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Integrating Temporal Reasoning and Sampling-Based
Motion Planning for Multigoal Problems With

Dynamics and Time Windows
Stefan Edelkamp, Morteza Lahijanian , Daniele Magazzeni , and Erion Plaku

Abstract—Robots used for inspection, package deliveries, mov-
ing of goods, and other logistics operations are often required to
visit certain locations within specified time bounds. This gives rise
to a challenging problem as it requires not only planning collision-
free and dynamically feasible motions but also reasoning tempo-
rally about when and where the robot should be. While significant
progress has been made in integrating task and motion planning,
there are still no effective approaches for multigoal motion plan-
ning when both dynamics and time windows must be satisfied. To
effectively solve this challenging problem, this paper develops an
approach that couples temporal planning over a discrete abstrac-
tion with sampling-based motion planning over the continuous
state space of feasible motions. The discrete abstraction is obtained
by imposing a roadmap that captures the connectivity of the free
space. At each iteration of a core loop, the approach first invokes the
temporal planner to find a solution over the roadmap abstraction.
In a second step, the approach uses sampling to expand a motion
tree along the regions associated with the discrete solution. Exper-
iments are conducted with second-order ground and aerial vehicle
models operating in complex environments. Results demonstrate
the efficiency and scalability of the approach as we increase the
number of goals and the difficulty of satisfying the time bounds.

Index Terms—Motion and path planning, task planning,
motion control, autonomous vehicle navigation.

I. INTRODUCTION

T IME is money, and plans that lack temporal constraints
are often impractical as robots are increasingly utilized

in complex missions in home, social, and industrial applica-
tions. Planning in these cases, however, is challenging. First,
tasks are complex and highly time sensitive, often requiring a
robot to finish the task or reach certain locations within spec-
ified time bounds. Second, the robot motions must satisfy the
underlying dynamics, which are often nonlinear, noholonomic,
and high dimensional. While significant progress has been made

Manuscript received February 24, 2018; accepted June 24, 2018. Date of
publication July 6, 2018; date of current version August 2, 2018. The work of
M. Lahijanian was supported in part by EPSRC Mobile Autonomy Program
Grant EP/M019918/1 and of E. Plaku by NSF 1548406. This letter was recom-
mended for publication by Associate Editor N. Amato and Editor L. Tapia upon
evaluation of the reviewers’ comments. (Corresponding author: Erion Plaku.)

S. Edelkamp and D. Magazzeni are with the Department of Informatics,
King’s College London, London WC2R 2LS, U.K. (e-mail:,stefan.edelkamp@
kcl.ac.uk; daniele.magazzeni@kcl.ac.uk).

M. Lahijanian is with the Department of Computer Science, University of
Oxford, Oxford OX1 3QD, U.K. (e-mail:,morteza.lahijanian@cs.ox.ac.uk).

E. Plaku is with the Department of Electrical Engineering and Computer
Science, Catholic University of America, Washington, DC 20064 USA (e-mail:,
plaku@cua.edu).

Digital Object Identifier 10.1109/LRA.2018.2853642

Fig. 1. An example of a multi-goal motion-planning problem with time win-
dows where the snake model is required to reach each goal within a specified
time window. Images are best viewed in colors and on screen. Video of so-
lutions obtained by our approach for this and other scenarios can be found at
https://goo.gl/LKrU9Z

in integrating task and motion planning, there has not been any
approach for multi-goal motion planning that can effectively
take into account both dynamics and time windows. The main
contribution of this paper is the first effective approach for this
challenging problem.

While there are temporal planners [1], [2] that can handle
tight temporal constraints and plan tasks for complex systems
[3], [4], it remains difficult to incorporate motion planning with
dynamics directly into temporal planners. Some work has been
done in this direction by considering an abstract symbolic repre-
sentation of the continuous state space based on waypoints[5].
While such an approach can work with small problems with
simple dynamics, it cannot scale to large problems with high-
dimensional continuous state spaces and complex dynamics,
which is the focus of this paper. The dynamics give rise to two-
boundary value problems which often make it impossible to
precisely connect the waypoints [6].

On the other hand, motion planners based on probabilistic
sampling have made it possible to explore high-dimensional
continuous state spaces, taking into account the obstacles and
the robot dynamics [7]. Motion planners such as DROMOS [8]
can even plan motions to reach multiple goals by using a TSP
solver to guide sampling-based motion planning. DROMOS,
however, does not take into account time windows for visiting
the goals or any other temporal information.

Incorporating the temporal information is necessary in many
logistics applications where the robot has to reach certain
locations within specified time windows. Fig. 1 provides
an illustration. Time windows make planning harder since
planning decisions in the beginning can have detrimental
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effects later on as trajectories should satisfy the temporal
constraints. As an example, the robot may have to go through
narrow passages to reduce the distance traveled instead of open
areas, which are easier to plan for but could lead to longer
solutions that would violate time windows.

To effectively solve multi-goal problems with dynamics
and time windows, we develop a multi-layered framework
that uses temporal planning to guide sampling-based motion
planning. This is a key contribution over DROMOS, which
does not incorporate any temporal information. To facilitate
temporal reasoning, a discrete abstraction is obtained via a
roadmap that captures the connectivity of the free space but
ignores dynamics. To account for the dynamics, a motion tree is
expanded in the continuous state space by adding collision-free
and dynamically-feasible trajectories as branches. A key contri-
bution is the partition of the motion tree into equivalence classes
based on the discrete abstraction and temporal information.
The partition allows leveraging temporal reasoning to obtain
temporal plans that indicate the order and times for visiting the
remaining goals. This information guides the sampling-based
layer which seeks to expand each selected equivalence class
along its temporal plan. To promote efficiency, preference is
given to equivalence classes associated with short temporal
plans. When the expansion along a temporal plan becomes
challenging, penalties are applied to promote expansions along
other temporal plans. The synergy of these layers makes it
possible to intelligently explore the order of goal visits while
accounting for the dynamics and time constraints.

To the best of our knowledge, the proposed framework is the
first approach for multi-goal motion planning that can effectively
take into account both complex dynamics and time windows
over goal visits. The framework is agnostic to the inner workings
of the temporal planner, so it can be coupled with any temporal
planner. Experiments with ground and aerial vehicle models
operating in complex environments demonstrate the efficiency
and scalability of the approach as we increase the number of
goals and tighten the time bounds.

Related Work: AI planning has made great progress in han-
dling tasks and temporal constraints. PDDL2.1 [9] allows dura-
tive actions, continuous resources, and time windows. Several
temporal planners are available [1], [2], [10], [11].

For motion planning, sampling-based approaches have been
effective in solving challenging problems for high-dimensional
systems with nonlinear dynamics by selectively exploring the
continuous state space of feasible motions [7]. Such success has
been possible by considering simpler tasks, such as moving to
a goal region while avoiding collisions. In recent years, there
has been a push to increase the capabilities of sampling-based
approaches. There are now motion planners that incorporate
specifications given by Linear Temporal Logic (LTL) [12], [13].
LTL has also been used for controller synthesis [14]. LTL, how-
ever, cannot express time durations, only the order of events.
Sampling-based motion planning has also been used with a
STRIPS planner for a pick-and-place task [15], but without any
temporal constraints. As a result, none of these approaches can
be used to solve the multi-goal motion-planning problem with
time windows.

Signal Temporal Logic (STL) [16] extends LTL to allow time
windows. STL planners [17], [18] follow an optimization formu-
lation to incorporate nonlinear constraints and system dynamics.

Fig. 2. Vehicle models of a car, snake, and blimp used in the experiments.

This is computationally expensive, e.g., mixed integer-linear
programs are NP-hard, making STL planners mostly suitable
for systems with simple dynamics. For realistic systems that
have complex dynamics, the existing STL planning techniques
are impractical.

II. PROBLEM FORMULATION

1) World and Robot Models: The worldW has obstaclesO =
{O1 , . . . ,Om} and goal regionsR = {R1 , . . . ,Rn}. The robot
dynamics are described by differential equations ṡ = f(s, u),
where s ∈ S (state space) and u ∈ U (control space). The robot
motion is encapsulated by the function

snew ← SIMULATE(s, u, f, dt),

which numerically integrates f to compute the new state snew
obtained by applying u to s for one time step dt.

Fig. 2 shows the car, snake, and blimp models used in the
experiments. The motion equations of the car are defined as

ẋ = v cos (θ) cos (ψ), ẏ = v sin (θ) cos (ψ), (1)

θ̇ = v sin (ψ)/L, v̇ = uacc , ψ̇ = uω , (2)

where (x, y, θ, v, ψ) ∈ S denotes the position, orientation, ve-
locity, and steering angle; (uacc , uω ) ∈ U denotes the accelera-
tion and steering rate; and L denotes the axle length.

The vehicle can be made to fly by adding acceleration along
the z axis as control input and augmenting the motion equations
with ż = vz , v̇z = uaccz.

As another example, a snake model can be obtained as a car
pulling several trailers by setting the hitch distance H between
the links to a small value and augmenting f to include the
changes that occur to each trailer as

θ̇i =
v

H
(sin(θi−1)− sin(θ0))

i−1∏

j=1

cos(θj−1 − θj ), (3)

where θ0 = θ, N is the number of trailers, and θi is the orienta-
tion of the i-th trailer.

2) Motion Trajectory: A dynamically-feasible trajectory ζ :
{1, . . . , �} → S is obtained by starting at a state s and applying
a sequence of controls [ui ]�−1

1 in succession, where ζ(1) = s
and ∀i ∈ {2, . . . , �}:

ζ(i)← SIMULATE(ζ(i− 1), ui−1 , f, dt). (4)

The trajectory ζ is said to have reached regionRj ⊆ W at time
dt ∗ i if and only if ζ(i) positions the vehicle insideRi .

Definition 1: (Multigoal Motion Planning With Dynamics
and Time Windows) Given

� a world (bounding box)W
� a set of obstacles O = {O1 , . . . ,Om}, where Oi ⊆ W
� a set of goals G = {G1 , . . . ,Gn}, where

– Gi = 〈Ri , [tstart
i , tend

i ]〉,Ri ⊆ W
– [tstart

i , tend
i ]: time interval associated with Gi
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� a robot model 〈S,U , f,SIMULATE〉
� an initial state sinit ∈ S

compute controls [ui ]�−1
1 such that the dynamically-feasible tra-

jectory ζ : {1, . . . , �} → S obtained by starting at s and apply-
ing [ui ]�−1

i=1 in succession is collision-free and reaches every goal
Gi within the time interval [tstart

i , tend
i ].

Setting tend
i =∞ removes the upper bound. The special case

of imposing only an upper bound t on the overall task duration
can be obtained by setting each tend

i = t.

III. ABSTRACT PROBLEM SOLVING

As mentioned, our approach uses an abstraction to facilitate
temporal reasoning. We first describe our problem in the abstract
setting and the solutions that we follow. The next section de-
scribes our overall approach that integrates temporal reasoning
into sampling-based motion planning.

The problem abstraction used in this letter requires finding
a low-cost open tour over a weighted graph that starts at a
specified vertex and reaches each vertex within a specified time
bound [tstart

i , tend
i ]. This problem is referred to as TSP with

Time Windows (TSPTW) [19].
Definition 2 (TSP With Time Windows): Given
� a start vertex vstart ,
� goal vertices Vgoals = {g1 , . . . , gk} with correspond-

ing time intervals {〈g1 , t
start
1 , tend

1 〉, . . . , 〈gk , tstart
k , tend

k 〉},
where 0 ≤ tstart

i < tend
i ≤ ∞,

� edges E ⊆ V × V , where V = {vstart , g1 , . . . , gk}, and
� time durations T = {t(v ′,v ′′) : (v′, v′′) ∈ E}

compute a path σ over the graph G = (V,E, T ) and start times
〈t1 , . . . , t|σ |〉 such that σ starts at vstart and visits each vertex in
Vgoals during the corresponding time interval. Among the valid
paths (temporal plans), preference should be given to the ones
that reduce the plan duration t|σ |.

The goal vertices in the abstraction correspond to representa-
tive samples from the goal regions. As discussed in Section IV,
the temporal planner will be called many times with different
start vertices, times, and Vgoals to reflect the goal regions that
have yet to be reached from different branches of the motion
tree. Our approach can be used with any temporal planner. We
use a PDDL temporal planner and two TSPTW solvers based
on branch-and-bound and Monte Carlo search.

3) Interface With Temporal PDDL Planner: The temporal
planner gets each query as a text file (or a string) consisting
of the start vertex, a set of pairs of connected waypoints (edge
wpX wpY), and the traveltime between each pair of connected
waypoints (traveltime). Timed initial literals are used to specify
time windows. The domain includes (move wpX wpY) durative
actions, whose duration is given by the traveltime function.1 A
fragment of the query is given below:
(at v0) (edge v0 v1) (edge v0 v2)

(edge v1 v2)
(= (traveltime v0 v1) 0.8)
(= (traveltime v0 v2) 1.5)
(= (traveltime v1 v2) 0.7)
(located task1 v1) (located task2 v2)
(at 1.1 (twOpen task1)) (at 2.1

(not (twOpen task1)))

1We use the same domain presented in [5].

(at 2.3 (twOpen task2)) (at 3.3
(not (twOpen task2)))

Note that in this new framework, the temporal-planning prob-
lem only contains waypoints corresponding to locations of tasks,
as opposed to the approach in [5] where the problem includes
one waypoint for each node of the PRM [20] used to abstract
the continuous space of the motions. This allows increased scal-
ability by an order of magnitude.

The output of the temporal PDDL planner is the list of way-
points (tasks) to be visited in specific times, given how long it
takes to move between each pair of waypoints, e.g.,
v1 v3 v5 v4 v2
0.0 1.26 3.22 12.55 21.11
Note that it might be the case that the vehicle, when moving

from v5 to v4 , takes less than 12.55− 3.22 time units. The
temporal planner takes this into account and assumes the vehicle
will wait at v4 in order to satisfy the time windows (wait actions
do not need to be present in the plan).

4) Interface With Specialized TSPTW Solvers: The TSPTW
solver provides a function interface using arrays to denote the
start and end times and to output the computed tour. We have im-
plemented two specialized solvers based on branch-and-bound
and Monte Carlo search.

a) Depth-First Branch-and-Bound Search (DFBnB): DFBnB
[21] uses an upper bound U to prune the search. U can be ob-
tained via a heuristic; the lower it is, the better the pruning.
When no upper bound is known, U is set to ∞. The tour is
maintained globally and updated during backtracking. Another
global variable keeps track of the solution path. Temporal con-
straints are checked when extending the solution and possible
waiting times on early arrivals are introduced. Sorting the suc-
cessors according to increasing cost accelerates the search for
finding a solution early.

b) Monte Carlo Search: Monte Carlo search has had many
successes in games, planning, and optimization [22]. It uses re-
sults from rollouts to guide the search; a rollout is a path that
descends the search tree making a random move at each level
until reaching a leaf. As results can be strongly influenced by
the choice of appropriate policy to bias the rollouts, we employ
nested rollout with policy adaptations (NRPA) [23]. In this con-
text, TSPTW is interpreted as a game to find legal moves by
extending a partial tour. NRPA effectively learns valid and short
tours [24] by optimizing over an objective function that com-
bines the number of constraint violations with the total travel
time. The nested search trades exploration and exploitation and
the number of rollouts. The runtime is limited byO(id) rollouts,
where d is the recursion depth and i is the branching factor.

IV. OVERALL METHOD

Our approach has several components: (i) a discrete abstrac-
tion obtained via a roadmap that captures the connectivity of
the free space; (ii) expansion and partition of a motion tree into
equivalence classes based on the discrete abstraction and time
information; and (iii) use of temporal planning over the discrete
abstraction to guide sampling-based expansion of the equiva-
lence classes. A schematic illustration of the main components
and their interplay is shown in Fig. 3. Pseudocode is shown in
Alg. 1.
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Algorithm 1: Proposed Approach To Integrate Temporal
Reasoning into Sampling-Based Motion Planning.

Input: worldW; obstacles O; goals G = {G1 , . . . ,Gn},
Gi = 〈Ri , [tstart

i , tend
i ]〉; robot model 〈S,U , f〉; initial

state sinit ; time step dt; runtime limit tmax
Output: collision-free and dynamically-feasible
trajectory that reaches each goal within its time
window; or null if no solution is found

1: RM ← CONSTRUCTROADMAP(O,G) //§IV-A
2: Ξ← SHORTESTPATHS(RM,G)
3: T ← INITIALIZEMOTIONTREE(sinit)
4: X ← ∅; UPDATEEQUIVALENCECLASSES(X ,

ROOTVERTEX(T ))
5: while TIME() < tmax do
6: Xkey ← SELECTEQUIVALENCECLASS(X ) //§IV-C1

♦ Expand Xkey along temporal
plan Xkey .σ §IV-C2

7: p← SELECTTARGET(Xkey .σ)
8: v ← SELECTVERTEX(Xkey .vertices, p)
9: for several steps do

10: 〈vnew ,wait〉 ← STEPTOWARDTARGET(T ,X ,
v, p, false)

11: if vnew = null then break
12: if vnew .goals = ∅ then return ζT (vnew )
13: if ¬UPDATEEQUIVALENCECLASSES(X , vnew ) then
14: {REMOVEVERTEX(T , vnew ); break}
15: if ¬wait and NEARTARGET(snew , p) then break
16: v ← vnew

17: return null
(a) UPDATEEQUIVALENCECLASSES(X , vnew ) //§IV-B
1: Xnew ← FINDEQUIVALENCECLASS

(X , 〈vnew .q, vnew .goals, vnew .t〉)
2: if Xnew = null then
3: Xnew ← NEWEQUIVALENCECLASS

(〈vnew .q, vnew .goals, vnew .t〉)
4: A ← TEMPORALPLANNERGRAPH

(RM,Ξ, 〈vnew .q, vnew .goals〉)
5: Xnew .σ ← TEMPORALPLANNER

(A, 〈vnew .q, vnew .goals, vnew .t〉)
6: if Xnew .σ = null then return false
7: X ← X ∪ {Xnew}
8: Xnew .vertices← Xnew .vertices ∪ {vnew}
9: return true
(b) STEPTOWARDTARGET(T ,X , v, p,wait) //§IV-C2
1: u← CONTROLLER(v.s, p,wait)
2: snew ← SIMULATE(v.s, u, f, dt)
3: if COLLISION(snew ) then return null
4: vnew .[parent, s, t, goals, q]← ADDNEWVERTEX

(T , v, snew , v.t+dt, v.goals,MAP(RM, snew ))
5: if (Gi ← REACHEDGOAL(G, vnew )) �= null then
6: wait← vnew .t < tstart

i

7: if vnew .t ∈ [tstart
i , tend

i ] then
vnew .goals← v.goals− {Gi}

8: return 〈vnew ,wait〉

Fig. 3. Components of our approach and their interplay.

Fig. 4. Examples of roadmaps in 2D and 3D scenes.

A. Discrete Abstraction via a Roadmap

The discrete abstraction provides a simplified problem rep-
resentation that ignores the dynamics. It is obtained by con-
structing a roadmap RM = (VRM ,ERM ) over the configura-
tion space, where a configuration defines only the position and
orientation. The objective is to construct a dense roadmap that
connects the goals and provides many routes to reach the goals.
First, a configuration qGi is added to RM for each goal Gi by
sampling a point inside Gi and a random orientation. Leverag-
ing PRM [20], the roadmap is further populated by generating
nadd collision-free configurations and then attempting to con-
nect each configuration to its nneighs nearest neighbors. The
path between two neighboring configurations q, qneigh is de-
fined via interpolation. The edge (q, qneigh) is added to the
roadmap when the path from q to qneigh is not in collision.
This process of adding and connecting configurations is re-
peated until all the goals belong to the same connected com-
ponent in RM . In the experiments, we used nadd = 1500 and
nneighs = �log2 |VRM |�. Fig. 4 shows some examples of the
roadmaps that were created.

To facilitate temporal reasoning, each edge stores the ex-
pected time it would take the robot to travel along the associated
path. Such time is estimated based on the path distance and
expected velocity of the robot.

B. Motion-Tree Partition Based on Discrete Abstraction and
Temporal Plans

Starting at sinit , a motion tree T is expanded in the contin-
uous state space S by adding new vertices. Each vertex v ∈ T
has the fields {s, u,parent, t, goals, q}, which correspond to
a state, control, parent, time duration, remaining goals, and
nearest roadmap configuration, respectively. By construction,
v.s is a collision-free state. T is expanded from v by apply-
ing a control u to v.s and simulating the robot motion for one
time step dt. If not in collision, the new vertex vnew , where
vnew .s← SIMULATE(v.s, u, f, dt), is added to T with v as its
parent (Alg. 1 b).
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Let ζT (v) denote the trajectory obtained as the sequence of
states connecting the root of T to v. To facilitate temporal rea-
soning, v keeps track of v.t and v.goals, which denote the time
duration of ζT (v) and the set of goals that have yet to be reached
by ζT (v). The vertex v reaches goal Gi = 〈Ri , [tstart

i , tend
i ]〉 if

v.s places the robot inside the regionRi and v.t ∈ [tstart
i , tend

i ].
When v reaches Gi , Gi is removed from v.goals. Thus, ζT (v) is a
solution to the multi-goal planning problem with time windows
if v.goals = ∅.

We leverage the discrete abstraction and temporal planning to
effectively guide the expansion and partition T into equivalence
classes. The premise is that vertices that provide the same dis-
crete information should belong to the same equivalence class.
The partition seeks to determine how to expand T from v. It
requires searching the discrete abstraction to find a temporal
plan with v as the start vertex, v.t as the start time, and v.goals
as the set of unreached goals (with their time windows). For this
reason, v is mapped to the closest configuration in the roadmap
RM , denoted by v.q. We can now use the solvers described in
Section III to find a temporal plan over RM , denoted by v.σ.

Consider a new vertex vnew ∈ T . Invoking a temporal planner
from each vertex would be infeasible since T typically has tens
of thousands of vertices To address this, we introduce the notion
of equivalence classes. The vertex vnew belongs to the same
equivalence class as v when they map to the same roadmap
configuration, have the same remaining goals, and the temporal
plan associated with v is compatible with the start time vnew .t.
In other words, v.σ does not violate any time constraints when
the start time is changed from v.t to vnew .t. We can now define
the equivalence class Xv as

Xv = {vnew : vnew ∈ T ∧ v.q = vnew .q∧ (5)

v.goals = vnew .goals∧ (6)

COMPATIBLETEMPORALPLAN(G, v.σ, vnew .t) = true}
(7)

The first equivalence class is Xv i n i t . When vnew is added to
T , a check is done to determine if vnew can be added to an
existing equivalence class. If not, a new equivalence classXvn e w

is created. Pseudocode is shown in Alg. 1 a.
When creating Xvn e w , the temporal planner is invoked to

compute Xvn e w .σ using vnew .q as the start vertex, vnew .t as
the start time, and 〈q1 , . . . , qk 〉 = 〈qGi : Gi ∈ vnew .goals〉 as the
goal vertices. The time duration for any pair (q′, q′′) where
q′, q′′ ∈ {vnew .q, q1 , . . . , qk} is set to the time duration of the
shortest path inRM from q′ to q′′. This is a much smaller graph
than RM , and will get even smaller as T reaches new goals.
To generate the query efficiently, the framework precomputes
shortest-path distances using Dijkstra’s shortest-path algorithm.
This takes only a negligible fraction of the runtime in the prob-
lem settings considered here (several thousand nodes and edges
and up to 20 goals).

C. Integrated Search

After constructing the roadmap RM , initializing the motion
tree T , and creating the first equivalence classXv i n i t , the overall
approach selects an equivalence class X .v and expanding T
from X .v along the temporal plan X .σ. As T is expanded, new
equivalence classes are created. These procedures are called

repeatedly until a solution is found or the runtime limit is reached
(Alg. 1:5–17).

1) Selecting an Equivalence Class Based on Time Dura-
tion of the Temporal Plan: To promote effectiveness, priority
is given to equivalence classes associated with short temporal
plans. We take into account both the time duration when the
temporal plan is supposed to be completed as well as the num-
ber of goals in the temporal plan when defining a weight for
each equivalence class:

WEIGHT(X .v) =
αNRSELECTIONS(X .v )

DURATION(X .σ) ∗ 2|X .σ |
. (8)

The equivalence class with maximum weight is then selected
for expansion. Note the aggressiveness of the number of goals
in X .σ as we would like to quickly generate plans that reach all
the goals. We also introduce a penalty factor, αNRSELECTIONS(X .v )

(0 < α < 1), based on the number of times X .v has been pre-
viously selected for expansion. Without it, the approach could
become stuck trying to indefinitely expand from the same equiv-
alence class, even though constraints imposed by dynamics and
obstacles may make it impossible or difficult to do so. These
multi-objective criteria promote rapid expansions along short
temporal plans while allowing the approach to explore alterna-
tive plans.

2) Expanding the Equivalence Class Along the Temporal
Plan: After selecting an equivalence class X .v, the objective
becomes to expand T so that it reaches the goals in the temporal
plan X .σ in succession and within the specified time bounds
(Alg. 1 b). Let G1 be the first goal in X .σ. To reach it, the
approach attempts to expand T along the shortest path in the
roadmap from v.q to qGi . Using the shortest path allows the ap-
proach to reduce the time traveled, thus improving the likelihood
of reaching Gi in time. A proportional-derivative-integrative
(PID) controller is used to expand T toward the roadmap config-
urations in succession. For a vehicle, the PID controller would
turn the wheels toward the target and then move straight to it.
The PID controller is run for several steps. Each intermediate
state is added to T . When the branch expansion reaches a goal
Gi earlier, it waits there. The branch expansion stops when a
collision is encountered. It also stops if the new vertex vnew is
not compatible with an existing equivalence class and the tem-
poral planner is unable to compute a temporal plan for X .vnew .
When the motion-tree expansion stops, the procedure updates
the equivalence classes and their weights, and goes back to the
core loop. In the next iteration, it could possibly select a dif-
ferent equivalence class since the weights might have changed.
When the approach has difficulty expanding T along the short-
est path from v.q to qGi , then attempts are made to expand T
in some random direction. In this way, the approach explores
the sorrounding areas, which could also lead to the creation of
new equivalence classes. This interplay between temporal plan-
ning and sampling-based motion planning is the salient feature
of our approach that allows it to effectively solve challenging
problems, as the experiments demonstrate.

V. EXPERIMENTS AND RESULTS

Experiments use complex scenes (see Figs. 1 and 5) and
robot models (snake, car, blimp) with nonlinear dynamics (see
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Fig. 5. Scenes used in the experiments (see also Fig. 1).

Section II). Scalability and efficiency are evaluated by increasing
the number of goals and tightening the time bounds.

3) Temporal Planners: We use Random, Optimal, Branch-
and-bound, and Monte Carlo as specialized TSPTW solvers and
Optic [2] as the more generic temporal planner. Random iterates
over all permutations until it finds a compatible temporal plan.
Optimal does not stop early but updates the temporal plan when
a better one is found. Since Random and Optimal iterate over n!
permutations, they are mainly used for small problem instances
with up to n = 8 goals.

4) Benchmark Instances: We generate 30 instances for each
combination of scene and number of goals. Each instance is
generated by randomly placing the goals, ensuring that they do
not collide with the obstacles. To make the problems harder,
goals are not cluttered so that the vehicle has to travel for longer
distances.

Each goal is associated with a time bound. Generating the
time bounds at random leads to many unsolvable instances. For
this reason, we generated the time bounds by first generating
a random location and a tour at random. We then computed
the time ti each goal Gi in the tour would be reached when
traveling along the shortest paths in the roadmap, using the
expected velocity to convert distances to times. A time window
is then defined as [(1− ε)ti , (1 + ε)ti ] for some parameter ε. In
the experiments, the default value is ε = 0.2. In Section V-7, its
value is varied from inf to 1.0, 0.4, 0.2, 0.1, and 0.05.

For each combination of parameters, the planner is run over
all instances. Results report mean runtime and plan duration
after dropping runs that are below the first quartile or above
the third quartile to avoid the influence of outliers. Runtime
measures everything from reading the input until reporting a
solution or reaching the runtime limit (set to 20 s).

5) Runtime Results When Increasing the Number of Goals:
Fig. 6 summarizes the results when varying the number of goals
from 4 to 20. Results show the efficiency of the approach as it is
able to solve these challenging problems within a few seconds.
When coupled with Random and Optimal, the approach can
only solve small problem instances with up to 8 goals. Using the
specialized TSPTW planners makes it possible to solve larger
problem instances with up to 20 goals. Because of the time
bounds, the motion tree is partitioned not just in space and with
respect to goals that have been reached but also with respect to
time and temporal plans. As a result, more equivalence classes
are created. Even though this increases the number of calls to the
discrete planner, it allows the approach to selectively explore the
state space along routes defined by temporal plans. As a result, in
a few seconds we are able to solve challenging problems with up
to 20 goals and tight time bounds, demonstrating the importance

of integrating temporal reasoning into sampling-based motion
planning.

6) Baseline Comparisons: As discussed in Section I, there
are no other methods specifically designed to solve multi-goal
motion planning with dynamics and time windows. For baseline
comparisons, we used DROMOS [8], which was designed for
multi-goal motion planning with dynamics but does not take
time windows into account. To make it work here, we modified
DROMOS to mark a goal Gi as reached only when a motion-tree
branch reachesGi within the time window associated withGi . To
show the importance of coupling temporal planning with motion
planning, we also created a decoupled version of our approach,
which computes only one temporal plan σ in the beginning and
never changes it. The decoupled planner then seeks to expand
the motion tree from one goal to the next as defined by σ. We
also used an RRT to reach the goals in succession as defined
by σ.

Fig. 7 shows the results when comparing our approach to the
modified DROMOS and sequential planners. As expected, these
other planners have difficulty solving challenging problems,
timing out in cases with 8 or more goals. As DROMOS does
not use temporal information, it becomes increasingly difficult
to reach each goal within its time window. For the decoupled
planner and RRT, the issue is that it does not change the temporal
plan. As a result, the motion-tree expansion becomes stuck when
constraints imposed by the dynamics and obstacles make it
difficult to follow the temporal plan. In contrast, the interplay
between motion planning and temporal planning in our approach
makes it possible to expand the motion tree along alternative
temporal plans. In this way, our approach continually makes
progress toward reaching each goal within its time window.

7) Runtime Results When Adjusting the Time Windows: The
approach is also evaluated when adjusting the time windows by
varying ε from inf to 1.0, 0.4, 0.2, 0.1, and 0.05, so the time
window would be [(1− ε)ti , (1 + ε)ti ]. Results in Fig. 8 show
that the approach is most effective when there are no bounds
ε = inf or when the bounds are loose. As ε is made smaller, it
becomes increasingly challenging to find solution trajectories
that satisfy the time constraints. Nevertheless, our approach is
able to effectively find solutions even as the bounds are made
tighter. This again is due to the use of temporal planning to
effectively guide sampling-based motion planning.

8) Runtime Distribution: Fig. 9 shows the runtime distri-
bution for various components of our approach. For smaller
problem instances, the roadmap construction takes more time
since the motion-tree expansion quickly finds solutions. As the
number of goals increases, it becomes harder to find solutions
so more time is spent in the motion tree expansion and the
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Fig. 6. Runtime results when varying the discrete planner in our approach as a function of the number of goals: (a) MC (b) BNB (c) Optic (d) Random
(e) Optimal. Runtime includes everything from preprocessing to reporting that a solution is found. The thin bar on the left side indicates the preprocessing time
(constructing the roadmap and running Dijkstras single-source shortest path algorithm from each of the goals).

Fig. 7. Comparison of (a) our approach to baseline planners: (b) modified DROMOS, (c) decoupled version of our approach, and (d) SuccessionRRT, as described
in Section V-6. For these results, our approach, its decoupled version, and SuccessionRRT used MC as the temporal planner. Modified DROMOS does not use any
temporal planner. The p-values of the statistical tests when comparing our approach to the baseline planners were below 0.001.

interplay with the temporal planner. As noted earlier, the num-
ber of equivalence classes could reach into the hundreds re-
quiring that many calls to the temporal planner. One caveat is
that the the number of goals on which the temporal planner
is run becomes smaller and smaller as the tree expands and
reaches the goals. Nevertheless, there is substantial work done

by the temporal planner. The runtime distribution does not imply
that temporal planning is the bottleneck. In fact, our approach
is shifting the load from the motion-tree expansion, which is
slow, to the temporal planner which can find increasingly effec-
tive plans over the discrete abstraction to guide the motion-tree
expansion.
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Fig. 8. Runtime results when adjusting the time window of each goal by
varying ε in [(1 − ε)ti , (1 + ε)ti ]. (left) Our approach with the Monte Carlo
temporal planner over scene 4 using the blimp model and 16 goals. (middle)
Our approach with the Branch-and-bound temporal planner over scene 1 using
the snake model and 14 goals. (right) Our approach with Optic temporal planner
over scene 2 using the snake model and 12 goals.

Fig. 9. Runtime distribution as a percentage of the total runtime for the various
components of our approach (from bottom to top): (1) roadmap construction
and precomputation of shortest paths from each goal, (2) collision checking
and SIMULATE, (3) temporal planner, and (4) other. Results are shown for our
approach used with (a) Monte Carlo, (b) Branch-and-bound, and (c) Optic
temporal planners in the case of [scene 1, snake].

Fig. 10. Time duration of the solution, i.e., time to move along the solution
trajectory. Results correspond to our approach when used with (a) Monte Carlo,
(b) Branch-and-bound, and (c) Optic for scene 1 and the car model.

9) Results on the Time Duration of Solution Trajectories:
Fig. 10 shows that our approach generally finds good solution
trajectories since it is guided by temporal plans that seek to
reduce the time duration to reach all the goals.

VI. DISCUSSION

Multi-goal motion planning with dynamics and time windows
is relevant in many logistics applications. This work developed
an approach that integrated temporal reasoning into sampling-
based motion planning. Scalability and efficiency were shown
by increasing the number of goals and tightening the time win-
dows. The approach is also agnostic to the inner workings of the
temporal planner so that it can be used in conjunction with any
temporal planner. One direction for future research is to consider
oversubscription planning when, due to temporal constraints, it
is not possible to reach all the goals. The objective then is to
maximize the number of reached goals. As we looked at time
windows attached to goals, future research towards tighter inte-
gration of task and motion planning will exploit the much larger
expressiveness of PDDL temporal planners in more complex
scenarios.
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