
Rely-Guarantee Reasoning

for Context-Aware Software

Doina Bucur and Marta Kwiatkowska

Computing Laboratory, Oxford University, UK

{doina.bucur, marta.kwiatkowska}@comlab.ox.ac.uk

Introduction Context-aware applications are typically designed with concur-
rent context handlers. Verification techniques guarantee their behaviour against
a specification; to date, contributions include either the verification of models
rather than real software, or validation. Of the latter, [3] generates test suites for
context-aware Java programs by identifying those context-aware program points
where a context update influences application behaviour.

No prior specialized techniques exist for the automatic verification of context-
aware software. As an initial step, we add language support to a generic verifi-
cation tool for C software, so that it verifies assertions in concurrent, context-
aware code written for TinyOS sensor nodes [1]. We propose a logical formalism
based on Local Rely-Guarantee reasoning (LRG) [2], for the sensor-network C
language from [1]. The formalism extends our sensor verification technique so
that (i) it is thread-modular, in rely-guarantee fashion, and (ii) it verifies more
complex assertions which are specifically context-aware.

The Logic Consider a language syntax extending multithreaded C with func-
tion calls for sensing and actuating:

(Stmt) S ::= sense(&x); | actuate(x); | ...

with Sen the set of sensing methods, sense ∈ Sen, and Act the set of actuating
methods, actuate ∈ Act. We inherit the style of assertions from LRG, and
extend them with assertions over contextual facts:

(Pre-/postcondition) p, q, r ::= P(Senn) : Trig(actuate) | ...

(Rely/guarantee) R, G ::= [p] | p ⋉ q | ...

In the above, a pre-/postcondition P(Senn) : Trig(actuate) states that the set of
sensor readings Senn (i.e. a sensing call paired with a constant timestamp n for
uniqueness) triggered the program’s last call to actuate; i.e. the call succeeds a
context-aware program point. A rely/guarantee is an ordered pair of assertions
specifying the effect a code segment S has: p ⋉ q states that p holds before and
q holds after S, and [p] is p ⋉ p.

Standard rely-guarantee reasoning [2] allows for thread-modular verification
with one thread guaranteeing conditions which are relied upon by other threads.
We extend this scheme for the typing environments Γ : Var → P(Senn) calcu-
lated by a side-effect and escape analysis; if sense1 ∈ Γ(v), then the value sensed

with sense1 has “escaped” into v. A thread is then individually verified given
the other threads’ global side-effects ΓG, as by the rule:

(Parallel)

(ΓR ∨ ΓG2
) ∗ ΓG1

; R ∨ G2, G1 ⊢ {p1}S1 {q1}
(ΓR ∨ ΓG1

) ∗ ΓG2
; R ∨ G1, G2 ⊢ {p2}S2 {q2}

ΓR ∗ (ΓG1
∨ ΓG2

); R, G1 ∨ G2 ⊢ {p1 ∗ p2}S1 ‖ S2 {q1 ∗ q2}

As an example, consider the second thread S2 of an application of the form
Sm; (S1 ‖ S2 ‖ S3), with S2 displaying a video only if the battery power levels
are above a minimum threshold MIN, and S1 and S3 sensing contradictory power
values. Given the respective rely/guarantee typing environments and conditions,
we show the intermediate pre- and postconditions for the verification of S2:

Γm ::=







ctx1 → sense power1

ctx2 → display1

ctx3 → sense power2

Γ1 ::= {power → sense power1}
Γ2 ::= {arg2 → display1}
Γ′

2 ::= Γ2 ∧ {out → display1}
Γ3 ::= {power → sense power2}

p1 ::= ∃X.(ctx1 = X ∧ X > MIN) p2 ::= (ctx2 = Y)
p3 ::= ∃Z.(ctx3 = Z ∧ Z ≤ MIN) p4 ::= (power = M) pc ::= p1 ∧ p2 ∧ p3

q ::= sense power1 : Trig(display)

G1 ::= [pc] G2 ::= pc ⋉ (pc ∧ q) G3 ::= [pc]
R1 ::= G2 ∨ G3 R2 ::= G1 ∨ G3 R3 ::= G1 ∨ G2

pc ∧ p4

Γm ∨ Γ1 ∨ Γ3 ∗ Γ2; R2, G2 ⊢ 〈arg2 := ctx2; 〉

p21 ::= pc ∧ (arg2 = Y)

Γm ∨ Γ1 ∨ Γ3 ∗ Γ2; R2, G2 ⊢ 〈IF !(power > MIN) EXIT〉

p22 ::= p21 ∧ (M > MIN)

Γm ∨ Γ1 ∨ Γ3 ∗ Γ′

2
; R2, G2 ⊢ 〈out := DB sel arg2; 〉

p23 ::= p22 ∧ (out = DB sel Y)

Γm ∨ Γ1 ∨ Γ3 ∗ Γ′

2
; R2, G2 ⊢ 〈IF (power > MIN) display(out); 〉

p23 ∧ q

As future work, we plan to implement the logic for the automatic verification
of context-aware sensor network applications.

Acknowledgments The authors are supported by the project UbiVal: Fun-
damental Approaches to Validation of Ubiquitous Computing Applications and
Infrastructures, EPSRC grant EP/D076625/2.

References

[1] Doina Bucur and Marta Kwiatkowska. Bug-Free Sensors: The Automatic
Verification of Context-Aware TinyOS Applications. In Proceedings of the
Third European Conference on Ambient Intelligence (AmI). Springer, 2009.

[2] Xinyu Feng. Local rely-guarantee reasoning. In ACM Symposium on Prin-
ciples of Programming Languages, pages 315–327. ACM, 2009.

[3] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. Automated
Generation of Context-Aware Tests. International Conference on Software
Engineering, pages 406–415, 2007.

