Rely-Guarantee Reasoning
for Context-Aware Software

Doina Bucur and Marta Kwiatkowska

Computing Laboratory, Oxford University, UK
{doina.bucur, marta.kwiatkowska}@comlab.ox.ac.uk

Introduction Context-aware applications are typically designed with concur-
rent context handlers. Verification techniques guarantee their behaviour against
a specification; to date, contributions include either the verification of models
rather than real software, or validation. Of the latter, [3] generates test suites for
context-aware Java programs by identifying those context-aware program points
where a context update influences application behaviour.

No prior specialized techniques exist for the automatic verification of context-
aware software. As an initial step, we add language support to a generic verifi-
cation tool for C software, so that it verifies assertions in concurrent, context-
aware code written for TinyOS sensor nodes [1]. We propose a logical formalism
based on Local Rely-Guarantee reasoning (LRG) [2], for the sensor-network C
language from [1]. The formalism extends our sensor verification technique so
that (i) it is thread-modular, in rely-guarantee fashion, and (ii) it verifies more
complex assertions which are specifically context-aware.

The Logic Consider a language syntax extending multithreaded C with func-
tion calls for sensing and actuating:

(ST™MT) S = sense(&x); | actuate(x); | ...

with Sen the set of sensing methods, sense € Sen, and Act the set of actuating
methods, actuate € Act. We inherit the style of assertions from LRG, and
extend them with assertions over contextual facts:

(PRE-/POSTCONDITION) D, q,T
(RELY/GUARANTEE) R,G

P(Seny,) : Trig(actuate) | ...
pllpxql..

In the above, a pre-/postcondition P(Sen,) : Trig(actuate) states that the set of
sensor readings Sen,, (i.e. a sensing call paired with a constant timestamp n for
uniqueness) triggered the program’s last call to actuate; i.e. the call succeeds a
context-aware program point. A rely/guarantee is an ordered pair of assertions
specifying the effect a code segment S has: p x ¢ states that p holds before and
g holds after S, and [p] is p x p.

Standard rely-guarantee reasoning [2] allows for thread-modular verification
with one thread guaranteeing conditions which are relied upon by other threads.
We extend this scheme for the typing environments I' : Var — P(Sen,) calcu-
lated by a side-effect and escape analysis; if sense; € I'(v), then the value sensed

with sense; has “escaped” into v. A thread is then individually verified given
the other threads’ global side-effects I', as by the rule:

(FR \ FG2) * g RV Go,G1 {pl} St {ql}
(TrVTq,)*Ta; RV G1,Ga - {p2} S2 {q2}
Ip* (FG1 v PGz);R7G1 vV Ga {pl *P2}51 || S {ql * Q2}
As an example, consider the second thread Sy of an application of the form
Sm; (S1]| S2 || Ss), with Sa displaying a video only if the battery power levels
are above a minimum threshold MIN, and S; and S3 sensing contradictory power
values. Given the respective rely /guarantee typing environments and conditions,
we show the intermediate pre- and postconditions for the verification of Ss:

(PARALLEL)

ctrl — sensepower Iy == {power — .sense_powerl}

r n=< ctx2 — displa Py = {argy — display }
mer pLayL I, =Ty A{out — display:}
ctxd — sense_powers
s == {power — sense_powers}

p1 ==3X.(ctxry = X AX >MIN) po = (ctzg=Y)
ps u=3Z.(cteg =Z NZ <MIN) py::= (power =M) p.:=p1 ApaADps
q ::= sense_powery : Trig(display)
Gy == [c] G i=pe X (pc /\Q) G3 = [pc]
Ri :=G3VG3 Rey::=G1VG3 R3:=G1VGs

Vv VI3 %9 Ry, Go - (args := ctx2;)
‘p21 H=Pe N (GTQQ) ‘
TV VI3xI'y; Ry, Go - (IF !(power > MIN) EXIT)
‘ng _—— M>MIN)‘
T VI VI3 % T Re, Go - (out := DB sel args;)
‘pgg m=pa A (out = DB sel Y) ‘
I VI VI3 T Re, Go - (IF (power > MIN) display(out);)

As future work, we plan to implement the logic for the automatic verification
of context-aware sensor network applications.

Acknowledgments The authors are supported by the project UbiVal: Fun-
damental Approaches to Validation of Ubiquitous Computing Applications and
Infrastructures, EPSRC grant EP/D076625/2.

References

[1] Doina Bucur and Marta Kwiatkowska. Bug-Free Sensors: The Automatic
Verification of Context-Aware TinyOS Applications. In Proceedings of the
Third European Conference on Ambient Intelligence (AmlI). Springer, 2009.

[2] Xinyu Feng. Local rely-guarantee reasoning. In ACM Symposium on Prin-
ciples of Programming Languages, pages 315-327. ACM, 2009.

[3] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. Automated
Generation of Context-Aware Tests. International Conference on Software
FEngineering, pages 406-415, 2007.

