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Abstract— Implantable cardiac pacemakers are medical de-
vices that can monitor and correct abnormal heart rhythms.
To provide the necessary safety assurance for pacemaker
software, both testing and verification of the code, as well
as testing the entire pacemaker hardware in the loop, is
necessary. In this paper, we present a hardware testbed that
enables detailed hardware-in-the-loop simulation and energy
optimisation of pacemaker algorithms with respect to a heart
model. Both the heart and the pacemaker models are encoded
in Simulink/Stateflow™ and translated into executable code,
with the pacemaker executed directly on the microcontroller.
We evaluate the usefulness of the testbed by developing a
parameter synthesis algorithm which optimises the timing pa-
rameters based on power measurements acquired in real-time.
The experiments performed on real measurements successfully
demonstrate that the testbed is capable of energy minimisation
in real-time and obtains safe pacemaker timing parameters.

I. INTRODUCTION

Implantable cardiac pacemakers are medical devices that
use electrical impulses in order to control the heart rate.
The pacemaker is implanted in patients who have a slow
heart beat (less than 60 BPM) or a block in the electrical
conduction system. One of the main challenges is to ensure
that pacemakers are safe and consume the least amount
of energy possible, since the latter reduces the frequency
of re-implantation, thus improving patients’ quality of life.
Pacemaker safety is typically achieved through developing
formal models of the embedded pacemaker software and
analysing their correctness using formal methods [4], [11],
as well as requiring that the hardware components work
within prescribed real-time bounds. Although pacemaker
devices include circuits to estimate the battery lifetime, their
parameters are typically set by the clinician based only on
the heart condition. Energy efficiency can be effectively
addressed by designing pacemaker algorithms that optimise
energy consumption by regulating the pacing rate for a
given patient, taking into account the sensed physiological
condition. Design, verification and validation of pacemaker
algorithms is a demanding task, particularly in the presence
of multiple sensors.

In this paper, we develop a hardware testbed that supports
hardware-in-the-loop simulation of model-based pacemaker
designs, using hardware circuits that consume small amounts
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Fig. 1: Parameter synthesis framework
of energy. The purpose of the testbed is to enable detailed
evaluation and energy optimisation of pacemaker algorithms
in a real hardware setting similar to that used in pacemaker
devices, with respect to a model of the heart electrical
conduction system. In particular, we focus on minimiz-
ing the energy consumption of the pacemaker algorithm
based on real measurement data and reproducing different
pathologies in the heart model. To this end, we connect
the hardware testbed to a power monitor (see Fig. 1). We
develop a hardware-in-the-loop (HIL) parameter synthesis
algorithm that reads the power measurement data and creates
at runtime a surrogate model of the power consumption
of the pacemaker. We employ an optimization algorithm
that iteratively improves the runtime model and picks the
parameter values that guarantee minimal power usage, for
a specific heart rhythm. The hardware testbed allows for
changing the pacemaker parameters in real-time, as well as
retrieving the intrinsic and paced heart beats.

Further, the hardware testbed can be integrated with a
variety of sensors to measure patient’s physiological condi-
tion, including ECG and accelerometer, and can be connected
to a sensing circuit that amplifies the signal received from
the heart tissue. Although in this work we do not consider
personalized parameters, the heart model can be adapted
to reproduce the patient’s heart rhythm by using signal
processing algorithms [10] to synchronise with ECG data.

Related work. In [7], a hardware testbed is developed
to simulate the interactions between a formal model of
the pacemaker running on a microcontroller and a heart
model implemented on a FPGA. Methods for evaluating and
optimizing energy consumption in electronic and embedded
systems include [2], [5]. Surrogate-based optimization has
been used for a number of engineering applications, includ-
ing hardware-in-the-loop frameworks (see [6], [13]).

II. METHODS

A. Hardware testbed

We have implemented the hardware testbed on Arduino
Fio, a microcontroller board based on ATmega328P. The
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Fig. 2: Architecture of the system

microcontroller runs at 3.3V and 8MHz. It has 2Kb of
SRAM, 14 digital input/output pins and 8 analog inputs. It
can be connected to a Lithium Polymer battery and has inputs
for sensor circuits.

The system consists of two communicating modules and
is depicted in Fig. 2. The pacemaker module implements
the DDD functionality, that is, pacing and sensing of both
the atrium and the ventricle. It outputs two pacing signals
AP! and VP! for the atrium and ventricle, respectively, and
receives two heart signals, Aget? and Vget?, which denote
the presence of action potential in the atrium and ventricle.
We use serial communication to create a hardware loop
between the pacemaker and the heart. The heart module is
implemented as a Simulink™ model on a PC. It has a serial
communication component for sending and receiving data
from the hardware testbed and a Stateflow™ diagram that
implements the electrical conduction system (ECS) of the
heart. The heart module receives the AP? and VP? signals
from the pacemaker module and sends back the Aget! and
Vget! signals.

B. Heart and pacemaker Stateflow™ models

We consider the formal encoding of the heart model of
[12] introduced in [1]. The Stateflow™ model consists of five
main components, depicted in Fig. 2 (bottom). The atrium
component models the propagation of the action potential in
the atrium, the sino-atrial (SA) node (natural pacemaker of
the heart) and the connection between the pacemaker atrial
lead and the heart. When the action potential reaches the
atrial lead, the atrium component generates the Aget! signal.
The atrium component propagates the so-called antegrade
impulse to the AV node through the RA conductor component.
Intuitively, the RA conductor delays the action potential
coming from the atrium. The AV node component acts
as a filter for the atrium signals directed to the ventricle
component through the RV conductor, which applies further
delays. When the action potential reaches the ventricle lead,

Fig. 3: Power monitoring setup

a Vget! signal is generated. A ventricle beat (either intrinsic
or paced) generates a retrograde impulse, which is conducted
back to the atrium. When an antegrade and a retrograde
signal collide in the same conductor, a fusion beat occurs
and the two signals are annihilated. All five components
of the heart model can be instantiated with parameters
tailored to individual patients and can reproduce various heart
arrhythmias, e.g. bradycardia (slow heart beat), tachycardia
(fast heart beat) or AV block.

We have modelled the DDD pacemaker (Fig. 2 top)
based on the Boston Scientific specification [3] and [8].
The components are: atrio-ventricular interval (AVI), which
maintains synchronisation between the atrium and ventricle;
lower rate interval (LRI) and upper rate interval (URI), which
set safe bounds for the heart rate; post ventricular atrial
refractory period (PVARP) and ventricular refractory period
(VRP), which are responsible for sensing, respectively, atrial
and ventricular impulses. Every component has associated a
timing parameter, which we discuss in Section III.

We use the Matlab™ code generation toolbox to translate
the pacemaker and heart models into C code. The pacemaker
code is uploaded into the microcontroller, while the heart
code is executed on the PC. We enable serial communication
between the hardware testbed and the PC to allow sensing
and pacing of atrial and ventricular signals.

C. Surrogate-based optimization

We describe the hardware-in-the-loop parameter synthe-
sis framework for finding pacemaker parameters yielding
optimal energy consumption values. In Fig. 3 we depict
the hardware set-up for power monitoring. We use the
Monsoon™ power monitor device to power the pacemaker
with 3.7V and record the changes in the energy consumption.

The parameter synthesis algorithm generates randomly a
set of parameter values and sends them to the hardware
testbed. The hardware testbed and the heart model run for a
given amount of time and, at the end of the simulation, the
power monitor records the power measurements and sends
them back to the synthesis algorithm. This process runs
iteratively until the best (near-optimal) parameters are found.

The synthesis algorithm uses a surrogate-driven optimiza-
tion (SDO) procedure [9]. SDO is a class of simulation-
based optimization algorithms that derive a surrogate model
of the system under study in order to reduce the number of
simulations of the original system. While the original system
can be analytically intractable or expensive to simulate, the



surrogate model is fast and amenable to optimization. In our
case, an evaluation of the objective function corresponds to
a power measurement of the pacemaker device.

SDO algorithms alternate between two main phases: ob-
tain approximate solutions x∗ by optimizing the surro-
gate model; and evaluate the original model at x∗, using
the obtained values to improve at runtime the accuracy
of the surrogate. Our surrogate model is built following
the Kriging method, which can be seen as a stochas-
tic generalization of linear regression. Given n samples
x(1), x(2) . . . , x(n), and their respective objective function
values f
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that they are drawn from a model of the form:
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)T ·~β is called the regression part, where ~g
(
x(i)

)
is the vector of basis functions and ~β is the vector of
unknown coefficients estimated through classical regression
techniques. ε is normally distributed with zero mean and
correlation dependent on a weighted Euclidean distance of
the n samples. Such weights are the parameters of the surro-
gate model, and are estimated by maximizing the likelihood
function.

The Kriging method is able to provide both an approx-
imate value for f(x∗) and an estimate of the prediction
standard error. This property is exploited in the optimization
algorithm, where the expected improvement of a point x∗

is computed assuming that its objective function value is
randomly distributed according to Eq. 1. We remark that
this method provides an approximate optimal solution and
a well-behaved approximation of the energy consumption
function. Indeed, this is accurate in the region of interest
(i.e. the optimal region of the input space), besides being
cheap to evaluate and analyse.

III. RESULTS

We synthesize the pacemaker parameters that minimize
the total electric current during 10 seconds of HIL simu-
lation. Along with the optimal parameters, we also derive
a surrogate statistical model (see Sect. II-C) that, given
the pacemaker parameters, estimates at runtime the flow
of the current. We consider two different heart conditions:
bradycardia, i.e. slow heart rate, which we reproduce by
decreasing the firing rate of the SA node in the heart
model; and a Wenckebach AV block, which causes the loss
of ventricular beats due to the progressive prolongation of
the AV conduction time. This is simulated by setting in the
heart model a high threshold voltage of the AV node, which
increases its depolarisation time.

We consider the following pacemaker parameters: TLRI
(default value 1000 ms), which sets a lower bound on the
heart rate; TAVI (default, 150 ms), which mimics the time
needed for an atrial impulse to reach the ventricle; TURI
(default, 500 ms), which sets an upper bound for the heart
rate, i.e. the time before pacing the ventricle, after an atrial
stimulus has occurred and TAVI elapsed; and TPVARP

(default, 250 ms), that is, the time during which atrial sensing
is disabled after a ventricle event, so as to filter out atrial
noise. Since we aim at synthesizing parameters that also
provide a safe heart rhythm, we add a penalty to the objective
function for parameters yielding a heart rate outside the range
[60, 120] BPM.

Figure 4 summarizes the results of energy optimization.
In the AV block case (Fig. 4a), the minimum current is
achieved at TLRI = 2047 ms and TAVI = 333 ms, even
if other regions with close power consumption values can
be observed. These values overestimate the default ones but
are able to ensure a correct heart rhythm because, with an
AV block, the heart possesses an adequate atrial frequency.
This means that the sensed atrial impulses always precede
the time-out for atrial pacing. On the other hand, over-
pacing occurs for low TLRI and TAVI, thus violating the
heart safety property and yielding high objective function
values (red region in the bottom-left corner of Fig. 4a). We
also evaluate the standard deviation (SD) associated with
the surrogate Kriging model (Fig. 4d). This analysis is of
crucial importance because, ideally, pacemaker parameters
that yield low consumption with low variability are preferred.
The variability tends to decrease close to sampled points,
even if they can be surrounded by regions with high SD.
This is the case for the obtained optimal solution. On the
other hand, parameter regions with both low current flow
and SD can be found approximately for TLRI ∈ [600, 1000]
ms and TAVI < 1000 ms, or for TLRI < 1000 ms and
TAVI ∈ [800, 1000] ms.

In the bradycardia case (Fig. 4b and 4e), the minimum to-
tal current is 1630 A for TLRI = 1276 ms and TAVI = 471
ms. In general, such parameter values are not recommended
for patients with slow SA firing rate, since TLRI = 1276
ms implies a pacing rate in the atrium of 47 BPM. Thus, the
combination of intrinsic heart impulses, albeit slow, with the
paced ones ensures the required safe heart rate. In this case,
the region approximately given by TLRI ∈ [500, 1000] and
TAVI ∈ [0, 500] yields both low current values and low SD.

In Fig. 4b and 4e, we estimate the total current without
penalizing unsafe heart parameters. The optimal parameter
values are TURI = 1899 ms and TPVARP = 1211 ms,
but we observe that low current values can be achieved
for approximately TURI > 1300 ms. Clearly, high TURI
values imply a lower pacing rate and thus lower energy
consumption, even if such parameters cannot provide an
appropriate heart rate with an AV block condition. On the
other hand, the value of TPVARP does not significantly
affect the total current.

We report that the SDO algorithm is able to synthesize
pacemaker parameters that improve the energy consumption
obtained with the default parameters. Moreover, it ensures
fast convergence to the optimal value, as shown in Fig. 5.

IV. CONCLUSION AND FUTURE WORK

We developed a hardware testbed to facilitate hardware-in-
the-loop simulation and energy optimisation of implantable
cardiac pacemakers. We implemented the pacemaker and
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(a) µ, AV block. Min current: 1618 A, at
TLRI = 2047 ms and TAVI = 333 ms.
Improvement: 1.64%.
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(b) µ, bradycardia. Min current: 1630 A, at
TLRI = 1276 ms and TAVI = 471 ms.
Improvement: 0.85%.
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(c) µ. Min current: 1615 A, at TURI =
1899 ms and TPVARP = 1211 ms.
Improvement: 10.6%.
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(d) σ for plot (a).
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(e) σ for plot (b).
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Fig. 4: Statistical estimation and optimization of the pacemaker total electrical current in 10 seconds simulation. Parameters
are TLRI and TAVI for plots a,b,d,e; and TURI and TPVARP for plots c,f. Expected values are in top plots, standard
deviations in the bottom plots. Results are obtained through SDO, with 30 initial samples. Optimal parameters are indicated
with a red cross. For each experiment, 150 unique points are sampled (white dots). In plots a,b,d,e, we add penalty of 105

A to points yielding a heart rate not in [60, 120] BPM. The relative improvement with respect to the expected total electrical
current for the default parameters is reported. Parameter ranges are [10, 2500] ms.
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Fig. 5: Best total current value at increasing number of
samples. The experiment is as in Fig. 4b.

heart models as hybrid automata in Simulink/Stateflow,
and encoded the pacemaker component into hardware. We
demonstrated the usefulness of our testbed on the synthesis
of safe and energy-efficient pacemaker parameters, by in-
tegrating power measurements in the optimization loop and
deriving predictive models of energy consumption. As future
work, we plan to generalize our approach to directly optimize
pacemaker code.
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