Q→[0,1] such that Support(µ) is a countable set and

µ restricted to Support(µ) is a distribution. For q ∈ Q, let µq be the point distribution at q

which assigns probability 1 to q. Let AP be a set of atomic propositions, which we assume

to be fixed throughout the paper.

Markov decision processes (MDPs) are a widely used formalism for modelling systems

that exhibit both nondeterministic and probabilistic behaviour. In this paper, we will use

timed probabilistic systems (TPSs) [52,56], an extension of MDPs in which transitions are

labelled with either an action or a time duration.
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Definition 1 (TPS) A timed probabilistic systems T is a tuple (S,s,Act,StepsT, lab) where S

is (possibly infinite) a set of states, s ∈ S an initial state, Act a (finite) set of actions, StepsT :

S×(Act∪R≥0)→Dist(S) a (partial) probabilistic transition function and lab : S→2AP a la-

belling function.

A TPS T starts in the initial state s and, when in state s ∈ S, there is a nondeterministic

choice between one or more available actions or time durations a ∈ Act ∪R≥0 (those for

which StepsT(s,a) is defined). After the choice of an available action or time duration a, a

successor state s′ is selected at random according to the probability distribution StepsT(s,a).
We use the notation s

a,µ
−−→ s′ for such a transition, i.e., to denote that StepsT(s,a) is defined

and equal to µ , and that s′ ∈ Support(µ). We assume, for each state s ∈ S, there exists at

least one available action or time duration. An MDP M is a special case of a TPS where

time is omitted from the transition function, i.e., the probabilistic transition function takes

the form StepsM : S×Act→Dist(S).
A path of a TPS represents a particular resolution of both the nondeterminism and prob-

ability present in the system. Formally, a path is a finite or infinite sequence of probabilistic

transitions alternating between time durations and actions, for example:

ω = s0
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ ·· ·

where a2i ∈ R≥0 and a2i+1 ∈ Act for i ∈ N. We denote by ω(i) the (i+1)th state si of ω and

the accumulated duration up until this state ω(i) is defined by:

durω(i)
def
= ∑0≤ j<i∧a j∈R≥0

a j.

A position of ω is a pair (i, t) ∈ N×R≥0 such that t ≤ durω(i+1)−durω(i). We say that the

position ( j, t ′) precedes the position (i, t), written ( j, t ′)≺(i, t), when j<i or j=i and t ′<t.

To reason about the probabilistic behaviour of a TPS T, we use the notion of an ad-

versary, which is a possible resolution of nondeterminism only. Formally, an adversary is

a function from finite paths with an even number of transitions to available time durations,

and from finite paths with an odd number of transitions to available actions). For a fixed

adversary σ and state s, we can define a probability measure Prσ
T,s over the set Pathσ

T,s of

infinite paths starting in s corresponding to σ [47]. For a real-valued random variable f over

Pathσ
T,s, we let Eσ

T,s( f ) denote the expected value of f with respect to Prσ
T,s.

We restrict our attention to time-divergent (or non-Zeno) adversaries, i.e., we do not

consider executions in which time does not advance beyond a certain point. These can be

ignored on the grounds that they do not correspond to actual, realisable behaviour of the

system being modelled [2,40]. Formally, an adversary σ of a TPS T is time divergent if:

Prσ
T,s({ω ∈ Pathσ

T,s |∀c ∈ N.∃i ∈ N.durω(i)>c}) = 1 .

for all states s of T. We denote by AdvT the set of all time-divergent adversaries of T. This

issue is discussed in more depth in Section 3.

We next introduce rewards (or, equivalently, costs or prices) for TPSs. These are used to

represent additional information about the system that the TPS represents, e.g., the number

of packets sent or requests lost, the time spent in a particular state or the energy consumed.

Definition 2 (Reward structure) A reward structure for a TPS T=(S,s,Act,StepsT, lab)
is a pair r=(rS,rAct) where rS : S→R≥0 is a state reward function and rAct : (S×Act)→R≥0

is an action reward function.
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For a reward structure r=(rS,rAct) and state s, the value rS(s) defines the rate (per time unit)

at which reward is accumulated when in state s. On the other hand, for state s and action a,

the value rAct(s,a) defines the reward acquired when the action a is taken in state s. More

formally, for any infinite path ω = s0
a0,µ0−−−→ s1

a1,µ1−−−→ ·· · , the reward accumulated during the

transition of ω from state si to si+1 is defined by:

r(ω, i)
def
=

{

rS(si)·ai if ai ∈ R≥0 (or, equivalently, if i mod 2 = 0)

rAct(si,ai) otherwise.

Alternatively, we can also interpret state rewards as defining a reward at a particular time

instant. An example of this usage would be a reward structure that represents the number

of messages stored in a queue at a particular time instant. When using this interpretation,

action reward values are not considered.

3 Probabilistic Timed Automata

Probabilistic timed automata (PTAs) [42,54,11] model real-time behaviour in the same fash-

ion as classical timed automata [4], using clocks. Clocks are variables whose values range

over the non-negative reals and which increase at the same rate as time. Throughout this

paper, we assume a finite set of clocks X . A function v : X →R≥0 is referred to as a clock

valuation and the set of all clock valuations is denoted by RX
≥0. For any v ∈ RX

≥0, t ∈ R≥0

and X ⊆ X , we use v+t to denote the clock valuation which increments all clock values in

v by t and v[X :=0] for the clock valuation in which clocks in X are reset to 0. We use 0 to

denote the clock valuation that assigns 0 to all clocks in X .

The set of clock constraints over X , denoted CC(X ), is defined by the syntax:

χ ::= true | x ≤ d | c ≤ x | x+c ≤ y+d | ¬χ | χ ∧χ

where x,y ∈ X and c,d ∈ N. A clock valuation v satisfies a clock constraint χ , denoted by

v |= χ , if χ resolves to true when substituting each occurrence of clock x with v(x). The set

of valuations satisfying a clock constraint is called a zone. Clock constraints will be used in

the syntactic definition of PTAs and for the specification of properties.

Definition 3 (PTA syntax) A probabilistic timed automaton (PTA) is defined by a tuple

P=(L, l,X ,Act, inv,enab,prob,L ) where:

– L is a finite set of locations and l ∈ L is an initial location;

– X is a finite set of clocks;

– Act is a finite set of actions;

– inv : L→CC(X ) is an invariant condition;

– enab : L×Act→CC(X ) is an enabling condition;

– prob : L×Act→Dist(2X ×L) is a (partial) probabilistic transition function;

– L : L→2AP is a labelling function mapping each location to a set of atomic propositions.

A state of a PTA is a pair (l,v) ∈ L×RX
≥0 such that v |= inv(l). In any state (l,v), either a

certain amount of time t ∈ R≥0 elapses, or an action a ∈ Act is performed. If time elapses,

then the choice of t requires that the invariant inv(l) remains continuously satisfied while

time passes. The resulting state after this transition is (l,v+t) and, to ease notation, we

denote this state by (l,v)+t. In the case where an action is performed, an action a can only

be chosen if it is enabled, i.e., if the clock constraint enab(l,a) is satisfied by v. Once an
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enabled action a is chosen, a set of clocks to reset and a successor location are selected at

random, according to the distribution prob(l,a). We call each element (X , l′) ∈ 2X ×L in

the support of prob(l,a) an edge and use edges(l,a) to denote the set of such edges.

We assume that PTAs are well-formed, meaning that, for each state (l,v) and action a

such that v satisfies enab(l,a), every edge (X , l′) ∈ edges(l,a) results in a transition to a

valid state, i.e., we have v[X :=0] |= inv(l′). A PTA can be transformed into one that is well-

formed by incorporating the invariant associated with the target location into the enabling

condition of each location-action pair (see [56]).

Definition 4 (PTA semantics) Let P=(L, l,X ,Act, inv,enab,prob,L ) be a PTA. The se-

mantics of P is defined as the (infinite-state) TPS [[P]] = (S,s,Act,StepsP, lab) where:

– S = {(l,v) ∈ L×RX
≥0 | v |= inv(l)} and s = (l,0);

– for any (l,v) ∈ S and a ∈ Act∪R≥0, we have StepsP((l,v),a) = λ if and only if either:

Time transitions. a ∈ R≥0, v+t ′ |= inv(l) for all 0≤t ′≤a, and λ = µ(l,v+a);

Action transitions. a ∈ Act, v |= enab(l,a) and for each (l′,v′) ∈ S:

λ (l′,v′) = ∑
{∣

∣prob(l,a)(X , l′) |X ∈ 2X ∧ v′ = v[X :=0]
∣

∣

}

,

– for any (l,v) ∈ S we have lab(l,v) = L (l).

lost 

x!8 
init 

x!2!y!25 

send 
x"1 

retry 

0.1 
t_out 

y"20 

x:=0 x=8 

fail 

true 

done 

true 

0.9 

Fig. 1 Example of a PTA

Example of a PTA. In Figure 1, we present a PTA

modelling a simple communication protocol. We adopt

the standard conventions for the graphical representa-

tion of timed automata. Distributions are represented

by an arc connecting edges at their source and by

probability labels attached to edges (omitted for edges

taken with probability 1). The PTA has two clocks x

and y, which start with the value 0. In the location init,

the system waits for at least 1 time unit (represented

by the enabling condition x≥1 on the outgoing distri-

bution of action send) and at most 2 time units (represented by conjunct x≤2 of the invariant

condition), before sending a message. With probability 0.9 the message is received correctly

(edge to done); otherwise, with probability 0.1, the message is lost (edge to lost). In the

latter case, once clock x reaches 8, the PTA returns to init where another attempt to send the

message can be made. If, in total, at least 20 and at most 25 time units have elapsed since

the start of system execution, the PTA performs a timeout and moves to location fail.

Rewards for PTAs. We can also define rewards for a PTA. Often, these model usage of some

resource and are equivalently referred to as costs or prices. A reward structure at the level

of a PTA P is defined using a pair r=(rL,rAct), where rL : L → R≥0 is a function assigning

to each location the rate at which rewards are accumulated as time passes in that location

and rAct : L×Act→R≥0 is a function assigning the reward of executing each action in each

location. The corresponding reward structure of the TPS [[P]] is given by r=(rS,rAct) where

rS(l,v)=rL(l) and rAct((l,v),a)=rAct(l,a) for (l,v) ∈ L×RX
≥0 and a ∈ Act. PTAs equipped

with reward structures are a probabilistic extension of linearly-priced timed automata (also

known as weighted timed automata) [14,5].

Modelling with PTAs. We now summarise a variety of extensions to the standard definition

of PTAs that facilitate high-level modelling using this formalism.
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Parallel composition. It is often useful to define complex systems as the parallel compo-

sition of several interacting components. The definition of the parallel composition oper-

ator ‖ for PTAs [55] uses ideas from (untimed) probabilistic automata [62] and classical

timed automata [4]. Let Pi = (Li, li,Acti,Xi, invi,enabi,probi,Li ) for i ∈ {1,2} and assume

that X1 ∩X2 = /0. Given µ1 ∈ Dist(2X1×L1) and µ2 ∈ Dist(2X2×L2), we let µ1⊗µ2 ∈
Dist(2X1∪X2 × (L1×L2)) be such that µ1⊗µ2(X1 ∪X2,(l1, l2)) = µ1(X1, l1)·µ2(X2, l2) for

Xi ⊆ Xi, li ∈ Li and i ∈ {1,2}. The parallel composition of PTAs P1 and P2 is the PTA:

P1‖P2 = (L1×L2,(l1, l2),X1 ∪X2,Act1 ∪Act2, inv,enab,prob,L )

such that, for each location pair (l1, l2) ∈ L1×L2 and action a ∈ Act1 ∪Act2:

– the invariant condition is given by inv(l1, l2) = inv1(l1)∧ inv2(l2);
– the enabling condition is given by:

enab((l1, l2),a) =







enab1(l1,a)∧ enab2(l2,a) if a ∈ Act1 ∩Act2

enab1(l1,a) if a ∈ Act1 \Act2

enab2(l2,a) if a ∈ Act2 \Act1;

– the probabilistic transition function is given by:

prob((l1, l2),a) =







prob1(l1,a)⊗ prob2(l2,a) if a ∈ Act1 ∩Act2

prob1(l1,a)⊗ µ( /0,l2) if a ∈ Act1 \Act2

µ( /0,l1) ⊗ prob2(l2,a) if a ∈ Act2 \Act1;

– the labelling function is given by L (l1, l2) = L1(l1)∪L2(l2).

If PTA Pi has associated reward structure (ri
L,r

i
Act), then the reward structure r=(rL,rAct) for

P1‖P2 is such that, for (l1, l2)∈L1×L2 and a∈Act1∪Act2, we have rL(l1, l2)=r1
L(l1)+r2

L(l2),
rAct((l1, l2),a) = r1

Act(l1,a)+r2
Act(l2,a) if a ∈ Act1 ∩Act2, rAct((l1, l2),a) = r1

Act(l1,a) if a ∈
Act1 \Act2 and rAct((l1, l2),a) = r2

Act(l2,a) if a ∈ Act2 \Act1.

Discrete variables. When modelling systems with (probabilistic) timed automata, it is often

convenient to augment the model with discrete variables [13,65]. We restrict ourselves to

the case in which a finite number of variables, each with a finite domain, are added to the

PTA framework; enabling conditions can then refer to the current value of the variables, and

the probabilistic transition relation is extended to allow updating variable values. Such an

extended PTA model can be represented in the standard PTA framework presented above

in the following way. Let L be the set of locations of the extended PTA, and suppose the

extended PTA has n bounded integer variables. The locations of the standard PTA are tu-

ples comprising n+1 elements: the first element is a location from L, while the remaining

n elements are values of the bounded integer variables. Enabling conditions are obtained

by resolving partially the enabling conditions of the extended PTA, using the variable val-

ues corresponding to the locations and the probabilistic transition function is obtained by

encoding variable updates into target locations of edges.

Urgency. When modelling real-time systems, it is often necessary to express the fact that

a particular action should be taken immediately, without letting time pass. In this way, we

can model, for example, an instantaneous system event comprising several atomic actions.

A number of mechanisms for modelling such situations have been introduced for timed au-

tomata, for example in the system-description language of the UPPAAL model checker [13];

here, we describe how they are adapted to PTAs.
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Firstly, an urgent location of a PTA is a location in which no time can pass. Urgent lo-

cations can be represented in the PTA framework by introducing an additional clock, which

is reset on entry to an urgent location, and by including a conjunct in the invariant condition

of the location to specify that the value of the clock should be equal to 0 in the location.

Secondly, a committed location of a PTA is, like an urgent location, a location in which

no time can pass, but also must be left before any other system component makes a transi-

tion. We adapt to PTAs the method of [65] for encoding committed locations in the standard

timed automata framework. First a global Boolean variable atom is added to the PTA. Now,

consider a PTA which is to be composed in parallel with other PTAs. A committed location

of the PTA is subject to the constructs added in the case of urgent locations and, in addi-

tion, atom is set to true on entry to the committed location, is set to false on exiting the

committed location, and all enabling conditions of the PTA except those corresponding to

committed locations have the conjunct requiring that atom is false.

Finally we mention urgent actions [13,30]. Informally, an action is urgent if it must

be chosen as soon as it is enabled. Urgent actions can be introduced to the PTA syn-

tax simply by identifying the subset Actu of actions which are interpreted as urgent. The

presence of urgent actions necessitates the following modifications to the semantics of a

PTA. For PTA P=(L, l,Act,X , inv,enab,prob,L ) with urgent actions Actu, [[P]] is the TPS

(S,s,Act,StepsP, lab) where S, s, lab and StepsP((l,v),a) for (l,v) ∈ S and a ∈ Act are as in

Definition 4, while for (l,v) ∈ L, t ∈ R≥0, we have StepsP((l,v), t) = µ(l,v+t ′) if and only if:

– v+t ′ |= inv(l) for all 0≤t ′≤t;

– for all 0≤t ′<t and a′ ∈ Act, if v+t ′ |= enab(l,a′) then a′ 6∈ Actu.

Non-standard clock resets. In the PTA framework, as in the standard definition of timed

automata, clocks can only be reset to value 0 when taking a probabilistic transition. It may

be useful, though, to also allow clocks to be reset to any non-negative integer value. If

N⊥ = N∪{⊥}, v is a clock valuation and θ : X →N⊥, then define the clock valuation v[θ ]
such that v[θ ](x)=v(x) if θ(x)=⊥ and v[θ ](x)=θ(x) otherwise. Then, a PTA with extended

resets is defined as a PTA in Definition 3, except that the probabilistic transition function

is now defined as prob : L×Act→Dist((X →N⊥)×L). The semantics of a PTA with ex-

tended resets P is defined as in Definition 4, except that for (l,v) ∈ S and a ∈ Act, we have

StepsP((l,v),a)=λ if and only if v |= enab(l,a) and, for each (l′,v′) ∈ S:

λ (l′,v′) = ∑
{∣

∣prob(l,a)(θ , l′) |θ ∈ X →N⊥∧ v′=v[θ ]
∣

∣

}

.

A PTA with extended resets can be translated into a PTA with the standard restriction of

clock resets to 0, by adapting an analogous construction for (non-probabilistic) timed au-

tomata [26]. However, this construction can give an exponential blow-up in the size of the

model, which is unavoidable [25]. Instead, model-checking algorithms for PTAs can be de-

veloped which incorporate the extended definition of resets directly.

Channels. The definitions of actions and parallel composition presented here can be ex-

tended to allow for channels and the sending and receiving (to either single or multiple

recipients) of messages along them, as in UPPAAL [13]. Such behaviour can be encoded in

the action names of a standard PTA.

Time divergence. An important issue with regard to the verification of models of real-

time systems is that of time divergence. As explained in Section 2, such behaviour does

not correspond to that of the real system, and hence the verification technique used must

be able to disregard such behaviour during analysis. We use the notion of time divergence
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of Section 2, i.e., we restrict our attention to the adversaries Adv[[P]] (those adversaries for

which the probability of time passing beyond any bound is 1).

Note that a PTA may feature states from which time cannot diverge for any adversary;

such states correspond to a probabilistic generalisation of timelocks in the timed automata

setting [40], and are considered to indicate modelling errors. The set of timelock states can

be identified using (extensions of) the analysis methods that we present in Section 5, and

removed from the model by modifying the invariant and enabling conditions.

For some PTAs, all adversaries will be time-divergent by construction. We give a syn-

tactic and compositional condition, derived from analogous results on timed automata [66,

67], which guarantees that all adversaries are time-divergent: a PTA is structurally di-

vergent if, for every sequence (l0,a0),(X0, l1), . . . ,(ln,an),(Xn, ln+1) such that (Xi, li+1) ∈
edges(li,ai) for 0≤i<n and ln+1=l0, there exists x ∈ X and 0 ≤ i, j ≤ n such that x ∈ Xi

and enab(l j,a j) ⇒ (x≥1) (i.e. enab(l j,a j) contains a conjunct of the form x≥c for c≥1).

If a PTA is not structurally divergent, verification algorithms can be adjusted to disregard

non-divergent adversaries, as we will describe in Section 5.

Finally we note that a more restrictive notion of divergent adversary of a PTA, namely

that of a strictly divergent adversary, has been presented in [63]. An adversary is strictly

divergent if all of its paths entail time passing beyond any bound. In many contexts, strictly

divergent adversaries are more realistic than divergent adversaries, e.g., if we regard the

edge traversals of a PTA as corresponding to the change in a physical state of the system.

Alternative models. We conclude this section with a brief discussion of some alternative

probabilistic models that also incorporate nondeterministic, probabilistic and timed aspects.

One example, which has recently attracted increased interest in the context of probabilistic

verification, is continuous-time Markov decision processes, along with closely related mod-

els such as interactive Markov chains [41] and Markov automata [31]. These extend classical

(discrete-time) Markov decision processes with real-time delays modelled by exponential

distributions. Thus, such models can alternatively be viewed as extensions of continuous-

time Markov chains, which also model probabilistic real-time systems using exponentially-

distributed delays, but which do not exhibit nondeterministic behaviour. Other proposed

models in the literature include [1], which is based on generalised semi-Markov processes,

and [53], which defines PTAs with continuously distributed random delays.

4 Property Specification for PTAs

In this section, we present a temporal logic for the formal specification of quantitative prop-

erties of PTAs. The basis for this is the temporal logic PCTL [37,20], a probabilistic exten-

sion of the logic CTL [29] which has been proposed for specifying properties of both MDPs

[20] and discrete-time Markov chains [37]. We augment the logic with operators to reason

about rewards (or costs or prices), in the style of the logic in [32] for MDPs (and as used in

the probabilistic model checker PRISM [51]). We also discuss extensions to more expres-

sive logics such as PTCTL and PCTL*. In the next section, we will survey the available

techniques for model checking of PTAs against properties specified in our logic.

Definition 5 (Syntax) The syntax of our logic is given by the following grammar:

φ ::= true
∣

∣ a
∣

∣ χ
∣

∣ φ ∧φ
∣

∣ ¬φ
∣

∣ P⊲⊳ p[ψ]
∣

∣ Rr
⊲⊳q[ρ]

ψ ::= φ U≤k φ
∣

∣ φ U φ

ρ ::= I=k
∣

∣ C≤k
∣

∣ F φ
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where a∈ AP is an atomic proposition, χ ∈CC(X ) is a clock constraint, ⊲⊳∈ {≤,<,≥,>},

p ∈Q∩ [0,1], q ∈Q≥0, r is a reward structure and k ∈ N.

This logic extends propositional logic with a probabilistic operator (P) and a reward opera-

tor (R). Informally, a property of the form P⊲⊳ p[ψ] states that the probability of path formula

ψ being true always satisfies the bound ⊲⊳ p. A property of the form Rr
⊲⊳q[ρ] means that the

expected value of reward function ρ on reward structure r meets the bound ⊲⊳ q.

Formulae in the logic are always state formulae, i.e., those formed by the production φ
in the grammar above. These are evaluated over the states of a PTA P (or, more precisely,

over the states of the TPS [[P]] representing its semantics). For state s and formula φ , we

write s |=φ to denote that φ is satisfied in s. The syntax also includes path formulae (ψ) and

reward operators (ρ), which appear only as subformulae of the P and R operators.

We include two types of path formulae: time-bounded until (φ1 U≤k φ2) and (unbounded)

until (φ1 U φ2). Formula φ1 U φ2 means that a state satisfying φ2 is eventually reached and

that, at every time-instant prior to that, φ1 is satisfied. The time-bounded variant has the

same meaning, with the additional constraint that the occurrence of φ2 must occur within

time k. We can derive several useful operators, such as F φ ≡ true U φ , which means that

φ is eventually satisfied, and F≤k φ ≡ true U≤k φ , which means that φ is satisfied within

time k. We also have G φ ≡ ¬(F ¬φ), which means that φ is always satisfied, and G≤k φ ≡
¬(F≤k ¬φ) which means that φ is continuously satisfied for time k. Although the G and G≤k

operators cannot be derived from the basic syntax of the logic since there is no negation of

path formulae, it can be shown that P≤p[¬ψ]≡ P≥1−p[ψ], P<p[¬ψ]≡ P>1−p[ψ], P≥p[¬ψ]≡
P≤1−p[ψ] and P>p[¬ψ]≡ P<1−p[ψ]. PCTL-style logics often include a next (X ) operator but

this is of less use in timed models and omitted.

The reward operator I=k refers to the reward of the current state at time instant k, C≤k to

the total reward accumulated up until time point k, and F φ to the total reward accumulated

until a state satisfying φ is reached. Formally, we define the semantics of the logic as follows.

Definition 6 (Semantics) Let P be a PTA, [[P]] = (S,s,Act,T,StepsP, lab) be its semantics,

and let r denote the reward structure over [[P]] corresponding to a reward structure r over P.

For state s=(l,v) ∈ S, the satisfaction relation |= is defined inductively by:

s |=true always

s |=a ⇐⇒ a ∈ lab(s)
s |=χ ⇐⇒ v |= χ
s |=φ1 ∧φ2 ⇐⇒ s |=φ1 ∧ s |=φ2

s |=¬φ ⇐⇒ s 6|=φ
s |=P⊲⊳ p[ψ] ⇐⇒ Prσ

[[P]],s({ω ∈ Pathσ
[[P]],s | ω |=ψ}) ⊲⊳ p for all σ ∈ Adv[[P]]

s |=Rr
⊲⊳q[ρ] ⇐⇒ Eσ

[[P]],s(rew(r,ρ)) ⊲⊳ q for all σ ∈ Adv[[P]]

where, for any infinite path ω of [[P]]:

ω |=φ1 U≤k φ2 ⇔ there exists a position (i, t) of ω such that ω(i)+t |=φ2 and durω(i)+t≤k

and ω( j)+t ′ |=φ1∨φ2 for all positions ( j, t ′)≺(i, t) of ω
ω |=φ1 U φ2 ⇔ there exists a position (i, t) of ω such that ω(i)+t |=φ2

and ω( j)+t ′ |=φ1∨φ2 for all positions ( j, t ′)≺(i, t) of ω
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and, for reward structure r=(rS,rAct) over [[P]], the random variable rew(r,ρ) over infinite

paths of [[P]] is defined as follows:

rew(r,I=k)(ω) = rS(ω( jk))

rew(r,C≤k)(ω) = ∑
jk−1
i=0 r(ω, i)+(k−durω( jk)) · rS(ω( jk))

rew(r,F φ)(ω) =

{

∑
jφ−1

i=0 r(ω, i)+ tφ ·rS(ω( jφ )) if ( jφ , tφ ) exists

∞ otherwise

where j0 = 0, jk = max{i | durω(i)<k} for k>0 and, when it exists, ( jφ , tφ ) is the minimum

position under the ordering ≺ such that ω( jφ )+tφ |=φ .

In addition to the basic syntax of Definition 6, we allow, in the style of the PRISM model

checker, quantitative (numerical) queries yielding the minimum or maximum probability or

expected reward value from a state s. We use Pmin=?[ψ], Pmax=?[ψ], Rr
min=?[ρ] and Rr

max=?[ρ],
which give, respectively:

Prmin
P,s (ψ)

def
= infσ∈Adv[[P]]

Prσ
[[P]],s({ω ∈ Pathσ

[[P]],s | ω |=ψ})

Prmax
P,s (ψ)

def
= supσ∈Adv[[P]]

Prσ
[[P]],s({ω ∈ Pathσ

[[P]],s | ω |=ψ})

E
r,min
P,s (ρ)

def
= infσ∈Adv[[P]]

Eσ
[[P]],s(rew(r,ρ))

E
r,max
P,s (ρ)

def
= supσ∈Adv[[P]]

Eσ
[[P]],s(rew(r,ρ)).

Some typical examples of PTA properties, specified in this logic are:

– P≥0.8[F
≤k ackn] – “the probability that the sender has received n acknowledgements

within k clock-ticks is at least 0.8”;

– trigger→ P<0.0001[G
≤20 ¬deploy] – “the probability of the airbag failing to deploy within

20 milliseconds of being triggered is strictly less than 0.0001”,

– Pmax=?[¬sent U fail] – “what is the maximum probability of a failure occurring before

message transmission is complete?”;

– Rtime
max=?[F end] – “what is the maximum expected time for the protocol to terminate?”;

– R
pwr
<q [C≤60] – “the expected energy consumption during the first 60 seconds is < q”.

Property reductions. We now describe how model checking for several of the operators

included in our logic can be reduced to checking satisfaction of a simpler formula on a mod-

ified PTA. Consider first a time-bounded until property P⊲⊳ p[φ1 U≤k φ2] on a PTA P. If we

augment P with an additional clock z, then it follows that a state (l,v) of P satisfies the for-

mula P⊲⊳ p[φ1 U≤k φ2] if and only if the state (l,v′) of the augmented PTA where v′(x)=v(x)
for all clocks x of P and v′(z)=0 satisfies P⊲⊳ p[φ1 U (φ2 ∧ (z≤k))] (see [56]). Second, given

an until property P⊲⊳ p[φ1 U φ2], if we modify the PTA such that, upon reaching a state not

satisfying φ1, only a transition to a sink state is possible, then a state of the PTA satisfies

P⊲⊳ p[φ1 U φ2] if and only if a state of the modified PTA satisifies P⊲⊳ p[F φ2].
Next, we show how to reduce checking a property of the form P≥p[F

≤k φ ], to a for-

mula of the form P≤1−p[F aexc] (the former requires computation of minimum probabilities,

whereas the the latter needs maximum probabilities, which are sometimes easier to com-

pute). The reduction is correct only for states satisfying P≥1[F φ ], i.e. φ is always reachable

with probability 1. We augment P with an extra clock z and then modify it such that states

satisfying φ are forced to make a transition to a sink-location and, in all other states, we add

a transition to a different, sink-location exceeded, enabled when z>k. Then P≥p[F
≤k φ ] is
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Region Boundary Digital clocks Backwards Stochastic
graph region graph (for closed PTAs) reachability games

Single P⊲⊳ p[ψ] operator X X X X X

Single Rr
⊲⊳q[ρ] operator × X X Open Open

Logic without Rr
⊲⊳q[ρ] X X × X Open

Full logic × × × Open Open

Table 1 Summary of PTA model checking techniques and their applicability.

true in a state of the original model if and only if the corresponding state of the modified

PTA with z=0 satisfies P≤1−p[F aexc], where aexc is true only in location exceeded (see [55]).

Finally, we show how to reduce properties of the form Rr
⊲⊳q[C

≤k] or Rr
⊲⊳q[I

=k] to Rr
⊲⊳q[F φ ].

In both cases, we add an extra clock z to P. For Rr
⊲⊳q[C

≤k], it suffices to check Rr
⊲⊳q[F (z=k)]

on the augmented PTA. For Rr
⊲⊳q[I

=k], we add the conjunct z≤k to all invariants and a transi-

tion to a new sink location done (labelled adone) with enabling condition z=k to all locations,

while changing the enabling conditions of all other transitions so that they are not enabled

when z=k. It then suffices to check Rr
⊲⊳q[F adone], where the only non-zero rewards are action

rewards on the new transitions, set to the location reward of the source location.

More expressive logics. The next section of this paper will discuss techniques for model

checking the properties expressible in the logic given above. A variety of more expressive

logics have also been considered for PTAs. PTCTL [54] is a probabilistic extension of the

timed temporal logic TCTL. In particular, it includes a freeze quantifier (or reset quantifier)

z.φ , which introduces a formula clock z, reset to zero, that can be referred to in the subfor-

mula φ . Although not considered further in this paper, PTCTL can be model checked using

the region graph construction and backwards reachability method discussed in Section 5.

Formulae of the logics LTL and PCTL*, originally proposed for discrete-time probabilistic

systems, can be verified on PTAs using a Rabin automaton product construction and the

model checking algorithm of [64].

5 Model Checking for PTAs

We now consider the problem of model checking a PTA P with respect to a property φ of

the logic presented in Section 4, i.e., determining Sat(φ)
def
={s ∈ S |s |= φ}, where S is the set

of states of [[P]]. We will survey the various PTA model checking techniques that have been

proposed in the literature, which support different fragments of the logic. We will cover:

– the region graph construction [54];

– the boundary region graph [43];

– the digital clocks method [52];

– backwards reachability [56];

– abstraction refinement with stochastic games [50].

The first two approaches, which are based on the concept of the region graph [2,4], are used

primarily to establish the decidability and complexity of model checking, rather than for

practical implementations. The others provide efficient methods for model checking partic-

ular fragments of the logic. Table 1 provides a summary of the methods and their applica-

bility. We omit the forwards reachability algorithm described in [54] since it only computes

bounds on probabilities of system behaviour, rather than the exact values.

Unless otherwise stated, we also assume that P has no timelocks and is structurally

divergent (structurally non-Zeno). In Section 5.1, we do explain how to treat PTAs that are
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not structurally divergent. Similar adaptations can also be applied to the other methods that

we discuss in this section.

5.1 The Region Graph

2 
0 1 x 

y 

2 

1 

0 

4 

3 

4 3 

Fig. 2 Clock equivalence classes
for two clocks x and y (c = 2)

We first discuss the region graph construction for a

PTA [54], which is based on the classic construction for

timed automata [2,4]. This approach provides a way to

model check the fragment of the logic from Section 4

that excludes Rr
⊲⊳q[ρ] formulae (in the next section, we

will relax this restriction). The region graph of a PTA P

and formula φ takes the form of a finite-state MDP whose

states are regions of the form (l,α), where l is a location

and α is an equivalence class of clock valuations accord-

ing to the equivalence defined below. Let c be the maxi-

mal constant to which any clock is compared in the clock

constraints of P and φ . Then clock valuations ν and ν ′ are

equivalent if and only if they satisfy the following condi-

tions:

– for any x ∈ X , either ν(x)>c and ν ′(x)>c, or ν(x) and ν ′(x) agree on their integer

parts;

– for any x,x′ ∈ X , either ν(x)−ν(x′) > c and ν ′(x)−ν ′(x′) > c, or ν(x)−ν(x′) and

ν ′(x)−ν ′(x′) agree on their integer parts,

where two values q,q′ ∈ R≥0 agree on their integer parts when ⌊q⌋=⌊q′⌋ and ⌊q⌋−q = 0

if and only if ⌊q′⌋−q′ = 0. Figure 2 shows the set of possible equivalence classes of clock

valuations for clocks x,y when c = 2. Note that equivalent clock valuations satisfy the same

clock constraints of the PTA. The set of regions needed for the region graph, denoted R, is

the set of regions (l,α) such that there exists v ∈ α such that v |= inv(l). The size of R is

bounded by |L| · (2c+2)(|X |+1)2
(see [23]).

A region (l,α) ∈ R may have a time-successor, defined as follows. If v+t ∈ α for all

v ∈ α and t ∈ R≥0, then the time-successor of (l,α) is (l,α) itself. Otherwise, there exists

the unique region (l,β ) 6= (l,α) for which there are v ∈ α and t ∈ R≥0 such that v+t ∈ β
and v+t ′ ∈ α ∪β for all 0 ≤ t ′ ≤ t. If additionally we have v+t ′ |= inv(l) for all 0 ≤ t ′ ≤ t,

then (l,β ) is the time-successor of (l,α), otherwise (l,α) has no time-successor.

The region graph for P and φ is the finite-state MDP Reg[P,φ ] = (R,(l, [0]),Act ∪
{τ},Steps, lab), where for each (l,α) ∈ R and a ∈ Act∪{τ}, we have Steps((l,α),a) = λ if

and only if either:

Time transitions. a = τ , λ = µ(l,β ) and (l,β ) is the time-successor of (l,α);
Action transitions. a ∈ Act, there is a ν ∈ α with ν |= enab(l,a) and, for each (l′,β ) ∈ R:

λ (l′,β ) = ∑
{∣

∣prob(l,a)(X , l′) |X ∈ 2X ∧β = α[X :=0]
∣

∣

}

;

and lab(l,α) = L (l) for all (l,α) ∈ R.

We now consider how Reg[P,φ ] can be used to verify P against φ (recall that we consider

the fragment of the logic without the Rr
⊲⊳q[·] operator). For simplicity, we first assume that

P is structurally divergent. Model checking proceeds in standard fashion (for a branching-

time logic), recursing over subformulae φ ′ of φ and computing Sat(φ ′). Identifying states
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that satisfy atomic propositions, clock constraints or Boolean connectives is straightforward

and time-bounded properties are dealt with using the reduction given in Section 4. Hence,

we focus on formulae of the form P⊲⊳ p[φ1 U φ2]. If the state sets satisfying φ1 and φ2 have

already been computed and the regions of Reg[P,φ ] corresponding to these sets are labelled

a1 and a2, respectively, then the states in [[P]] satisfying P⊲⊳ p[φ1 U φ2] are simply those in the

regions corresponding to states in the MDP Reg[P,φ ] that satisfy P⊲⊳ p[a1 U a2].
Thus, the region graph yields an algorithm for model checking structurally divergent

PTAs against properties of the logic without the Rr
⊲⊳q[·] operator. The algorithm runs in

exponential time, because verifying properties of the form P⊲⊳ p[a1 U a2] on MDPs can be

done in polynomial time [20,10], and the size of the region graph Reg[P,φ ] is exponential

in the size of P (the size of P is the sum of the number of locations and clocks, the size of

the binary encoding of the constants used in invariant and enabling conditions, and the size

of the encoding of its transition probabilities, which are expressed as a ratio between two

natural numbers, each in binary). The problem is EXPTIME-complete, where an EXPTIME

lower bound can be obtained even for the restricted case in which the PTA has only two

clocks (for PTAs with one clock, the model-checking problem for certain restricted classes

of properties, such as PCTL properties or time-bounded until properties with probability

thresholds 0 or 1 only, is PTIME-complete) [44].

We now consider the case where P is not structurally divergent. For P≤p[φ1 U φ2] or

P<p[φ1 U φ2] (i.e., where maximum probabilities are needed), the method given above can be

applied without further modification [63]. The case of P≥p[φ1 U φ2] or P>p[φ1 U φ2] (which

needs minimum probabilities) is more involved. Intuitively, adversaries which can avoid

reaching states satisfying φ2 only because they perform some non-divergent behaviour can

result in the minimum probability of satisfying φ1 U φ2 computed over all adversaries being

lower than the probability computed over divergent adversaries only. An algorithm that re-

solves this problem, based on the computation of the maximum probability of satisfying the

dual path property ¬(φ1 U φ2), is presented in [63]. The model-checking problem remains

EXPTIME-complete in this case. Details on model-checking algorithms for the strictly di-

vergent adversaries described in Section 3 are also given in [63].

Finally, we note that region equivalence is an example of a time-abstracting bisimu-

lation, a relation which combines time-abstracting bisimulation [3,59] and (probabilistic)

bisimulation [58,62]. As with region equivalence, time-abstracting bisimilar PTA states sat-

isfy the same formulae (without Rr
⊲⊳q[ρ] formulae). An algorithm for computing a time-

abstracting equivalence relation of a PTA, which may be coarser than region equivalence,

has been presented in [28]. This approach is described as being applicable to formulae of the

logic without Rr
⊲⊳q[ρ] or P⊲⊳ p[φ1 U≤k φ2]; however, as explained in Section 4, time-bounded

until properties can be reduced to unbounded until properties on a modified PTA.

5.2 The Boundary Region Graph

The region graph construction presented above is not sufficient for verifying reward prop-

erties. In particular, we note that, for a particular region (l,α), the values E
r,min
P,s (ρ) and

E
r,max
P,s (ρ) will generally not be uniform on states s ∈ (l,α). We now briefly describe a gen-

eralisation of the region graph, called the boundary region graph [43], which is a finite MDP

equipped with a reward structure on which we can decide whether a particular state s of a

PTA satisfies an Rr
⊲⊳q[F φ ] property, under the restriction that there is no nesting of the Rr

⊲⊳q[·]
operator and the bound ⊲⊳ is non-strict. For Rr

⊲⊳q[C
≤k] and Rr

⊲⊳q[I
=k] properties, the reduction

given in Section 4 can be used under the same restrictions.
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The boundary region graph construction is an extension of the corner point abstraction

for timed automata [24]. The underlying idea is that optimal behaviour (resulting in mini-

mum or maximum expected rewards) corresponds to the case in which edge transitions of

the PTA are taken either in a clock equivalence class in which the value of at least one clock

equals an integer, or close to a boundary of a clock equivalence class in which the fractional

parts of all clocks are positive: in this case, for computing the accumulation of rewards over

time, it is necessary to distinguish which of the class’s boundaries is considered. Further-

more, the exact position on the clock equivalence boundaries is determined by the values of

the clocks in the state s, and must also be encoded in the boundary region graph. The re-

ward structure for the boundary region graph is derived directly from that of the PTA. From

the boundary region graph (a finite-state MDP), we can compute the minimum or maxi-

mum expected accumulated reward to a target set (see, e..g [32]). We can then obtain either

E
r,min
P,s (F φ) or E

r,max
P,s (F φ) and hence decide whether s satisfies Rr

⊲⊳q[F φ ].

5.3 Digital Clocks

Region graph-based approaches are not usually practically applicable since the region graphs

are generally of a prohibitive size. Thus, various other PTA model checking approaches have

been developed. We first describe the digital clocks method [52], which restricts the standard

continuous-time semantics of a PTA so that only time transitions of duration 1 occur. This

means that clocks take only integer, rather than real, values. Using this fact, and knowing

there is a maximal constant cx to which each clock x is compared in PTA P and property φ ,

we can again build and analyse a finite-state MDP. This approach builds on the use of digital

clocks for (non-probabilistic) timed automata verification [39,8,19].

The digital clocks method is applicable to properties of the form P⊲⊳ p[ψ] and Rr
⊲⊳q[ρ]

without nesting of further P⊲⊳ p[·] and Rr
⊲⊳q[·] operators within the subformulae ψ and ρ (see

[52] for an explanation as to this limitation). It can only be used to determine satisfaction

in states where all clocks take natural-numbered values, and we will restrict our attention to

checking satisfaction in the initial state. The correctness of the digital clocks method also

relies on the assumption that P and φ are closed, meaning that all clock constraints of the

form x≤d or d≤x are contained within an even number of negations. Furthermore, all invari-

ant and enabling conditions of P are assumed to be diagonal-free, meaning that constraints

of the form x+c ≤ y+d are not permitted. Any PTA can be transformed into one contain-

ing only diagonal-free constraints by applying the construction of [15] (the construction is

presented for timed automata, and requires minor modifications for PTAs).

For a digital clock valuation v∈NX , let v⊕1 be the clock valuation such that (v⊕1)(x)=
min{v(x)+1,cx+1} for all x ∈ X . The digital clock semantics of P and φ is defined as for

the standard semantics, except that the rule for time transitions restricts durations to 1, and

each clock x can increase to at most cx+1. Formally, the digital clock semantics of a closed

PTA P is defined as the finite-state MDP Dgt(P,φ) = (S,(l,0),Act∪{1},Steps, lab) where:

– S = {(l,v) ∈ L×NX |v |= inv(l)∧ (∀x ∈ X .v(x)≤ cx+1)};

– Steps((l,v),a) = λ if and only if either:

Time transitions. a=1, v⊕1 |= inv(l) and λ = µ(l,v⊕1);

Action transitions. a ∈ Act, v |= enab(l,a), and, for any (l′,v′) ∈ S:

λ (l′,v′) = ∑
{∣

∣prob(l,a)(X , l′) |X ∈ 2X ∧ v′ = v[X :=0]
∣

∣

}

;

– lab(l,v) = L (l) for each (l,v) ∈ S.
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The number of states of the digital clock semantics of P is bounded by |L| ·∏x∈X (cx+1).
Model checking for formulae of the form P⊲⊳ p[ψ] and Rr

⊲⊳q[ρ ] without nesting can then

be carried out directly on the finite MDP from the digital clock semantics. For P⊲⊳ p[ψ] for-

mulae, we proceed as in the case of the region graph in Section 5.1. For a formula Rr
⊲⊳q[F φ ]

formulae and PTA reward structure r=(rAct,rL), we proceed as follows. We construct the re-

ward structure r=(rS,rAct) where rS(l,v)=0, rAct((l,v),1)=rL(l) and rAct((l,v),a)=rAct(l,a)
for all (l,v)∈ S and a ∈ Act. We then use standard algorithms for MDPs to compute the min-

imum or maximum expected reward to reach the set of states Sat(φ). The cases for ρ=C≤k

and ρ=I=k use the reductions presented in Section 4.

5.4 Backwards Reachability

The next method we consider is backwards reachability [56], which provides model check-

ing for properties without Rr
⊲⊳q[ρ] operators. This is based on the repeated application of a

predecessor operation that, given a set of states S′, returns the set of states that can reach S′

by performing an action and then letting time pass. Sets of states are represented by symbolic

states, pairs z=(l,ζ ) comprising a location l and a clock constraint ζ over X , representing

the set of states {(l,v) |v |= ζ}.

This approach is an adaptation of the algorithm in [40] for model checking timed au-

tomata. Whereas the latter just requires iteration of a generic predecessor operation, for

PTAs it is necessary to retain information about the probabilities of the PTA edges used

along paths. First, the predecessor operation is parameterised by actions and edges of the

PTA. Then, as the predecessor iteration proceeds, a graph is constructed, where the nodes

are the generated symbolic states, and an edge is added from symbolic state z to symbolic

state z′ if z was generated from z′ by a predecessor operation. The edge (z,z′) is labelled

by the corresponding action and PTA edge. The symbolic states generated in this manner do

not form a partition of the state space of the PTA, unlike the region graph or time-abstracting

bisimulation approaches described in Section 5.1.

After the iteration of predecessor operations terminates (which is guaranteed because a

symbolic state corresponds to a union of regions), the obtained graph can then be used as

a basis for the construction of a finite MDP. To build the probabilistic transition function,

information has to be combined from different symbolic states in order to obtain the exact

combination of PTA edges (corresponding to a particular action) available in states of the

PTA. This is done by computing the conjunctions of symbolic states which have at least one

outgoing edge labelled with the same action, and adding the corresponding graph edges to

the newly generated symbolic states. For more information, see [56].

The approach outlined above only applies to P⊲⊳p[ψ] operators where ⊲⊳∈ {≤,<}, i.e. it

computes only maximum probabilities for the PTA. For the case ⊲⊳∈ {≥,>}, which needs

minimum probabilities, the method needs to be adapted [56]. Like the reduction described in

Section 5.1 for the region graph approach on non-structurally-divergent PTAs, the solution

taken in [56] works by considering the dual formula.

5.5 Abstraction Refinement using Stochastic Games

The final model checking technique we discuss for PTAs is abstraction refinement using

stochastic games, which can verify P⊲⊳ p[ψ ] properties via computation of reachability prob-

abilities. This approach uses the game-based notion of abstraction put forward for MDPs
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in [49] and the corresponding refinement techniques proposed in [46]. The method can be

applied to PTAs containing diagonal-free constraints only, because one of its procedures is

a (forwards) reachability exploration and, by the results of Bouyer [22], such a procedure is

only correct if the considered PTA is diagonal-free.

The idea of [49] is to build an abstraction of a large or infinite-state MDP based on a

finite partition of its state space. Abstractions take the form of stochastic two-player games,

a generalisation of MDPs in which there are two distinct types of nondeterminism, each

controlled by a separate player. In this case, player 1 controls nondeterminism introduced by

the abstraction, and player 2 controls nondeterminism from the original MDP. An analysis

of the optimal probabilities in the stochastic game (e.g. the maximum probability that player

1 can achieve for some objective, assuming that player 2 aims to minimise it) yields lower

and upper bounds on reachability probabilities for the original MDP.

The abstraction-refinement framework of [46] provides a way to automatically construct

stochastic game abstractions, by iteratively refining abstractions until the difference between

the lower and upper bounds produced is below some desired level of precision ε . In [50],

this technique is adapted to an algorithm to compute exact (minimum or maximum) reacha-

bility probabilities for PTAs. First, a reachability graph is constructed, based on a successor

operation that returns the set of states that can be reached by performing an action and

then letting time pass. This works in a similar style to the classic approach to verifying

(non-probabilistic) timed automata. From this, a stochastic game abstraction is created, over

symbolic states of the same form as in Section 5.4. The abstraction is repeatedly analysed

and refined until the exact required probabilities are obtained (i.e. ε=0). The iterative refine-

ment process is guaranteed to terminate thanks to the fact that there is an underlying finite

time-abstracting bisimulation quotient, namely the region graph.

5.6 A Comparison of the Methods

We briefly summarise the relative merits of the three practical approaches to PTA model

checking discussed above. In terms of applicability, digital clocks is currently the only

method for computing expected rewards, but handles only closed (non-strict) and diagonal-

free clock constraints. The other limitations of the remaining two methods are that abstrac-

tion refinement only applies to PTAs with diagonal-free clock constraints, and backwards

reachability requires (non-trivial) adaptation to compute minimum probabilities.

In terms of efficiency and scalability, the digital clocks approach has proved to work

well in practice, but performance suffers for large numbers of clocks or when large con-

stants appear in the clock constraints; in these cases, the other two methods described have

been shown to work better. The techniques based on parameter synthesis of [7] can be used

to reduce the size of the constants of clock constraints for subclasses of PTAs and for prob-

abilistic properties without time bounds. Another good approach to improving performance

is the use of symbolic (binary decision diagram based) implementations. The original im-

plementation of backward reachability [56] showed that it yielded relatively small MDPs,

but that the algorithm can be expensive to implement. Experimental results for abstraction

refinement [50] later demonstrated better performance in all cases. However, subsequent op-

timisations presented for backwards reachability [18] have led to much better performance,

improving on abstraction refinement in many cases.
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5.7 Implementations and Tool Support

Thanks to increasing interest in the verification of probabilistic real-time systems, a vari-

ety of related software tools have recently been developed. The probabilistic model checker

PRISM [51], for example, which provides verification of Markov chains and MDPs, now

also supports PTAs, via the digital clocks, backwards reachability and abstraction-refinement

methods. A second tool is mcpta [38], which applies the digital clocks method to translate a

subset of the modelling language Modest [21] directly into the PRISM modelling language.

Fortuna [18] is a tool that focuses on PTAs augmented with prices (called rewards in

this paper). In particular, it implements the semi-algorithm of [17] for computing the maxi-

mum probability of reaching a target while accumulating a reward below a given threshold

(this problem is shown to be undecidable in [16]). Since this algorithm generalises the back-

wards reachability method of [56], computation of (maximum) reachability probabilities is

also supported. Several optimisations of the basic algorithm are also implemented. Finally,

UPPAAL PRO [68] is an extension of the popular timed automaton verifier UPPAAL. It

computes the maximum probability of reaching a set of target states of a PTA, by progres-

sively partitioning the state space, constructing and solving a finite MDP at each step.

6 Case Studies

PTAs have been used for the modelling and analysis of a wide variety of systems, includ-

ing communication protocols [55,33], aviation security systems [34], streaming download

protocols [69] and service level agreements [48]. In this section, we give an illustration of

the PTA model checking techniques described in this paper by presenting two case studies:

a non-repudiation protocol and a task-graph scheduling problem.

6.1 Markowitch & Roggeman’s Non-Repudiation Protocol

This case study analyses Markowitch & Roggeman’s non-repudiation protocol for infor-

mation transfer [61]. Our models extend those presented previously in [57]. One party, the

originator, sends information to a second party, the recipient. Repudiation is defined as the

denial of either party of having participated in all or part of the information transfer. For

example, in electronic commerce, if the information represents the transfer of a service,

then non-repudiation ensures the client (the recipient) cannot deny receiving the service as

a reason for non-payment.

The protocol of Markowitch & Roggeman is probabilistic and does not require a trusted

third party. It achieves the following non-repudiation properties:

– “ε-fair”: at each step of the protocol run, either both parties receive their expected items,

or the probability that a cheating party gains any valuable information about its expected

items and the other party gains nothing is at most ε;

– “time-bounded”: if at least one party behaves correctly, then the protocol will complete

within a finite amount of time (with probability 1);

– “viable”: if both parties behave correctly and finish the protocol, then they both receive

their expected items at the end of the protocol (with probability 1).

The steps of the protocol are outlined in Figure 3. First, to prevent replay attacks, the re-

cipient R selects a date D which it sends, along with a request, to the originator O. Next,
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The recipient chooses the date D

1. R→O : SignR(request,R,O,D)
The originator checks D, chooses n and computes functions f1, . . . , fn

2. O→R : SignO( fn(message),O,R,D)
3. R→O : SignR(ack1)
· · · · · ·
2n. O→R : SignO( f1(message),O,R,D)
2n+1. R→O : SignR(ackn)

Fig. 3 The steps of Markowitch & Roggeman’s non-repudiation protocol
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(a) Originator

wait 
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y!0 

rec send 
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y"ad 
ack 

(b) Honest recipient

Fig. 4 PTAs used to model the non-repudiation protocol

O randomly selects an integer n representing the number of steps of the protocol (which is

never revealed to R during the execution) and computes functions fi such that their compo-

sition satisfies the following:

fn(message)◦ ( fn−1(message)◦ (· · · ◦ ( f2(message)◦ f1(message)) · · ·)) = message

The composition operator ◦ needs to be non-commutative to ensure that the recipient cannot

start to compute the message until the final message f1(message) has been received.

To prevent the recipient from gaining an advantage, if the originator does not receive

an acknowledgement within a certain time bound (denoted AD), the protocol is stopped and

and the originator states that the recipient is trying to cheat. The time bound is chosen such

that it is greater than the time it takes for a recipient to send a reply, but is not sufficient

for the recipient to be able to compute the composition fn(message)◦ (· · · ◦ fi(message) · · ·)
for any i<n, i.e., the recipient does not have time to check if it has received the complete

message before sending an acknowledgement.

We consider two different versions of the protocol. In the first, both the originator and

recipient act honestly, while in the second the recipient can act maliciously (i.e., stop early

by not returning an acknowledgement). For each, we assume that the choice of n is made

by the recipient according to a geometric distribution with parameter p and the minimum

time for the recipient to send an acknowledgement is ad. For the malicious version, we

consider two variants. The first corresponds to the one described in [61], where the only

malicious behaviour corresponds to stopping early. In the second, we introduce a more pow-

erful malicious recipient, which has access to a method that takes time less than AD and with

probability 1
4

correctly computes the composition while with probability 3
4

fails to compute

the composition.

Each model is the parallel composition of two PTAs, one representing the originator

and one the recipient. These synchronise on the actions rec, send and ack, corresponding

to the recipient initiating the transaction, the originator sending messages to the recipient

and the recipient sending acknowledgements back. The PTAs for the originator and (honest)

recipient are shown in Figure 4. The probabilistic choice in the originator correctly models

selection of n according to a geometric distribution with parameter p, since the probability

of each message being the last one to be sent is p. Notice that, in the PTA for the honest

recipient, an acknowledgement is sent after between ad and AD time units.
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(a) p=0.01 (b) p=0.1

Fig. 5 Probability that the protocol terminates successfully by time T (honest version)

(a) Gains knowledge (b) Gains knowledge by time T

(variant 1)
(c) Gains knowledge by time T

(variant 2)

Fig. 6 Maximum probability that the recipient gains knowledge (malicious versions)

We analysed these PTA models in PRISM using the stochastic games technique (since

the originator PTA contains strict inequalities, the digital clocks method is not applicable).

For the analysis, we assume AD=5 and ad=1.

For the honest version of the protocol, the first property we consider is “time-bounded”.

More precisely, we check the formula P≥1[F done], stating that the minimum probability of

the protocol terminating correctly is 1. Next, we investigate the performance of the protocol

with the quantitative properties Pmin=?[F
≤Tdone] and Pmax=?[F

≤Tdone], i.e., the minimum

and maximum probability of termination by time T . Figure 5 plots these values for T be-

tween 0 and 100, with p=0.01 and p=0.1. We see that increasing the parameter p improves

the performance of the protocol when the parties behave honestly. However, as we shall see

below, when the recipient behaves maliciously, increasing this parameter comes at a cost

since it also increases the likelihood that the recipient gains an advantage.

For the two models with a malicious recipient, we find that the minimum and maximum

probability of the protocol terminating correctly (Pmin=?[F done] and Pmax=?[F done]) are 0

and 1, respectively. The minimum probability is achieved when the (malicious) recipient

returns no acknowledgements at all and the maximum when it acts honestly.

Figure 6 presents results for the properties Pmax=?[F unfair] and Pmax=?[F
≤Tunfair], for

both variants of the malicious recipient and several values of parameter p. These correspond

to the maximum probability that the recipient (eventually, or within time bound T ) gains

an advantage. For the first variant (describing the scenario in [61]), Figure 6(a) shows that

the protocol is indeed ε-fair with ε equal to p. Essentially, all this recipient can do to gain

knowledge is to correctly guess which message is the last (which, when a message arrives,

is true with probability p). As shown in Figure 6(b), the probability of gaining an advantage

over time remains constant after the arrival of the first message: since each message has an

equal chance of being the last, there is nothing to be gained by waiting for a later one. The
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P1 P2

+ 2 picoseconds 5 picoseconds

× 3 picoseconds 7 picoseconds

idle 10 Watts 20 Watts

active 90 Watts 30 Watts

(a) Processor specification

task1 

! 

task3 

! 

task5 

! 
task2 task4 task6 

D 

C 

B 

A 

C D 

(b) Task graph

Fig. 7 Scheduling problem for computing the term D× (C× (A+B))+((A+B)+(C×D))

figures also show that the malicious recipient in the second variant of the model (which has

a chance of correctly decoding the message before the deadline AD) has a greater chance of

gaining knowledge, thanks to its additional power.

6.2 Task-Graph Scheduling

One common use of (non-probabilistic) timed automata is the formalisation and solution of

scheduler optimisation problems. In this case study, we consider an extension of the task-

graph scheduling problem described in [27]. We show how PTAs can be used to introduce

uncertainty with regards to time delays and to consider the possibility of failures. We demon-

strate how the digital clocks method can determine optimal schedulers for these problems,

in terms of the (expected) time and energy consumption required to complete all tasks.

The Basic Model. First, we introduce the basic problem formalisation and model pre-

sented in [27]. This considers the example of evaluating the expression D× (C× (A+B))+
((A+B)+ (C×D)), where its subterms are evaluated on two processors, P1 and P2. Proces-

sor P1 is faster than P2, but also consumes more energy. Figure 7(a) shows the specifications

of the processors, in terms of their processing times and energy usage for addition and mul-

tiplication operations. Figure 7(b) presents the task graph for this example, illustrating the

set of tasks (corresponding to subterms of the expression) and the dependencies that exist

between tasks (in terms of their required order of evaluation).

In [27], a (non-probabilistic) timed automaton model is built, consisting of the paral-

lel composition of one automaton for each processor and one automaton for the scheduler

which decides when tasks get performed and on which processors. The scheduler automa-

ton includes integer-valued variables to indicate whether a task still has to be processed, is

currently being processed or has been completed. To ensure that the restrictions of the task

graph are met, there are conditions placed on enabling conditions such that a task cannot be

scheduled until all of its dependencies have been computed.

The timed automaton for processor P1 is given in Figure 8(a). The actions p1 add and

p1 mult correspond to an addition and multiplication task being started on P1, and p1 done

indicates the completion of a task. The clock x is used to record the time that a task has been

running and is initialised when a task is started. The automaton for P2 is similar except that

the action names change and the delays are modified to reflect the values in Figure 7(a).

The time and energy consumed to complete all tasks are modelled as rewards (called

prices in [27]). We introduce reward structures time and energy, respectively, to represent

each of these quantities. For the case of time, only the scheduler automaton has a non-zero

reward structure, where the location reward is 1 in each location and all action rewards

are zero. For the case of energy consumption, the scheduler automaton has a zero reward
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Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy

usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-

ital clocks method, calculated both the minimum (expected) time and energy consump-

tion for completion of all tasks. For this, we used the two quantitative reward properties

Rtimemin=?[F complete] and R
energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported

in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete

all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-

joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which

optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-

lem, making the time required for each processor to perform a task probabilistic (in a more

general setting, we can easily envisage situations where the exact time required to complete

a task is unknown, but can be represented by some probability distribution). More precisely,

we consider the following simple scenario. If, in the original problem the time for a proces-

sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed

between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation

is either 1, 2 or 3 and the probability of each execution time is 1
3
.

The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations
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are added to encode the random delays. For example, in the case of multiplication, with

probability 1
3

the task completes after 2 time units; with probability 2
3
, the PTA moves to a

location where, with probability 1
2

the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units

(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no

time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and

immediately notifies the scheduler the task is computed through action p1 done. To prevent

the scheduler from seeing into the future when making decisions, the probabilistic choice

for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to

complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-

proves on the results obtained using the optimal schedulers for the original model, where the

expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.

Examining the optimal schedulers, we find that they change their decision based upon the

delays of previously completed tasks. For example, for elapsed time, the optimal scheduler

starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and

task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution

times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-

uler now makes a different decision from the non-probabilistic case. Under one possible set

of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a

third processor P3 which consumes the same energy as P2 but is faster (addition takes 3

picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a

chance (probability p) that the processor fails and the computation must be rescheduled and

performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when

a task completes, there is a probabilistic choice between moving to a location corresponding

to successful completion and one to failure. In both cases, we move to a location where

no time can pass and immediate notify the scheduler of either the success or failure of the

computation. The automaton for the scheduler also changes for this model since it must

react to the failure signals from the processors. In addition, the reward structure energy is

extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this

extended model as the failure probability p varies. The dashed lines show the optimal re-

sults for the original model, i.e., when not using the processor P3. As can be seen, once the

probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-

formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the

expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-

sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4
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(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-

cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-

tomata and summarised the various techniques developed to perform probabilistic model

checking. Verification of probabilistic real-time systems is an active field of research and

further progress is required in several important directions. Examples include the develop-

ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-

ing applicable to a variety of useful synthesis problems [12]. The latter provide essential

modelling capabilities for domains such as embedded systems and cyber-physical systems;

they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-

tomata. Other important issues to investigate in the context of PTAs include robustness [7]

and continuously-distributed time delays [53,1,60].
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