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Abstract. We propose a real-time extension to the process algebra CSP. Inspired by timed automata, a
very successful formalism for the specification and verification of real-time systems, we handle real time
by means of clocks, i.e. real-valued variables that increase at the same rate as time. This differs from the
conventional approach based on timed transitions. We give a discrete trace and failures semantics to our
language and define the resulting refinement relations. One advantage of our proposal is that it is possible
to automatically verify refinement relations between processes. We demonstrate how this can be achieved
and under which conditions.

1. Introduction

The specification and verification of concurrent systems has been a major research topic for more than
twenty years. Many approaches have been proposed, and that of process algebras, e.g. CSP [Hoa85] and
CCS [Mil89], is undoubtedly one of the most successful. Our work will focus on CSP, which we extend with
real-time constructs. The key features of classical CSP are a denotational model based on traces and failures,
together with the definition of process equivalence founded on the concept of process refinement. Refinement
allows one to establish whether a process implements a specification by checking if every behaviour of the
former is allowed by the latter; in this way, implementations can be further refined, allowing for chains
of refinements leading towards the final implementation. CSP has been the subject of extensive research
and, most notably, has an effective associated software tool, FDR2 [For93], that can automatically verify
refinement relations.

Traditional process calculi can only verify functional properties of systems, that is, properties that are
not time sensitive. More recently, substantial effort has been directed towards describing systems and their
timed behaviour in order to establish their real-time properties, consequently extending existing models.
Some proposals have been made to extend CSP to describe real-time systems, of which the most important
is Timed CSP [RR88, DJR+92]. Much work has been done since its introduction, but its take up has been
hampered by the lack of automatic verification algorithms. The main difficulty with Timed CSP, and with
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most real-time systems with a dense representation of time, is that their behaviour is infinite and continuous,
making them hard to analyse.

There are two main techniques that have been proposed to verify Timed CSP: timewise refinement
[Sch97, Sch99] and digitisation [Oua01]. The idea behind timewise refinement is to ignore time and to
establish only functional properties of a Timed CSP process. This is done by considering an untimed CSP
specification and a Timed CSP implementation. It is possible to verify whether the functional behaviour of the
implementation refines the specification. This approach is limited because no timed properties can be verified;
moreover, it is not possible to have decidable chains of refinements in the same model. More interesting and
promising is the work on digitisation: this technique has been known for at least 10 years [HMP92] in the area
of timed systems and its main purpose is to identify the conditions under which it is possible to reduce the
dense representation of time to a discrete one while preserving the relations among processes. This technique
has been extended to Timed CSP [Oua01], making it possible to use FDR2 to verify refinement relations.
The main difficulty is that it is, in general, undecidable to know whether digitisation techniques can be
applied and chains of refinements are not possible.

In the domain of real-time systems, the most successful approach is arguably that of timed automata
[AD92]. Timed automata extend traditional labelled transition systems with clocks, real-valued variables
that record the passage of time and influence how the system evolves. The success of timed automata is
due to the availability of model checking techniques that allow us to verify properties expressed in the logic
TCTL [ACD93]. Efficient model checking tools are available, e.g. Uppaal [LPY97] and KRONOS [Yov97].
Some work has been done to relate CSP to timed automata: Jackson’s thesis [Jac92] shows how to translate
Timed CSP processes into timed automata in order to use timed automata techniques to verify logical
properties of processes. More recently, equivalence between Timed CSP and closed timed automata has been
proved [OW03], and it has also been shown how to extend digitisation techniques to timed automata in order
to use FDR2 to verify refinement of timed traces.

It is possible to give timed automata semantics in terms of timed traces, and to define relations based
on trace inclusion: a timed automaton, the specification, is refined by another, the implementation, if the
traces of the implementation are a subset of the traces of the specification. Unfortunately, trace inclusion
is undecidable in general [AD92]. Despite this result, there has been much work aimed at identifying the
conditions under which the trace inclusion problem becomes decidable; apart from the previously mentioned
digitisation techniques [HMP92, OW03], it is possible to place restrictions on specifications by allowing only
determinisable specifications [AFH99] or specifications with at most one clock [OW04]. However, under these
restrictions, it is not possible to have chains of refinements unless the same restrictions are applied to the
implementations as well as to the specifications, hence generality is lost.

Our aim is to extend CSP to model timed automata directly. We are aware of alternative extensions
of process algebras that model timed automata (e.g. [D’A99, YPD95]), but, to our knowledge, no attempt
has been made to extend CSP in this way. Aware of the undecidability results for trace inclusion for timed
automata, we take a different approach and employ the successful techniques of timed automata (e.g. the
region automaton) to discretise the infinite state space caused by the representation of time in order to define
a semantic model and refinement relations in the style of CSP. Firstly, we extend the syntax to describe
the timed automata constructs. The operational semantics is a straightforward extension of the usual CSP
rules, but defining a denotational semantics is more problematic; the reason for this is that we have to
deal with undecidability results (because of the continuous representation of time) and with obstacles to
compositionality. We describe how we resolve these difficulties and the inevitable resulting trade-offs. The
main result is that it is possible (with some limitations) to use FDR2 to verify timed properties of processes
expressed in the extended CSP and refinement relations between them. Moreover, it is possible to verify
chains of refinements.

In this paper we present the theoretical foundations of our timed extension of CSP, by giving it a formal
semantics and by showing its relationship with timed automata. We also show how to model check timed
properties of processes, but more research is necessary in order to achieve a fully automatic procedure for
this.

This paper is structured in the following way. In Section 2 we give the background on timed automata
and CSP needed to understand the rest of the paper. In Section 3 we introduce the extended language,
Clocked CSP, and in Section 4 we give it an operational semantics. The denotational model for traces is
described in Section 5, together with a brief overview of its extension to failures. Section 6 describes how it
is possible to use Clocked CSP to verify properties of processes with FDR2. Finally, in Section 7 we discuss
the advantages and disadvantages of our approach and future work.
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2. Preliminaries

2.1. Labelled Transition Systems, Traces and Failures

We give the basic definitions of labelled transition systems that we will need in the remainder of the paper.
A labelled transition system (lts) is a tuple L = (Q, q, Σ,→), where Q is the set of states, q is the initial
state, Σ is the alphabet and → is the transition relation, that is, →⊆ Q× (Σ ∪ {τ})×Q. We write p

a−→ q
whenever(p, a, q) ∈→. The alphabet Σ does not include the special internal action τ ; we call all other
actions visible. A finite execution for an lts is a sequence of states and actions q0a1q1 · · · qn such that, for
all i = 0..n − 1, we have (qi, ai+1, qi+1) ∈→. If s = a1 · · · an is the sequence of actions of the execution,
including internal actions, we write q0

s−→ qn. Given an execution q0a1 · · · qn, the corresponding trace is the
sequence t ∈ Σ∗ of visible actions obtained by removing internal actions from the sequence a1, a2 · · · an. In
this case we say that q0

t=⇒ qn. Traces are denoted by the corresponding list of actions, i.e. 〈a1 · · · an〉. Given
two traces t1 = 〈a1 · · · an〉 and t2 = 〈b1 · · · bm〉 we define their concatenation t1ˆt2 as 〈a1 · · · anb1 · · · bm〉. We
sometimes write aˆt, where a ∈ Σ and t ∈ Σ∗, instead of 〈a〉ˆt. Given an lts L, its trace semantics is given
by T (L) = {t ∈ Σ∗|∃q.q t=⇒ q}.

A state q refuses an action a if there is no state q′ such that (q, a, q′) ∈→. We say that q is stable if there is
no τ transition leaving q. We define the refusal set of a stable state q as follows: q refF if q is stable and q refuses
all actions in F . We can define the stable failures of an lts L as F(L) = {(t, F ) | ∃q.q t=⇒ q and q ref F}.

The notions of traces and failures given above for labelled transition systems are the operational equivalent
of traces and failures in the CSP denotational semantics.

Given two labelled transition systems L1 = (Q1, q1,Σ,→1) and L2 = (Q2, q2,Σ,→2), the parallel com-
position with respect to the interface alphabet A ⊆ Σ is the new labelled transition system L1 ||

A

L2 =

(Q1 × Q2, (q1, q2),Σ,→) with → defined as follows: if a ∈ A, then (p1, p2)
a−→ (q1, q2) if p1

a−→ q1 and
p2

a−→ q2; if a /∈ A, then (p1, p2)
a−→ (q1, p2) if p1

a−→ q1 or (p1, p2)
a−→ (p1, q2) if p2

a−→ q2 .

2.2. Timed Automata

Timed automata have become a standard formalism to describe timed systems. They are an extension of
traditional labelled transition systems, obtained by augmenting them with clocks and operations on them.
We summarise the notions that we are going to use in this paper; most of this is standard (see [AD94]).

Given a set C of real-valued variables called clocks, the set B(C) of clock constraints is generated by the
grammar: φ ::= x ≺ c | φ ∧ φ | ¬φ, for x ∈ C, ≺∈ {<,≤} and c ∈ N. Given a set of clocks C, a valuation
ν is a function ν : C → R+ that assigns a non negative real value to each clock. Given a valuation ν and a
non-negative real value d, the valuation ν + d is defined as (ν + d)(x) = ν(x) + d for all clocks x ∈ C. Given
a valuation ν and a set of clocks X ⊆ C, ν[X] is a new valuation that agrees with ν on all clocks except for
those in X, whose value has been set to 0; formally, ν[X](x) = 0 if x ∈ X, ν[X](x) = ν(x) otherwise. A clock
valuation ν satisfies a constraint φ (ν |= φ) if φ evaluates to true when clocks are replaced by their valuation
under ν. We say that a constraint φ is past closed if, for all valuations ν and positive reals d, if ν + d |= φ
then ν |= φ, and denote the set of past closed constraints by Bc(C); informally, past closed constraints denote
“until” properties, that is, they only enforce constraints on the upper limits of the values of clocks.

Definition 2.1. A timed automaton A is a tuple
(
L, l, Σ, C, I, κ,→

)
, where L is the set of locations, l is

the initial location, Σ is the set of actions (or alphabet), C is the set of clocks, I : L → Bc(C) is the location
invariant function, κ : L → 2C is the set of resets and →⊆ L× (Σ ∪ {τ})× B(C)× L is the set of edges. We

write s
a,φ−→ s′ whenever (s, a, φ, s′) ∈→.

A timed automaton is given semantics in terms of a labelled transition system. At each point of the
computation one must know the location the system is in and the current value of clocks. The state space
of the transition system is thus given by the cross product of locations and clock valuations. The semantics
of a timed automaton is given by the lts LTSA = (Q, q, Σ ∪ R+,→lts), defined as follows:

• Q is the set of states. A state is a pair (l, ν) where l ∈ L ∪ free(L) and ν is a clock valuation. free(L)
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Action l
a,φ−→ l′ ν |= φ l ∈ free(L)

(l, ν)
a−→lts (l′, ν)

Reset
l ∈ L

(l, ν)
κ(l)−→lts (free(l), ν[κ(l)])

Delay
∀d′ ≤ d ν + d′ |= I(l) l ∈ free(L)

(free(l), ν)
d−→lts (free(l), ν + d)

Table 1. Transition relation of the lts associated to a timed automaton.

is an additional set of locations for which the set of clock resets is empty, that is, κ(free(l)) = ∅ for all
locations l.

• the initial state is q = (l, ν0), where ν0(x) = 0 for all x ∈ C.
• →lts⊆ Q× ((Σ ∪ {τ}) ∪ R+ ∪ 2C)×Q is the set of transitions defined by the rules of Table 1.

The definition we have given is different from the one usually in the literature since we consider clock
resets as visible actions. Any subset of clocks X ⊆ 2C can be reset, and this is visible in the lts. Upon
entering a location l, the action of resetting the (possibly empty) set of clocks κ(l) is executed, leading to
the new clock valuation ν[κ(l)]. The reason for this will become clear later on when we give semantics to our
language making clock resets visible; this makes no difference in our case because we do not use relations
based on the labelled transition systems (e.g., timed bisimulation). It is worth pointing out that, even with
this new semantics, the undecidability result for language inclusion still holds, as it is easy to observe that
reset actions introduce no branching and therefore they do not add any nondeterminism; it suffices to ignore
such actions and we obtain the same traces as with the usual semantics. Note that it is possible to enter a
location whose invariant is false, since we do not require the corresponding valuation to satisfy it; in this
case no delay transition is possible and the system must perform an action or else deadlock.

The transition system defined above has an infinite (continuous) set of states and actions. In order
to model check timed automata, we discretise such state space into equivalence classes that relate clock
valuations that agree on the integral part of clocks and on the ordering of their fractional part. Let cx be the
greatest constant against which clock x is compared, bxc the integral part of x and fr(x) its fractional part.
Given a set of clocks C, two valuations ν and ν′ are equivalent (ν ≡C ν′) if all of the following conditions
hold:

• for all x ∈ C, bν(x)c = bν′(x)c or they both exceed cx;
• for all x, y ∈ C, with ν(x) ≤ cx and ν(y) ≤ cy, fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y));
• for all x ∈ C with ν(x) ≤ cx, fr(ν(x)) = 0 iff fr(ν′(x)) = 0.

A clock region is an equivalence class induced by ≡C , and the region graph can be thought of as the
equivalence classes together with the transitions between the classes. Since all valuations in the same region
agree on the integral parts of the clocks, it is clear that the same set of action transitions can be enabled
from all states within a region. We denote the set of regions associated to a timed automaton A by RA, and
we let r, r1, r2 . . . range over regions. If A is clear from the context, it will be elided and we will denote the
set of regions as R. We often denote a region by the set of clock constraints that are met by the valuations
in the region only. We denote by r0 the starting region (all clocks set to 0) and by rmax the region for which
x > cx for all clocks x. We say that a region r satisfies a condition on clocks φ ∈ B(C) if the condition
evaluates to true under all the valuations in r; in this case we write r |= φ.

With passage of time, the automaton changes regions. We define the successor region as the next region
that the automaton will move to by letting time elapse. Formally, we define a function succ : R −→ R such
that succ(r) = r′ if for all ν ∈ r there exists d ∈ R such that ν + d ∈ succ(r) and for all d′ < d either
ν + d′ ∈ r or ν + d′ ∈ succ(r). succ is undefined for rmax .

The action of moving to the next region involves an increment of the value of all clocks, but only some
of them actually cause the change of a region. For example, if we consider two clocks x and y, when going
from the region x = y = 0 to the region 0 < x = y < 1, both clocks change region. However when going
from (0 < x < 1) ∧ (y = 0) to (0 < x < 1) ∧ (0 < y < 1) ∧ (y < x), it is only y that changes region. We
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x a, x ≥ 1

x δx δx δx

a

δx δx

x < 2

a

clock x is reset

x = 1: action a becomes possible

cannot let time elapse in
this location

δx

Fig. 1. A timed automaton (top) A and the corresponding region automaton R(A) (bottom).

are interested in identifying the set of clocks that change their own region as it will be convenient in the
following. We define clocks : R −→ 2C as the set of clocks that change their own region at the next succ
action; clocks(r) is the smallest set X of clocks such that, for all valuations ν ∈ r and η ∈ succ(r), we have
ν ≡C\X η. We also define ∆ as the set of actions describing the change of region due to the passage of time;
the elements of ∆ are δX , where X ∈ 2C . We can now define the region automaton corresponding to a timed
automaton A.

Definition 2.2. Given a timed automatonA, the corresponding region automatonRA = (Qr,Σr, qr,→r)
is defined as follows:

• Qr = {(l, r) | l ∈ L ∪ free(L), r ∈ RA}
• Σr = Σ ∪∆ ∪ 2C , with ∆ = {δX |X ⊆ C}
• qr = (l, r0)
• →r⊆ Qr × (Σr ∪ {τ})×Qr such that:

– (l, r) a−→r (l′, r), where a ∈ Σ if, for all ν ∈ r, (l, ν) a−→lts (l′, ν);

– (l, r) X−→r (l, r[X]), where X ⊆ C, if, for all ν ∈ r, (l, ν) X−→lts (l, ν[X]);

– (l, r) δX−→r (l, succ(r)) if, for all ν ∈ r, there exists d such that (l, ν) d−→lts (l, ν′) with ν′ ∈ succ(r)
and X = clocks(r).

It is easy to observe that a transition (l, r) a−→r (l′, r) is enabled when there is an edge (a, φ) leaving
location l such that r |= φ. Likewise, a transition (l, r) δX−→r (l, succ(r)) is enabled if it is possible to let
time elapse in the location l, that is, succ(r) |= I(l). Finally, a clock reset action is enabled upon entering a
location.

Region automata are the basis for any algorithm to model check timed automata, and they are an
important technique to discretise the infinite state space of the induced transition system. Complexity is
their main drawback, as the number of regions is exponential in the number of clocks and in the magnitude
of the maximal constants. For this reason, more efficient representations have been devised (e.g. zones, see
[Yov98] for an introduction).

Example 2.1. Figure 1 shows a small timed automaton and the corresponding region automaton con-
structed according to our definitions. The states of the automaton R(A) in the bottom row correspond to
the first location of A, while those in the top row correspond to the second location. The first action of R(A)
is a reset action, corresponding to the reset of x in the initial location of A. After such action, the value of x
is 0, and, with each δ action, the value of x increases in order to reach the next region; so, in the next state
we have 0 < x < 1, x = 1 in the following one an so on. Before action a is enabled, at least two delay actions
must be executed, reaching the condition x ≥ 1 of the guarded action of A. The two (maximal) traces of
R(A) are 〈 {x} δx δx a δx δx δx 〉 and 〈 {x} δx δx δx a δx δx 〉: together, they carry the information that a was
possible only while 1 ≤ x < 2.
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2.3. CSP

CSP is a process algebra introduced by Tony Hoare [Hoa85]. It describes concurrent systems in terms of
their sequential components, characterised by the sequences of actions that they can perform. CSP processes
with action alphabet Σ (not including the special silent action τ) are generated by the following syntax:

P ::= STOP | SKIP | a → P | P u P | P 2 P | P ||
A

P | P \A | f [P ] | Z | Z = P | P ; P (1)

where a ∈ Σ, A ⊆ Σ and f : Σ → Σ is a bijective renaming function. The operators above represent,
respectively: deadlock, successful termination, action prefix, internal choice, external choice, interface parallel,
hiding, renaming, process name, recursion and sequential composition. We use only one type of parallel
operator, as the others, e.g. interleaving, can be expressed in terms of interface parallel.

The semantics of a CSP term P is given by the set of actions that it can perform (traces), the set of
pairs containing a trace and the actions that can be refused after it (failures) or the set of failures and the
set of traces causing infinite executions of internal actions (divergences). Different relations are built upon
these semantic models; for each of them, equivalences between processes are defined as set equalities. CSP
also introduces the idea of refinement, which is the main focus of this paper: a process P1 is refined by
another process P2 (P1 v P2) if every behaviour of P2 is a possible behaviour of P1, that is, if it is “less
deterministic”. This idea is formally defined as inverse set inclusion of traces, failures or divergences. For a
detailed description, see [Ros98] or [Sch99].

3. Clocked CSP

3.1. Aims

When defining a timed process algebra, we are guided by the desire to combine the features of timed automata
and those of CSP. The aim is to extend CSP with timing constructs to obtain a calculus that is inspired
by timed automata and that describes them. We want to define a discrete denotational semantics on the
language that extends CSP semantics, leading to decidable refinement relations that can be checked by using
FDR2, and also ensuring that many algebraic properties of CSP can be inherited. We also often directly
“import” results of CSP whenever we can find a direct correspondence between our algebra and CSP. In
the next sections we describe how we achieved this, justifying the restrictions that we had to impose on the
language.

3.2. The Language

We define a language for describing timed automata, called Clocked CSP (CCSP), as an extension of CSP,
thus retaining its choice operators, the hiding operator and the multi-way nature of the parallel composition.
Clocked CSP terms with alphabet Σ and set of clocks C are obtained by the following syntax:

P ::= {|X|}P | φ . P | T

T ::= STOP | SKIP | 2
N

i=1
(ai, ϕi) → Pi | uN

i=1
Pi |

P ||
A

P | Z | Z = P | P \A | f [P ] | P ;P
(2)

where a ∈ Σ, A ⊆ Σ, φ ∈ Bc(C), ϕ ∈ B(C) and X ⊆ C. By convention, visible actions will be ranged over by
a, b, . . ., generic actions (including τ) by µ, clocks by x, y, . . ., sets of clocks by X, Y, . . . and clock constraints
by φ, γ, · · · . We denote the set of processes generated by the above grammar by CCSP. For simplicity, we
write {|x, y . . . |} instead of {|{x, y . . .}|} when a list of clocks is given explicitly; we also omit the interface
alphabet of parallel composition when implicit or not relevant. The syntax above is divided into two parts:
the first part (the P terms) introduces the new constructs for handling clocks, that is, clock resets and
invariants; in the second part we find the usual constructs of CSP, with some changes regarding internal
choice. We use the following abbreviations: (a, ϕ) → P (guarded action) for external choice with N = 1, and
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||| for parallel composition with empty interface alphabet, that is, ||
∅
. Let us consider the new constructs in

detail:

• reset: {|X|}P resets the clocks in X and then behaves as P .
• invariant: φ . P must evolve (i.e. perform an action) while φ is satisfied. This corresponds to invariants

in timed automata.
• guarded actions: (a, ϕ) → P performs a only when the guard ϕ is satisfied and then behaves as P .
• external choice: this operator deserves some discussion. Our version differs from the definition in classical

CSP as we allow choice only on visible actions; in this way we prevent components from executing internal
actions before the choice is resolved. Even if this is one of the most characteristic traits of CSP’s choice
operators, we have chosen to avoid it because, in a clocked setting, defining external choice as P 2 P
would create problems with compositional semantics: it would be possible, for example, for a component
to execute an internal action that triggers the reset of some clocks. Of course, changing the values of some
clocks could change the behaviour of other components. A possible solution would have been to impose
disjoint sets of clocks on the components (as we do for the parallel operator, see below), but this would
rule out conditions on actions on the same clocks; for instance, it would be impossible to have common
conditions, such as the following: do an a action if x < 1 and a b action otherwise. It would be possible
to impose that any clock reset resolves the choice [CK03]; this would lead to a compositional semantics,
but is counter-intuitive and the resulting semantics would be quite involved. We opted for this definition
of external choice because it gives a clean, compositional semantics, while still respecting our intuition of
what we want to model with external choice, especially in a setting with clocks that function as shared
variables.

Internal and external clocks. External choice is not the only operator whose definition is made hard by
the presence of clocks: the same difficulties arise for parallel composition if we want to obtain compositionality.
Since the interaction between processes that modify the value of clocks creates problems, we make the
following simplification: each process can handle only a subset of clocks, so that its behaviour depends only
on them. The remaining clocks can be used by other processes that interact with it through the parallel
operator.

More formally, given the global set of clocks C, we define the internal set of clocks Ci(P ) for a process P
as the set of clocks that are explicitly referred to within P either inside clock reset or invariants. Ce(P ) is
defined as the complement C \ Ci(P ). We restrict the parallel operator to work only with pairs of processes
P1 and P2 with disjoint sets of internal clocks, that is, such that Ci(P1) ∩ Ci(P2) = ∅. The internal clocks of
the parallel composition are defined as Ci(P1 ||P2) = Ci(P1) ∪ Ci(P2). When the process P is implicit from
the context, we denote the set of its internal and external clocks simply by Ci and Ce, respectively, instead
of Ci(P ) and Ce(P ).

The idea behind this restriction is that, when defining the semantics of a process, we have to assume
that, while the process has full control of its internal clocks, any action on external clocks is possible at any
time, caused by any process running in parallel. A process must be willing to synchronise on any possible set
of (external) clock resets at any moment. This is why we treat clock resets as visible actions: when a process
resets a set of clocks X, the parallel processes are willing to synchronise on this reset action. In this way
processes always agree on the value of clocks. We believe this is a reasonable restriction since most parallel
composition constructs for timed automata use disjoint sets of clocks.

4. Operational Semantics

For the purpose of giving semantics to Clocked CSP, we introduce an extra operator, free(P ), representing a
process that behaves exactly like P but which does not perform any initial reset (i.e. the start state has been
stripped of its resets). This performs a similar function to the operator free introduced to give semantics to
timed automata. We denote the set of all CCSP processes extended with the free(•) operator by CCSP+.
Given a CCSP term P , we define the corresponding timed automaton A(P ) = (L, l, Σ∪{τ}∪{X}, C, I, κ,→),
where L = CCSP+, l = P , the sets of clocks and actions are the same and →, κ and I are defined according
to the rules of Table 2, Table 3 and Table 4, respectively. We have already introduced the silent action τ ,
which is the result of some internal computation, usually caused by internal choice or hiding. Following the
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SKIP
X,tt−→ Ω Z = P

τ,tt−→ P [Z = P / Z]

P
a,ϕ−→ P ′

φ . P
a,ϕ−→ P ′

P
a,ϕ−→ P ′

{|X|}P a,ϕ−→ P ′
P

a,ϕ−→ P ′

free(P )
a,ϕ−→ P ′

(
2 N

i=1(ai, ϕi) → Pi

) aj ,ϕj−→ Pj
j ∈ {1..N}

uN
i=1Pi

τ,tt−→ Pj
j ∈ {1..N}

P
a,ϕ−→ P ′

f [P ]
f(a),ϕ−→ f [P ′]

P
a,ϕ−→ P ′

P \A
τ,ϕ−→ P ′ \A

a ∈ A
P

µ,ϕ−→ P ′

P \A
µ,ϕ−→ P ′ \A

µ /∈ A

P
µ,ϕ−→ P ′

P ||
A

Q
µ,ϕ−→ P ′ ||

A
free(Q) µ /∈ A

Q
µ,ϕ−→ Q′

P ||
A

Q
µ,ϕ−→ free(P ) ||

A
Q′ µ /∈ A

P
a,ϕ1−→ P ′ Q

a,ϕ2−→ Q′

P ||
A

Q
a,ϕ1∧ϕ2−→ P ′ ||

A
Q′ a ∈ A ∪ {X}

P
µ,ϕ−→ P ′

P ; Q
µ,ϕ−→ P ′; Q

µ 6= X
P

X−→ Ω

P ; Q
τ,tt−→ Q

Table 2. Rules for transitions

I(STOP) = tt I(SKIP) = tt I(φ . P ) = φ ∧ I(P )

I({|X|}P ) = I(P ) I(free(P )) = I(P ) I(Z = P ) = ff,

I
(
2

N

i=1
(ai, ϕi) → Pi

)
= tt I

(
uN

i=1
Pi

)
= ff I

(
P ||

A
Q

)
= I(P ) ∧ I(Q)

I(P \A) = I(P ) I(f [P ]) = I(P ) I(P ; Q) = I(P )

Table 3. Rules for invariants

CSP convention, we use an additional special label X, with a true guard, to denote successful termination
and an additional process Ω that denotes the process that has successfully terminated.

Since Clocked CSP is designed to model timed automata, the operational semantics is intuitive and it
extends CSP semantics in the obvious way for most operators. One design choice that we have made was
to have the invariant of internal choice to be false; the reason for this is that internal choice is resolved
immediately. In this way the semantics of internal choice follows that of internal choice in standard CSP
exactly. Similarly, the invariant of Z = P is false, since we force recursive calls to unfold immediately. We
explain the introduction of the free(•) operator by means of the following example [D’A99].

Example 4.1. Consider the process {|x|}(a, ϕ1) → STOP ||| {|y|}(b, ϕ2) → STOP . At the beginning of the
execution, both components reset their clocks; when one of the components executes, we do not want the
other component to reset its clock again. The operational semantics of this term is given by the automaton
of Figure 2; without the free operator, the clocks would be reset in the middle locations as well, even if they
have both been reset at the start.
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κ(STOP) = ∅ κ(SKIP) = ∅ κ(φ . P ) = κ(P )

κ({|X|}P ) = {X} ∪ κ(P ) κ(free(P )) = ∅ κ(Z = P ) = ∅

κ

(
2

N

i=1
(ai, ϕi) → Pi

)
= ∅ κ

(
uN

i=1
Pi

)
= ∅ κ

(
P ||

A
Q

)
= κ(P ) ∪ κ(Q)

κ(P \A) = κ(P ) κ(f [P ]) = κ(P ) κ(P ; Q) = κ(P )

Table 4. Rules for clock resets

x, y

b, ϕ2

a, ϕ1b, ϕ2

a, ϕ1

Fig. 2. Explanation of the free(•) operator.

The timed automaton corresponding to a CCSP term might have an infinite number of locations, thus also
leading to an infinite-state region automaton. For automatic verification purposes this should be avoided,
and it is necessary to restrict to finite state processes, that is, processes whose operational model has a
finite number of reachable states. The same restrictions as those applied to standard CSP apply in our case;
see [Ros94] for a discussion of finite state processes.

Normal form. We need to impose several restrictions on the syntax of terms, so that we get terms whose
structure makes the semantics more intuitive and which also allow for a simpler definition of the semantic
rules. Consider the following term, (x ≤ 2) . {|x|}(a, x > 1) → P , and its corresponding timed automaton
(Figure 3). From the timed automaton, we can see that the invariant x ≤ 2 is bound by the reset of clock x,
but this contradicts the intuition, since we use x before it is reset (this corresponds to the idea of conflict
in [D’A99]), and we would like to rewrite the term as {|x|}(x ≤ 2) . (a, x > 1) → P .

Also, consider the term, {|x, y|}((x ≤ 2) . P1 ||(y < 1) . P2), where x is a clock of the first component and
y is a clock of the second. Both clock x and clock y are immediately reset (by applying the rules of Table 4).
In order to simplify the semantics, and also to emphasise that each component handles its own clocks, we
would like to rewrite this term as: {|x|}((x ≤ 2) . P1 ||{|y|}(y < 1) . P2).

The two examples above explain our need for a normal form for CCSP terms by which the structure of
CCSP terms reflects their semantics, and we prefix terms that can execute actions by resets and invariants all
grouped together. We obtain the following alternative and equivalent (up to operational semantics) syntax:

P ::= {|X|}φ . T | P ||
A

P | P \A | f [P ] | P ;P | Z = P | Z

T ::= STOP | SKIP | 2
N

i=1
(ai, ϕi) → Pi | uN

i=1
Pi |

(3)

A CCSP term is either a T term prefixed by a (possibly empty) set of clock resets and a (possibly true)
invariant, the parallel compositions of such terms without any leading clock operator, or some other term
with some actions hidden or renamed.

Proposition 4.1. Every CCSP term can be rewritten to an equivalent (up to operational semantics) CCSP
term generated by the syntax of Equation 3.

P
a, x > 1x

x ≤ 2

Fig. 3. Timed automaton induced by (x ≤ 2) . {|x|}(a, x > 1) → P . Clock x is bound by the initial reset.
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P = {|∅|}P P = tt . P

φ1 . φ2 . P = (φ1 ∧ φ2) . P {|X|}{|Y |}P = {|X ∪ Y |}P

φ . {|X|}P = {|X|}φ . P φ . (P1 || P2) = (φ . P1) || (φ . P2)

{|X1 ∪X2|}(P1 || P2) = ({|X1|}P1) || ({|X2|}P2) with X1 ⊆ Ci(P1) and X2 ⊆ Ci(P2)

Table 5. Rewrite rules to obtain CCSP terms that are equivalent up to the operational semantics, i.e., they
induce the same timed automaton.

Proof. Let us use structural induction on the terms generated by the syntax of Equation 2. Clearly, STOP ,
SKIP and all the T terms are already compatible with the alternative syntax if their components are. We
need to prove that the result is true for all the P terms. This can be done by considering the sequence of
resets and invariants and by applying the rules of Table 5 to rewrite the leftmost elements, until we are
left with a unique reset operation followed by a unique invariant operation. By using induction, the result
is proved if the P term is followed by any T term except for parallel composition. If the term is followed
by parallel composition, the syntax of Equation 3 is not respected because the parallel operator cannot be
preceded by resets and invariants. This case can be solved by using the last two rules of Table 5 “pushing”
the resets and invariants inside the parallel.

Region automaton. In the following, we will use the region automaton obtained from the operational
semantics as the model we have in mind for the denotational models for CCSP. Given a CCSP term P and
the associated timed automaton A(P ), we denote the region automaton corresponding to A(P ) with initial
region r by R(P, r). If we want to add an extra invariant ϕ to the initial location, i.e. I(P ) = I(P ) ∧ ϕ, we
denote the resulting region automaton by R(P, r, ϕ). We use R(P ) as an abbreviation for R(P, r0, tt).

Representation theorem. We state that CCSP is a complete language for the description of timed au-
tomata, that is, every timed automaton can be described by a CCSP term.

Theorem 4.1. For every (finitely branching) timed automaton A, there exists a CCSP term P such that
A(P ) is isomorphic to the reachable part of A, excluding the τ actions introduced by the operational rule
for process definition (Table 2).

Proof. The proof is similar to the proof in [D’A99], but we also have to deal with internal τ actions. Given a
timed automaton A = (L, l, Σ, C, I, κ,→), we create a CCSP term with the same alphabet and set of clocks
in the following way: for each location l, we define a process name Pl. A process is associated with each name,
that is, for each l ∈ L, Pl = {|κ(l)|}I(l) .

(
2

(l,ai,φi,li)∈→
(ai, φi) → Pli

)
. This does not work if A contains

internal actions. This problem can be solved by using an extra action b in the construction above whenever
a τ is encountered. This action can then be hidden at the top level. Clearly, the function f : L → CCSP
defined as f(l) = Pl is an isomorphism for the reachable part of the timed automaton, if we exclude the τ
actions introduced by process definitions Z = P ; such actions do not introduce non-determinism, so we can
still consider the two timed automata as equivalent.

Example 4.2. Consider the timed automaton A of Example 2.1: the CCSP term corresponding to A is
given by {|x|}(x < 2) . (a, x ≥ 1) → STOP .

5. Denotational Semantics

By working on the transition system induced by the operational model, one could use known equivalence
relations for timed automata (e.g. timed bisimulation) or use traditional model checking techniques to verify
whether a given process meets some temporal logic property. Since we are following the CSP approach, we
want to give a denotational semantics to the language as an extension of the usual trace/failures semantics,
together with refinement relations. As stated at the beginning of the previous section, we want the refinement
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relations generated by the semantic model to be decidable, so that we can use or suitably extend FDR2
to automatically verify processes against specifications. This rules out the most natural model, that of
timed traces (sequences of actions together with the time at which they were performed), as used in Timed
CSP: it is known that timed trace inclusion and equivalence are generally undecidable problems for timed
automata [AD94]. For this reason, we have to identify a suitable level of abstraction between the infinite and
undecidable semantic level of the transition system and some appropriate high-level description. Our choice
was to model the semantics on the region automaton. The idea is to record the clock constraints met when
an action is taken, rather than the absolute time.

5.1. Trace Semantics

We give Clocked CSP processes a semantics in terms of region traces. A region trace is an element of
(Σ ∪ ∆ ∪ 2C)∗, where Σ is the process alphabet, ∆ is the set of delay actions and C is the set of clocks.
We denote the extended alphabet Σ ∪ ∆ ∪ 2C by Σ, Σ ∪ {X} by ΣX and Σ ∪ {X} by Σ

X
. RTraces is the

semantic model we study and it denotes the set of non-empty, prefix-closed subsets of Σ
X

. An element of a
trace either denotes an action (a ∈ Σ), the passage of time (delay action δX ∈ ∆) or the reset of some set of
clocks (X ∈ 2C). By following the sequences of delays and resets it is always possible to know which clock
constraints are met when an action is taken, and trace synchronisation is also possible.

We need to be able to define the semantics of a process from any possible starting region and under
any possible initial invariant. Consider, for example, the process (a, x ≤ 1) → P : its semantics depends on
the semantics of the process P starting from 3 possible regions (x = 0, 0 < x < 1 and x = 1), depending
on when a is taken. For this reason, the semantics of a process is the set of possible behaviours under any
possible starting condition. The refinement relation is extended accordingly as inverse set inclusion under
every starting condition. Formally, let R = {r1, r2, . . . , rn} be the set of regions corresponding to a term
and Bc(C) = {φ1, φ2, . . . , φm} the set of possible invariants (note that this set is finite as an invariant is the
union of a set of regions). We define a function RT : CCSP×R×Bc(C) → RTraces that returns the region
traces of a process, assuming it starts from a particular region under a particular invariant. The semantics
of a process is thus given by an ordered set of sets of traces:

RegionTraces(P ) = (RT (P, r1, φ1),RT (P, r1, φ2), . . . ,RT (P, r1, φm),
. . .

RT (P, rn, φ1),RT (P, rn, φ2), . . . ,RT (P, rn, φm))

The function RT is defined inductively on the syntax of terms along the same lines as the derivation
rules for traces for classical CSP. The definition of the function RT is given in the following subsection. The
semantic domain for processes in the region trace model is given by RTracesmn, where m the the number
of possible invariants and n is the number of possible regions. It is clear that this forms a complete lattice
under inverse inclusion of components. We can then extend the refinement relation as inverse inclusion of
behaviour:

P vRT Q iff RegionTraces(P ) ⊇ RegionTraces(Q)
iff ∀ri ∀φj RT (P, ri, φj) ⊇ RT (Q, ri, φj)

meaning that for every possible starting region, Q’s behaviour is a subset of P ’s behaviour. It can be shown
that the refinement relation is independent of the starting conditions for processes that reset all their clocks
before referencing them; hence, only one set inclusion needs to be verified. Moreover, we usually consider
refinement between processes that have no external clocks, in which case their behaviour is self-contained.

5.1.1. Rules for Region Traces

We give the definition of the function RT that identifies the set of region traces of a process. First, a few
auxiliary definitions are needed. The following operator is necessary to concatenate two traces in the case of
sequential composition.
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Definition 5.1. Given a region trace t and starting region r, the region after the execution of t is defined
as follows:

• after(〈〉, r) = r

• after(aˆt′, r) = after(t′, r) if a ∈ Σ
• after(δXˆt′, r) = after(t′, succ(r)) if δX ∈ ∆
• after(Xˆt′, r) = after(t′, r[X]) if X ⊆ C

We need to be able to synchronise two traces in the case of the parallel operator. The synchA operator is
the same as for standard CSP (e.g. [Sch99]); the only difference is that traces are implicitly synchronised not
only on the interface alphabet A, but also on delay actions ∆ and on clock resets. This guarantees that action
are synchronised only if they are performed under the same clock constraints, which is the very idea behind
the region semantics of Clocked CSP. In the following definition head and tail are the standard operators on
traces, returning the first element of a trace and the remainder of a trace, respectively.

Definition 5.2. synchA is a relation describing when a trace tr can be a synchronisation of two traces tr1

and tr2 with interface alphabet A. It is defined as follows:

• 〈〉 synchA (tr1, tr2) iff tr1 = tr2 = 〈〉
• 〈X〉 synchA (tr1, tr2) iff tr1 = tr2 = 〈X〉
• 〈a〉ˆtr synchA (tr1, tr2) with a 6= X iff

– a ∈ (A ∪∆ ∪ C) ∧ head(tr1) = head(tr2) = a ∧ tr synchA (tail(tr1), tail(tr2)) or
– a /∈ (A ∪∆ ∪ C) ∧ (head(tr1) = a ∧ tr synchA (tail(tr1), tr2)
∨ head(tr2) = a ∧ tr synchA (tr1, tail(tr2)))

We let t \ A, where t is a sequence of actions and A is a subset of actions, denote the sub-sequence of t
that excludes all elements that are in A.

The function RT is now defined recursively on CCSP terms by the following rules (note that the rules
for external clocks assume the syntactic restrictions just described). Recall that clocks(r) denotes the set of
clocks whose value is going to change from region r and that rmax denotes the region where the value of
all clocks exceeds the maximal constant against which clocks are compared. In the following rules we often
need to check whether time can elapse by means of a change of region; this is possible if both the current
region r and its successor succ(r) satisfy the current invariant, and if r is not the maximal region rmax .

• RT ({|Xi|}P, r, I) = {〈〉} ∪
{(Xi ∪Xe)ˆt | t ∈ RT (P, r[Xi ∪Xe], I) and Xe ⊆ Ce}

• RT (φ . P, r, I) = RT (P, r, I ∧ φ)
• RT (STOP , r, I) = {〈〉} ∪

{Xeˆt | t ∈ RT (STOP , r[Xe], I)}
if r |= I and r 6= rmax and succ(r) |= I (time can elapse)

∪ {δclocks(r)ˆt | t ∈ RT (STOP, succ(r), I)}
• RT (SKIP , r, I) = {〈〉, 〈X〉} ∪

{Xeˆt | t ∈ RT (SKIP , r[Xe], I)}
if r |= I and r 6= rmax and succ(r) |= I (time can elapse)

∪ {δclocks(r)ˆt | t ∈ RT (SKIP, succ(r), I)}

• RT
(
2

N

i=1
(ai, ϕi) → Pi, r, I

)
= {〈〉} ∪{

Xeˆt | t ∈ RT
(
2

N

i=1
(ai, ϕi) → Pi, r[Xe], I

)}
∪

{aiˆt | t ∈ RT (Pi, r, tt) ∧ r |= ϕi}
if r |= I and r 6= rmax and succ(r) |= I (time can elapse)

∪
{

δclocks(r)ˆt | t ∈ RT
(
2

N

i=1
(ai, ϕi) → Pi, succ(r), I

)}
• RT (uN

i=1
Pi, r, I) =

⋃N
i=1RT (Pi, r, tt)

• RT (P1 ||
A

P2, r, I) = {t | ∃t1, t2 . t1 ∈ RT (P1, r, I) ∧

t2 ∈ RT (P2, r, I) ∧ t synchA (t1, t2)}
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∀Xe ∀Xe ∀Xe

X X X

. . .
δ δ

X ∪Xe{|X|}φ . P φ . P ..
.

τ

τ

P1

PN

∀Xe ∀Xe ∀Xe

. . .
δ δ

. . .
Pk Pl

ak
. . .

Pk

al

Pl

. . .
Pk Pl

am an aj ah

enabled from each region

Only those actions

While the invariant is satisfied.

2
N

i=1
(ai, φi) → Pi

∀Xe ∀Xe ∀Xe

. . .
δ δ SKIP

uN

i=1
Pi

STOP

Fig. 4. The region automata corresponding to some operators.

• RT (P \A, r, I) = {t \A | t ∈ RT (P, r, I)}
• RT (f [P ], r, I) = {t | f−1(t) ∈ RT (P, r, I)}
• RT (P1;P2, r, I) = {t | ∃t1, t2 . t = t1ˆt2 ∧ t1ˆX ∈ RT (P1, r, I)

∧ t2 ∈ RT (P2, after(t1, r), tt)} ∪ {t | t ∈ RT (P1, r, I)}

Figure 4 helps understand these rules by giving the intuition of the operational model underlying a term.
Some CCSP operators behave exactly as in CSP. For example, internal choice is resolved immediately as
its invariant is false and a process is chosen via a τ transition. The behaviour of clock reset is quite simple:
the process {|X|}φ . P first resets the set of clocks X (this is a visible action and it appears in the trace,
see Table 1), then it behaves like P under the invariant φ. This process must also be able to synchronise
with other processes that want to reset their clocks; by performing the action X ∪Xe, for all Xe ⊆ Ce, the
process takes into account the possibility of external clocks being reset. The behaviour of external choice
is quite involved if compared with the corresponding rule for standard CSP. The reason for this is that, in
Clocked CSP, time can elapse (δ actions) before the choice is resolved. This explains why there are several
states in the operational model to represent choice. The actions whose guards are satisfied are enabled from
each region. Finally, from each state, the process must be willing to synchronise with external clocks of other
processes. Reset actions of external clocks would lead to different states and would not in general be self
loops, but we represent them this way for conciseness since they do not alter the values of internal clocks
and the same actions are enabled after external clock resets. Since no delay action is possible from rmax , we
cannot have an infinite number of delays without actions or clock resets taking place. The case for STOP
and SKIP is similar; for example, these processes can let time elapse while their invariant are true and, in
the case of SKIP , must successfully terminate by executing a X action.

Recursion. We treat recursion in the same way as standard CSP and the semantics of Z = P is given by
the least fixed point of the term P . Let P 0(STOP) = STOP and Pn+1(STOP) = P [Pn(STOP)/Z], that
is, the n + 1-th unwinding of P starting from the least process STOP ; then the least fixed point is given
by RegionTraces(Z = P ) =

⋃∞
n=0 RegionTraces(Pn(STOP)) and RT (Z = P, r, I) =

⋃∞
n=0(P

n(STOP), r, I).
Since the trace domain is a complete lattice, we need to show that all operators are monotonic with respect
to reverse set inclusion in order to prove that recursion is well-defined for guarded processes and there exists
a least fixed point [Ros98].

Theorem 5.1. RegionTraces is a monotonic function with respect to all operators, and the least fixed point
operator exists for guarded processes.
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Proof. The result is straightforward for most operators following the standard arguments for CSP. Guarded-
ness ensures the existence of a unique fixed point. Let us then prove monotonicity for the added operators:

• (Reset) P1 vRT P2 =⇒ {|X|}P1 vRT {|X|}P2: we have {|X|}P1 vRT {|X|}P2 iff ∀r, I RT ({|X|}P1, r, I) ⊇
RT ({|X|}P1, r, I). By applying the rule for reset, we get that this inclusion is true if and only ifRT (P1, r[X∪
Xe], I) ⊇ RT (P2, r[X ∪Xe], I), which is true by induction.

• (Invariant) P1 vRT P2 =⇒ φ . P1 vRT φ . P2. A similar argument to that above applies for this
operator.

• (External choice) We can consider external choice with two terms as the argument easily extends to
the finitary case, in which all the terms are equal except for one. Let us consider P1 = (a1, φ1) →
Q1 2 (a2, φ2) → Q and P2 = (a1, φ1) → Q2 2 (a2, φ2) → Q such that Q1 vRT Q2, then we have to prove
that P1 vRT P2.
Note that the rule for external choice is defined in terms of itself: this is because, before taking an action, a
process can allow to let time elapse for a finite number of times. Moreover, delay actions can be interleaved
by a sequence of external clock resets. The idea is that both processes can execute the same sequence of
delay and resets, and then an action is taken and the inductive step can be applied. Let us assume that
such sequences are finite; if they are not, the two processes “diverge” at this point and have the same set of
traces. So, before enabling an action, both processes can execute the same sequences of delays (they have
the same invariant and the actions are guarded by the same condition) and external resets (neither process
has control on this part) and they both end up in the same region. Assume some sequence of delays and
resets δX1 · · · δXj ; the region after this sequence is given by succ(succ(· · · succ(r)[X1] · · · )[Xj−1])[Xj ]. If
at this point a1 is taken, then the inductive step can be applied, else if a2 is taken, we trivially get the
same trace.
The proofs for SKIP and STOP proceed in the same way.

Example 5.1. Consider the process P = {|x|}(x < 2) . (a, x ≥ 1) → STOP from Example 4.2. Assume
Ce(P ) = ∅, then we can use the rules given above to find the region traces of this process from the initial
region r0 = (x = 0):

RT (P, x = 0, tt) = {〈〉} ∪ {{x}ˆt | t ∈ RT ((x < 2) . (a, x ≥ 1) → STOP , x = 0, tt)}
RT ((x < 2) . (a, x ≥ 1) → STOP , x = 0, tt) = RT ((a, x ≥ 1) → STOP , x = 0, x < 2)
RT ((a, x ≥ 1) → STOP , x = 0, x < 2) = {〈〉} ∪ {δxˆt | t ∈ RT ((a, x ≥ 1) → STOP , 0 < x < 1, x < 2)}
RT ((a, x ≥ 1) → STOP , 0 < x < 1, x < 2) = {〈〉} ∪ {δxˆt | t ∈ RT ((a, x ≥ 1) → STOP , x = 1, x < 2)}
RT ((a, x ≥ 1) → STOP , x = 1, x < 2) = {〈〉} ∪ {δxˆt | t ∈ RT ((a, x ≥ 1) → STOP , 1 < x < 2, x < 2)}

∪{aˆt | t ∈ RT (STOP, x = 1, tt)}
RT ((a, x ≥ 1) → STOP , 1 < x < 2, x < 2) = {〈〉} ∪ {aˆt | t ∈ RT (STOP, 1 < x < 2, tt)}
RT (STOP , x = 1, tt) = {〈〉} ∪ {δxˆt | t ∈ RT (STOP , 1 < x < 2, tt)}
RT (STOP , 1 < x < 2, tt) = {〈〉} ∪ {δxˆt | t ∈ RT (STOP , x = 2, tt)}
RT (STOP , x = 2, tt) = {〈〉} ∪ {δxˆt | t ∈ RT (STOP , x > 2, tt)}
RT (STOP , x > 2, tt) = {〈〉}

since rmax = x > 2. From the equations above we get that the two maximal traces 〈{x} δx δx a δx δx δx 〉
and 〈 {x} δx δx δx a δx δx 〉 of Example 2.1 are in RT (P, r0, tt), as expected. RT (P, r0, tt) contains these two
traces and all of their possible prefixes.

5.2. Region Failures

Having defined the semantic model for region traces, the next natural step is to extend it to a finer semantics
that distinguishes between stable failures. We define region failures, again having in mind the operational
model of region automata. A region refusal set F is a subset of Σ

X
that describes the set of actions that a

process can refuse after a specified trace. The most interesting case happens when a process refuses a delay
action, as this is useful to describe timed liveness properties: refusing a delay action means refusing to let time
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elapse, so one could specify that an action a must happen before some bound by refusing to let time elapse
until a has been performed. A region failure is a pair (t, F ), where t is a region trace and F is a refusal set.
We denote the semantic domain of region failures by RFailures. Following a line of reasoning similar to that
for region traces, we obtain a new semantic model for Clocked CSP processes, given by the RegionFailures
function which is once again congruent with the operational model, and a refinement relation vRF .

5.2.1. Rules for Region Failures

RegionFailures is the function that denotes processes under the region failure model and is described as
follows, where again each term of the tuple ranges over the possible regions and invariants:

RegionFailures(P ) = (RF(P, r1, φ1),RF(P, r1, φ2), . . . ,RF(P, r1, φm),
. . .

RF(P, rn, φ1),RF(P, rn, φ2), . . . ,RF(P, rn, φm))

As for standard CSP, we introduce the maximal element for stable failures, DIV , that executes no action
and does not refuse anything, whose semantics is given by RF(DIV, r, I) = {(〈〉, {})}. The semantic domain
for region failures forms a complete lattice under reverse inclusion, like the stable failure domain of standard
CSP. We define the function RF inductively on the structure of terms.

• RF({|X|}P, r, I) ={
(〈〉, F ) | F ⊆ ΣX ∪∆ ∪ 2C\X}

∪
{(X ∪Xe)ˆt, F ) | Xe ⊆ Ce ∧ (t, F ) ∈ RF(P, r[X ∪Xe], I)}

• RF(φ . P, r, I) = RF(P, r, I ∧ φ)
• RF(STOP , r, I) =

{(Xeˆt, F ) | (t, F ) ∈ RF (STOP , r[Xe], I)} ∪
if r |= I and r 6= rmax and succ(r) |= I (time can elapse){

(〈〉, F ) | F ⊆ Σ
X \

(
2Ce ∪ {δclocks(r)}

)}
∪

∪
{
(δclocks(r)ˆt, F ) | (t, F ) ∈ RF (STOP , succ(r), I)

}
else (time cannot elapse){

(〈〉, F ) | F ⊆ Σ
X \ 2Ce

}
• RF(SKIP , r, I) = {(〈X〉, F ) | F ⊆ Σ

X} ∪
{(Xeˆt, F ) | (t, F ) ∈ RF (SKIP , r[Xe], I)} ∪
if r |= I and r 6= rmax and succ(r) |= I (time can elapse){

(〈〉, F ) | F ⊆ Σ \
(
2Ce ∪ {δclocks(r)}

)}
∪

∪
{
(δclocks(r)ˆt, F ) | (t, F ) ∈ RF (SKIP , succ(r), I)

}
else (time cannot elapse){

(〈〉, F ) | F ⊆ Σ \ 2Ce
}

• RF
(
2

N

i=1
(ai, ϕi) → Pi, r, I

)
={

(Xeˆt, F ) | (t, F ) ∈ RF
(
2

N

i=1
(ai, ϕi) → Pi, r[Xe], I

)}
∪

∪{(aiˆt, F ) | (t, F ) ∈ RF (Pi, r, tt) ∧ r |= ϕi}
if r |= I and r 6= rmax and succ(r) |= I (time can elapse){

(〈〉, F ) | F ⊆
(
ΣX \ {aj | r |= ϕj}

)
∪ 2Ci ∪

(
∆ \ {δclocks(r)}

)}
∪

{
(δclocks(r)ˆt, F ) | (t, F ) ∈ RF

(
2

N

i=1
(ai, ϕi) → Pi, succ(r), I

)}
else (time cannot elapse){

(〈〉, F ) | F ⊆
(
ΣX \ {aj | r |= ϕj}

)
∪ 2Ci ∪∆

}
• RF(uN

i=1
Pi, r, I) =

⋃N
i=1RF(Pi, r, tt)

• RF(P ||
A

Q, r, I) = {(t, F ∪G) | F \ (A ∪ {X}) = G \ (A ∪ {X})

∧ ∃t1, t2 . (t1, F ) ∈ RF(P, r, I) ∧ (t2, G) ∈ RF(Q, r, I)
∧ t synchA (t1, t2)}



16 S. Cattani and M. Z. Kwiatkowska

• RF(P \A, r, I) = {(s \A,F ) | (s,A ∪ F ) ∈ RF(P, r, I)}
• RF(f [P ], r, I) = {(t, F ) | (f−1(t), f−1(F )) ∈ RF(P, r, I)}
• RF(P ;Q, r, I) = {(s, F ) | (s, F ′) ∈ RF(P, r, I) with F ′ \ {X} = F}

∪{(sˆt, F ) | sˆ〈X〉 ∈ RT (P, r, I) ∧ (t, F ) ∈ RF(Q, after(s), tt)}

The rules for region failures are similar to those for region traces; Figure 4 illustrates the correspondence
with the operational model and Theorem 5.3 will relate the rules above with the operational model in detail.

Recursion. Again, we define the semantics of recursion Z = P as the least fixed point of P , that is,
RF(Z = P, r, I) =

⋃∞
n=0(P

n(DIV ), r, I). The following theorem states that recursion is well defined for
guarded processes.

Theorem 5.2. RegionFailures is a monotonic function with respect to all operators and the least fixed point
operator is well-defined for guarded processes.

Proof. Again, we consider only the novel operators as the result is clear for standard CSP operators.

• Reset: let us consider two processes, {|X|}P1 and {|X|}P2, such that P1 vRF P2. From the rule for reset,
the first set of region failures (

{
(〈〉, F ) | F ⊆ ΣX ∪∆ ∪ (Ci \X)

}
) is common between the two processes,

while, clearly, we have inclusion of {((X ∪Xe)ˆt, F ) | Xe ⊆ Ce ∧ (t, F ) ∈ RF(P, r[X ∪Xe], I))} if and
only if we have inclusion of the failure sets of the components, which is true by induction.

• Invariant: this case is immediate from the definition of region refusals for the invariant operator.
• External choice: we can use the same arguments as for trace semantics; the operator is defined in terms

of itself, but before using the recursive rule both processes can take the same actions and refuse the same
sets. If we analyse the rule for external choice, both processes can execute a finite sequence of delays,
possibly interleaved by external clock resets; moreover, they can refuse the same sets for each action.
Then both processes can execute the same action, under the same starting conditions, and the recursive
step can be applied, as we did for the trace semantics. The arguments used for region traces also apply
in this case.

5.3. Congruence with the Operational Semantics

We show that the denotational semantics we have given in this section is congruent with the operational
semantics of Section 4. This is not surprising since we have modelled the trace semantics on region automata,
but it is nevertheless important as it permits model checking of refinement relations using the operational
model as done for CSP [Ros94].

Region automata with external clocks. We will prove the congruence result by structural induction on
the terms. We have to show that, for every process, the failure semantics of the region automaton induced by
the timed automaton obtained with the operational semantics is the same as the failure semantics obtained
by applying the denotational rules.

In order to do this, we have to add the notion of external clocks to the definition of region automata given
in Section 2. As shown in Figure 4, the idea of external clocks is that, at any point in the computation, a
component must be able to synchronise with an external clock reset, and thus unable to refuse such actions.
Given a timed automaton A = (L, l,Σ, C, I, κ,→), we partition its set of clocks C into the set of internal
clocks Ci, that is, those clocks that are explicitly used by A, and its complement, the external clocks Ce.
Then the rules for transitions of region automata of Definition 2.2 have to be modified as follows: from any
state (l, r), (l, r) Xe−→r (l, r[Xe]), for all Xe ⊆ Ce, must be enabled and the rule for reset of clocks X ∈ Ci

must be modified by allowing external resets, that is, (l, r) X∪Xe−→ r (l, r[X ∪ Xe]), for all Xe ⊆ Ce. We kept
explicit information about the reset of the empty set of clocks in order to be able to synchronise with other
clocks. The other types of actions are not modified; moreover, note that the same actions are enabled from
different regions if they disagree only on the values of external clocks.
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Congruence. We can now prove the main result.

Theorem 5.3. The function RF is a congruence with respect to the operational semantics. That is, for all
CCSP terms in normal form, regions r and invariants I, the following holds:

RF(P, r, I) = F(R(P, r, I))

where F(R(P, r, I)) denotes the set of stable failures of the region automaton corresponding to process P
under the given starting conditions.

Proof. We prove the result by structural induction on the syntax. In Figure 4 the region automata corre-
sponding to some operators are shown, to highlight the correspondence between the operational model and
the denotational rules for region failures. We start from the base cases:

• STOP : this process can only let time elapse or synchronise on external clock resets; these are the clauses
of the rule for RF(STOP). All actions except for external clock resets or the next delay can be refused.

• SKIP : in this case the process can let time elapse (only while the invariant remains satisfied), synchronise
on external clocks or successfully terminate by executing a X action. All these are the clauses of the rules
for failures. At each step the process can refuse any action except for X and external clock resets; after
the X, any set of actions is refused.

The inductive steps:

• {|X|}φ . P : we deal with these two operators together. These operators introduce the invariant and reset
the clocks in X. From the initial state of the operational model, clocks X ∪Xe, for all Xe ⊆ Ce can be
reset, and all other actions must be refused; this corresponds to the denotational rule. After the transition,
the inductive step applies. Since we assume that we deal with processes in normal form, we know that
the sub-term P has no clock reset; this shows the importance of having a normal form, so that we have
a unique reset action.

• P = uN

i=1
Pi: in the operational model a τ action must be taken immediately, therefore the only traces

allowed are those of the components and the process can refuse everything that the components can
refuse.

• P = 2
N

i=1
(ai, ϕi) → Pi: Figure 4 helps understand the rule for external choice and why it is congruent to

the operational semantics. Similarly to SKIP , before the choice is resolved and an action aj is executed,
thus reducing to the inductive step, the operational model can reset external clocks or let time elapse;
for instance, from any state (P, r) of the figure, the automaton can either execute the actions whose
guards are satisfied, or it can let time elapse and behave like (P, succ(r)), or reset some external clocks
Xe and behave like (P, r[Xe]). All other actions are refused. All these cases correspond to the clauses of
the denotational rule.

• P = P ||
A

Q: by induction, we know that RF(P, r, tt) = F(R(P, r)) and that RF(Q, r, tt) = F(R(Q, r))

(the invariants must be true for components of the parallel operator because of the structure of the
syntax). Following standard CSP arguments, it can be shown that RF(P ||Q, r, tt) has the same traces
obtained by synchronising R(P, r) and R(Q, r) on the actions in A ∪ ∆ ∪ 2C , that is, the traces of
R(P, r) ||R(Q, r). We have to show that this region automaton corresponds to the region automaton
obtained by operational semantics of the parallel composition, that is, R(P ||Q, r) = R(P, r) ||R(Q, r).
Recall that the state space for region automata corresponding to a CCSP term is given by the terms in
CCSP+ extended with the operator free of timed automata, which we denote by CCSP+. Note the
different role in this case of free, the operator on CCSP terms, and free, the operator on the locations
of timed automata; for instance, from the operational semantics and the definition of region automata,
the region automaton corresponding to the process free(P ) has an initial reset action on the empty set
of clocks. We get R(P, r) ||R(Q, r) = ((CCSP+ × R) × (CCSP+ × R),Σ ∪∆ ∪ 2C , ((P, r), (Q, r)),−→)
and R(P ||Q, r) = ((CCSP+ ×R),Σ ∪∆ ∪ 2C , (P ||Q, r),→). Let us show that each transition of one is
matched by a transition of the other.

– ((P ′, r′), (Q′, r′)) a−→ ((P ′′, r′), (Q′′, r′)), with a ∈ A, is a transition for the parallel if both components
can make this transition, which is true if both P ′ a,ϕ1−→ P ′′ and Q′ a,ϕ2−→ Q′′ with r′ |= ϕ1 and r′ |= ϕ2.
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ax2
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x2
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ax2
R1 ||

A
R2:

R1:

R2:

Fig. 5. Two region automata, R1 with internal clock x1 and R2 with internal clock x2, and their parallel
composition R1 ||

A

R2.

This is also the condition for synchronisation for the parallel: P ′ ||Q′ a,ϕ1∧ϕ2−→ P ′′ ||Q′′ allows an a
action in the correposponding region automaton if both guards are satisfied and if both components
are willingto take an a action.

– ((P ′, r′), (Q′, r′)) a−→ ((P ′′, r′), (Q′, r′)), with a ∈ A∪{τ}, is a transition for the parallel if (P ′, r′) can
independently execute this action, which is true if P ′ a,ϕ−→ P ′′. After executing a, P ′′ can reset its set
of clocks, and Q′ will be able to synchronise on any external set of clocks. The parallel composition,
P ||Q, can make the same transition under the same conditions, that is, P ′ ||Q′ a,ϕ−→ P ′′ || free(Q′). At
this point P ′′ can reset its set of clocks, thus behaving in the same way as above.

– ((P ′, r′), (Q′, r′)) X−→ ((P ′′, r′[X]), (Q′′, r′[X])) is a transition for the product if both components can
reset the clocks in X; suppose that κ(P ′) = X1, κ(Q′) = X2 and that we can partition X into three
sets X1 ∪ X2 ∪ X3, such that X1 and X2 are internal clocks for P ′ and Q′, respectively, and X3

are external to both. Then (P ′, r) X−→ (P ′, r[X]) because P resets its clocks X1 and it is willing to
synchronise on any external clock reset; the same applies to Q′. Therefore, they can synchronise on
this action.
On the other hand, the composition P ′ ||Q′ will have X1 ∪X2 as the set of internal clocks to be reset
(κ(P ′ ||Q′) = X1 ∪ X2), and X3 as the set of external clocks on which it is willing to synchronise.
Therefore, (P ′ ||Q′, r′) will reset its own clocks X1 ∪X2, and it will also be able to synchronise on all
other clocks, thus is must be able to execute the reset X.

– ((P ′, r′), (Q′, r′)) δ−→ ((P ′, succ(r′)), (Q′, succ(r′))), for δ ∈ ∆, if both components can execute such
action, that is if they can both let time elapse and succ(r′) |= I(P ′) and succ(r′) |= I(Q′), which is
the condition for the P ′ ||Q′ to let time elapse. Therefore also (P ′ ||Q′, r′) δ−→ (P ′ ||Q′, succ(r)).

Note that it is not possible to define a transition through which the two components end up in states
with different regions. Therefore, we can consider the state spaces of the two automata as equivalent.
The inverse inclusion is shown using exactly the same arguments.
We point out that after two terms are combined by parallel composition, they join their internal clocks
into a new set of internal clocks. For this reason, they synchronise on the reset operations and they
discard all the reset operations concerning internal clocks that have not been used; if they have no more
external clocks, then there are no more “dangling” external clock reset actions (see Figure 5). Also note
that, from the structure of the syntax, the first actions that both processes execute are reset actions, on
which they immediately synchronise.

• P ;Q: this case is trivial as the failures of the sequential composition are those of the first component
(excluding those ending in X) and those of the second concatenated to the first. This is exactly what
happens in the operational model. Note we assume that Q will start the execution under a true invariant:
this is the case because the syntax of CCSP allows only P terms after the ; operator and all P terms
have no invariant.

• f [P ]: this case is trivial as the same renaming function is applied both to the failures of the semantic
model and to the transitions in the operational model.

• P \A: consider a trace t ∈ RF(P, r, I). It easy to see that if t is a trace of R(P, r, I) then t \A is a trace
of RF(P \A, r, I) as all actions in A have become τ actions. Moreover, since (t, F ∪ A) is a refusal of
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RF(P, r, I), no actions in A are enabled after t, therefore no τ action is introduced from the state after
t, which therefore remains a stable state and refuses all the actions in F that have not been hidden.

Finally, we prove the result for recursion. The proof follows very closely the proof for the congruence
theorem for CSP as described in [Ros98]. The main difference with our proof is that we have to rearrange the
original one in order to consider tuples (CCSP process, starting region, starting invariant) as our basic object.
These are the states of the labelled transition system of the operational semantics and also the arguments of
the semantic function RF . Once this correspondence is defined, the proof follows easily. So far in this proof
we have ignored that a given CCSP term P might contain free process identifiers (Ide). Therefore what we
need is a semantics that keeps track of these identifiers and introduce environments, that is, functions that
associate a set of failures to an identifier. Formally,

EnvRF : Ide ×R× B(C) −→ RFailures

So, we obtain the following semantic function for region failures:

SRF : (CCSP×R× B(C)) −→ EnvRF −→ RFailures

We define the equivalent operator for the operational semantics:

ξ : Ide −→ CCSP

where CCSP is the set of CCSP terms with no free identifiers. We need to prove that for all substitutions
ξ and all CCSP terms P ,

F(subst(R(P, r, φ), ξ)) = SRF (P, r, φ)ξ

where subst(R(P, r, φ), ξ) is the term obtained by replacing each state with free identifier (Z, r, φ) by
(ξ(Z), r, φ) and ξ(Z, r, φ) = F(R(ξ(Z), r, φ)). The proof we have given for all operators but recursion still
holds in this case; the same arguments we have used still apply if we use this new semantic function instead,
but we preferred to keep the notation simple where possible. We use the λ notation for recursion in this
proof, that is, write µZ.P for Z = P .

We prove that F(subst(R(µZ.P, r, φ), ξ)) is the least fixed point for the function Υ, mapping α ∈ RFailures,
for a given ξ, to Υ(α) = SRF (P, r, φ)ξ[α/(Z, r, φ)]. The fixed point of this function gives the semantics of
recursion. For any ξ, let µZ.P ′ the term where all free identifiers other than Z have been substituted according
to ξ, so that subst(R(µZ.P, r, φ), ξ) = R(µZ.P ′, r, φ), since Z is not free in P .

F(subst(R(µZ.P, r, φ), ξ)) =

= F(R(µZ.P ′, r, φ)) by definition of P ′

= F(subst(R(P, r, φ), ξ[µZ.P/Z])) by semantics of recursion

= SRF (P, r, φ)ξ[µZ.P/Z] inductive step (P is simpler than µZ.P )

= SRF (P, r, φ)(ξ[F(subst(R(µZ.P, r, φ), ξ))/(Z, r, φ)]) by definition of ξ

= Υ(F(subst(R(µZ.P, r, φ), ξ))) by definition of Υ

This proves that F(subst(R(µZ.P, r, φ), ξ)) is a fixed point for Υ. We now have to prove that it is the least
fixed point. The proof to show this follows exactly the proof of [Ros98], as we work with guarded recursion.

To show that it is the least fixed point, we have to show that every failure (t, F ) of F(subst(R(µZ.P, r, φ),
ξ)) is a failure of Υn({(〈〉, {})}), for some n, as {(〈〉, {})} is the minimal element in the failures model. Consider
such failure (t, F ), then there must be some t′ ∈ (Σ

X
)∗ such that t = t′ \ {τ} (t with its τ actions removed)

and subst(R(µZ.P, r, φ), ξ) t′−→ Q, with Q some other state of the automaton (the region and invariant are
not relevant). Let N = #t, then the recursion cannot be unfolded more than N times during the derivation
of (t, F ) if the process is guarded. Define the following processes:

Zn = P ′[Zn+1/Z] n ∈ N
Yn = P ′[Yn+1/Z] n ∈ {0..N − 1}
YN = DIV

Clearly, R(Z0, r, φ) has the same operational semantics as subst(R(µZ.P, r, φ), ξ); it just keeps track of the
number of times recursion has been unfolded. Yn behaves like Zn for the first N − 1 unfoldings of recursion,
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then it diverges. Since #t = N , (t, F ) must also be a behaviour of Y0, that is, (t, F ) ∈ F(Y0, r, φ). We
also have SRF (YN , rN , φN ) = {(〈〉, {})}, SRF (YN−1, rN−1, φN−1) = Υ({(〈〉, {})}), . . . and SRF (Y0, r, φ) =
ΥN ({(〈〉, {})}), because F(subst(R(P, r, φ), ξ[Q/Z])) = SRF (P, r, φ)ξ[∀r′, φ′ F(Q, r′, φ′)/(Z, r′, φ′)] for every
closed term Q. It follows that (t, F ) ∈ ΥN ({(〈〉), {}}), which is what we had to prove.

This result is of course also true for trace semantics, since stable failure semantics is strictly stronger
than region failure semantics.

6. Model Checking Clocked CSP

In this paper we give the theoretical foundations for Clocked CSP, guided by the desire to formulate the
foundations of automatic verification of timed properties for CSP processes extended with time. CCSP
cannot be model checked directly and further work is necessary to achieve this. In this section we outline
how this can be done and describe possible future research.

6.1. The Main Idea

We would like to be able to automatically verify the refinement relations described above by using the FDR2
model checker for CSP [For93]. This is possible for finite-state systems thanks to the congruence result. We
also consider only processes with no external clocks. In this section we investigate the usefulness of this
result, that is, what kind of properties can be verified by using the region refinement.

Our approach is limited, the main reason being that our semantics makes explicit references to clock
names: we argued that this was necessary in order to obtain compositionality and decidability, but this turns
out to limit the power of region refinement. Consider the following example:

P1 = {|x|}(a, x = 1) → {|x|}(a, x = 1) → SKIP
P2 = {|x|}(a, x = 1) → (a, x = 2) → SKIP

P1 and P2 would be distinguished as P1 resets clock x twice, while P2 does it only once. Clearly, we would
like to identify them (they are timed bisimilar).

A first step to overcome this problem is to define refinement “up to” clock renaming. Next, we need to
find a way to use the refinement in a meaningful way. The main idea is to distinguish between functional
properties (dependent only on actions) and timed properties (dependent on the clocks). Then we can highlight
only the timed properties we are interested in verifying by using auxiliary processes, and use refinement in
such a way that a process P refines a process Q if it preserves some timed properties and if it functionally
refines it in the traditional sense. This is similar to the idea of timewise refinement [Sch97], where system
analysis distinguishes between timed and functional aspects.

To explain this, let us consider the traces model and note that if we hid all clock actions (either resets or
delays) from traces we would be able to verify functional (untimed) refinement. If we hid only those clock
actions pertaining to a given subset of clocks, then we would be able to verify the refinement with respect to
only that subset of clocks, possibly the subset that describes the timed behaviour that we are interested in.

The hiding of clocks can be easily defined for RT and RF in the same way as we have defined hiding
and renaming: if we want to hide a set of clocks X, then all clock reset actions Y are renamed to Y \ X
if Y \ X 6= ∅ and hidden otherwise, while a delay action δY is renamed to δY \X if Y \ X 6= ∅ and hidden
otherwise. The hiding of clocks can be defined only as a top level operator for processes with no external
clocks, as otherwise most states would become unstable and different components would not be able to
synchronise. This is why we talk about refinement between two processes P and Q with respect to a certain
set of clocks X, meaning refinement in which all clocks not in X are hidden for each of the processes.

This approach is made clear by the following example.

6.2. A Model Checking Example

We give an example (also used in [OW03]) to illustrate model checking with the region semantics approach.
Assume that we want to check if a process respects the bounded invariance property 2(a ⇒ 2I¬b) where
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a, tt

c 6= a, x > n

c 6= a, b, tt

x > n a, tt

a, tt

x ≤ n
c 6= a, b,

x ≤ n
c 6= a, bc 6= a,

x

Fig. 6. The timed automaton corresponding to the bounded invariance property.

I = [0, n] is a closed interval starting from 0. This means that, whenever an action a is performed, the
process cannot execute a b for n successive time units. This is a safety property that can be specified as a
trace property. The most non-deterministic process that respects this property is:

S = (a, tt) → {|x|}S1 2

(
2

c6=a
(c, tt) → S

)
S1 = (a, tt) → {|x|}S1 2

(
2

c6=a,b
(c, x ≤ n) → S1

)
2

(
2

c6=a
(c, x > n) → S

)
The timed automaton corresponding to this process is pictured in Figure 6 (τ actions from process definition
are omitted for simplicity). Every time an a action is performed, the system moves to the top-right location,
where clock x is reset. The control stays on the right side of the system until the value of x exceeds n
and an action which is not a is performed. No b action can be executed while x ≤ n, that is, within n
time units after the last a. This is reflected in the corresponding region automaton, where no b action is
allowed until enough δ actions have occurred. The process S serves as the specification process, against
which implementation processes are checked. Given a process P , in order to check whether P refines the
specification S, we need to reset the clock x each time an action a is performed. We can do this by defining
a process T = (a, tt) → {|x|}T , where x is a clock used only by T , i.e. it is an external clock for P , that
performs this function. The refinement that we need is the following:

S vRT P ||
{a}

T

where the verification is with respect to clock x only. This works because the specification S does not allow
the execution of any b before the value of clock x is greater than n, and the passage of time is recorded by
delay actions. Clock hiding is defined as a combination of hiding and renaming on the set of traces (and the
operational model): if we hide a clock x, then we need to hide all the reset or delay actions that involve it
(or rename the action if other clocks are reset or change region at the same time). This is why we encode
the information as to which clocks cause a region change in delay actions instead of having a single generic
delay action that would not permit the hiding of clocks. Finally, our approach admits successive refinements:
considering the example above, if the following two refinements hold

S vRT P1 ||
{a}

T vRT P2 ||
{a}

T

then both P1 and P2 respect the bounded invariance property and, in addition, there is functional refinement
between P1 and P2.

The traces model suffices to verify safety properties, since one can consider all the traces that do not
contain undesired behaviour. If we want to verify liveness properties, we need to use the failures model. The
idea is the same as described above, that is, we verify refinement with respect to a subset of clocks only. It
is possible to verify properties such as strong bounded response using a similar idea.

One could attempt the above examples with FDR2, but the complexity of manually translating CCSP
processes into the equivalent CSP processes makes this task error prone and tedious. Given the complexity
of building a region automaton, and its resulting size, it would be desirable to make the process above
automatic, for which more research is needed. We tested our ideas with small toy examples in the following
way: firstly, we defined small CCSP processes, then we translated them into the equivalent timed automaton
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and, from here, into the resulting region automaton. At this point we manually specified CSP processes
equivalent to the region automata and verified refinements between them with FDR2.

6.3. Considerations

We have shown how the semantics based on regions can be used to verify refinement relations between
processes; by using appropriate additional processes and by checking refinement only with respect to some
clocks, we were able to verify both functional properties of processes and also some timed properties, though,
admittedly, a subclass of the latter. One advantage of our approach is that we have been able to obtain a
decidable semantics that also allows chains of refinements in the same model.

It is worth pointing out that in this paper we are not concerned with efficiency: region automata can be
exponential in size, thus making the checking of refinement exponential. Instead, the main objective was to
find a decidable semantics that could be used to automatically verify certain timed properties of processes
through refinement. It would be interesting to find out whether more efficient techniques, e.g. zones, can
be applied to improve our approach. Another drawback is the fact that we have to manually write process
specifications for each timed property, as we did in the example above. A possible line of research would be
to automatically generate such processes from some appropriate timed logic.

7. Conclusions

In this paper we have described a proposal for a timed extension to CSP, called Clocked CSP. We have
defined its semantics and the corresponding refinement relations, demonstrating how one could use the
model checker FDR2 to verify such relations, and also certain timed properties of systems. Future work will
include improving the complexity of model checking, and investigating whether it is possible to use known
efficient techniques for timed automata in our case. It would also be interesting to define a logic that could
be verified with our technique. Finally, we plan to compare our approach with other similar approaches to
extending CSP with real time.
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