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Abstract

Vulnerability to adversarial attacks is one of the principal hurdles to the adoption
of deep learning in safety-critical applications. Despite significant efforts, both
practical and theoretical, the problem remains open. In this paper, we analyse
the geometry of adversarial attacks in the large-data, overparametrized limit for
Bayesian Neural Networks (BNNs). We show that, in the limit, vulnerability to
gradient-based attacks arises as a result of degeneracy in the data distribution,
i.e., when the data lies on a lower-dimensional submanifold of the ambient space.
As a direct consequence, we demonstrate that in the limit BNN posteriors are
robust to gradient-based adversarial attacks. Experimental results on the MNIST
and Fashion MNIST datasets, representing the finite data regime, with BNNs
trained with Hamiltonian Monte Carlo and Variational Inference support this line
of argument, showing that BNNs can display both high accuracy and robustness to
gradient based adversarial attacks.

1 Introduction

Adversarial attacks are small, potentially imperceptible pertubations of test inputs that can lead to
catastrophic misclassifications in high-dimensional classifiers such as deep Neural Networks (NN).
Since the seminal work of |Szegedy et al.[[2013]], adversarial attacks have been intensively studied,
and even state-of-the-art deep learning models, trained on very large data sets, have been shown to
be susceptible to such attacks [Goodfellow et al.l[2014]. In the absence of effective defenses, the
widespread existence of adversarial examples has raised serious concerns about the security and
robustness of models learned from data [Biggio and Roli}[2018]]. As a consequence, the development
of machine learnig models that are robust to adversarial perturbations is an essential pre-condition for
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their application in safety-critical scenarios, where model failures have already led to fatal accidents
[Yadron and Tynanl 2016].

Many attack strategies are based on identifying directions of high variability in the loss function by
evaluating gradients w.r.t. input points (see, e.g.,|Goodfellow et al.|[2014], Madry et al.|[2017])). Since
such variability can be intuitively linked to uncertainty in the prediction, Bayesian Neural Networks
(BNNs) [Neal, [2012] have been recently suggested as a more robust deep learning paradigm, a claim
that has found some empirical support [Feinman et al., 2017} |Gal and Smith, [2018| |Bekasov and
Murrayl 2018}, [Liu et al) 2018]. However, neither the source of this robustness, nor its general
applicability are well understood mathematically.

In this paper we show a remarkable property of BNNs: in a suitably defined large data limit, we prove
that the gradients of the expected loss function of a BNN w.r.t. the input points vanish. Our analysis
shows that adversarial attacks for deterministic NN in the large data limit arise necessarily from the
low dimensional support of the data generating distribution. By averaging over nuisance dimensions,
BNNSs achieve zero expected gradient of the loss and are thus provably immune to gradient-based
adversarial attacks.

We experimentally support our theoretical findings on various BNN architectures trained with
Hamiltonian Monte Carlo (HMC) and with Variational Inference (VI) on both MNIST and Fashion
MNIST data sets, empirically showing that the magnitude of the gradients decreases as more samples
are taken from the BNN posterior. We also test this decreasing effect when approaching towards
the overparametrized case on the Half Moons dataset. We experimentally show that two popular
gradient-based attack strategies for attacking NNs are unsuccessful on BNNs. Finally, we conduct a
large-scale experiment on thousands of different networks, showing that for BNNs high accuracy
correlates with high robustness to gradient-based adversarial attacks, contrary to what observed for
deterministic NNs trained via standard Stochastic Gradient Descent (SGD) [Su et al., 2018]].

In summary, this paper makes the following contributions:

o A theoretical framework to analyse adversarial robustness of BNNs in the large data limit.

e A proof that, in this limit, the posterior average of the gradients of the loss function vanishes,
providing robustness against gradient-based attacks.

e Large-scale experiments, showing empirically that BNNs are robust to gradient-based attacks
and can resist the well known accuracy-robustness trade-off]l|

Related Work The robustess of BNNs to adversarial examples has been already observed by
Gal and Smith|[2018]], Bekasov and Murray|[2018]]. In particular, in [Bekasov and Murray, 2018|]
the authors define Bayesian adversarial spheres and empirically show that, for BNNs trained with
HMC, adversarial examples tend to have high uncertanity, while in [Gal and Smith} 2018]] sufficient
conditions for idealised BNNs to avoid adversarial examples are derived. However, it is unclear
how such conditions could be checked in practice, as it would require one to check that the BNN
architecture is invariant under all the symmetries of the data.

Empirical methods to detect adversarial examples for BNNs that utilise pointwise uncertainty have
been introduced in [Li and Gal,|[2017| [Feinman et al., 2017, Rawat et al.,[2017]]. However, most of
these approaches have largely relied on Monte Carlo dropout for posterior inference [[Carlini and
‘Wagner, 2017]]. Statistical techniques for the quantification of adversarial robustness of BNNs have
been introduced by [Cardelli et al.| 2019a]] and employed in [Michelmore et al., [2019]] to detect
erroneous behaviours in the context of autonomous driving. Furthermore, in [Ye and Zhu, 2018§|]
a Bayesian approach has been considered in the context of adversarial training, where the authors
showed improved performances with respect to other, non-Bayesian, adversarial training approaches.

2 Bayesian Neural Networks and Adversarial Attacks

Bayesian modelling aims to capture the intrinsic epistemic uncertainty of data driven models by
defining ensembles of predictors [Barber, [2012]]; it does so by turning algorithm parameters (and
consequently predictions) into random variables. In the NN scenario, for a NN f(x, w) with input x
and network parameters (weights) w, one starts with a prior measure over the network weights p(w)

'The code for the experiments can be found at: https://github.com/ginevracoal/robustBNNs|
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[Neal, 2012]. The fit of the network with weights w to the data D is assessed through the likelihood
p(D|w) [Bishop, 2006]. Bayesian inference then combines likelihood and prior via Bayes theorem
to obtain a posterior measure on the space of weights p (w|D) o< p (D|w) p (w).

Maximising the likelihood function w.r.t. the weights w is in general equivalent to minimising the
loss function in standard NNs; indeed, standard training of NNs can be viewed as an approximation
to Bayesian inference which replaces the posterior distribution with a delta function at its mode.
Obtaining the posterior distribution exactly is impossible for non-linear/non-conjugate models such
as NNs. Asymptotically exact samples from the posterior distribution can be obtained via procedures
such as Hamiltonian Monte Carlo (HMC) [Neal et al.| [2011]], while approximate samples can be
obtained more cheaply via Variational Inference (VI) [Blundell et al.| [2015]]. Irrespective of the
posterior inference method of choice, Bayesian predictions at a new input x* are obtained from an
ensemble of n NNs, each with its individual weights drawn from the posterior distribution p(w|D) :

1 n
FTID) =(F (X7 W)p(wip) = Do wi) wi~p(w|D) (D
i=1

where (-),, denotes expectation w.r.t. the distribution p. The ensemble of NNs yields the predictive
distribution of the BNN.

Given an input point x* and a strength (i.e. maximum perturbation magnitude) € > 0, the worst-case
adversarial perturbation can be defined as the point around x* that maximises the loss function
Lx,wi}
x:= argmax (L(X%, W)>p(W|D).
x| |x—x||<e

If the network prediction on x differs from the original prediction on x*, then we call x an adversarial
example. As f(x,w) is non-linear, computing X is a non-linear optimisation problem for which
several approximate solution methods have been proposed and among them, gradient-based attacks
are arguably the most prominent [Biggio and Roli, 2018|]. In particular, the Fast Gradient Sign
Method (FGSM) [Goodfellow et al.,[2014] is among the most commonly employed attacks and works
by approximating X by taking an e-step in the direction of the sign of the gradient at x. In the context
of BNNs, where attacks are against the predictive distribution of Eqn (I)), FGSM becomes

X ~ X+ esgn ((VXL(X, w)>p(w|D)) ~ x + esgn (Z Vi L(x, wz-)> )

i=1

where the final expression is a Monte Carlo approximation with samples w; drawn from the posterior
p(w|D). The expressions for the Projected Gradient Descent method (PGD) [Madry et al., 2017]]
or other gradient-based attacks are analogous. While the results discussed in Section [3] hold for
any gradient-based method, in the experiments reported in Section [5| we focus on the Fast Gradient
Sign Method (FGSM) [Goodfellow et al.| 2014]] and the Projected Gradient Descent method (PGD)
[Madry et al.,[2017]].

3 Adversarial robustness of Bayesian predictive distributions

Equation (2) suggests a possible explanation for the observed robustness of BNNs to adversarial
attacks: the averaging under the posterior might lead to cancellations in the final expectation of the
gradient. It turns out that this averaging property is intimately related to the geometry of the so called
data manifold Mp C RY, i.e. the support of the data generating distribution p(D). The key result
that we leverage is a recent breakthrough [Du et al., 2018, |[Rotskoff and Vanden-Eijnden, 2018, Mei1
et al.| 2018]] which proved global convergence of (stochastic) gradient descent (at the distributional
level) in the overparametrised, large data limit. Precise definitions can be found in the original
publications and in the supplementary material. In our setting, a fully trained, overparametrized BNN
is an ensemble of NN satisfying the conditions in [Rotskoff and Vanden-Eijnden| 2018 and at full
convergence of the training algorithm, hence they all coincide on the data manifold, but can differ
outside of it. We now state our main result whose full proof is in the supplementary material:

2For simplicity we omit the dependence of the loss from the ground truth.



Theorem 1. Let f(x,w) be a fully trained overparametrized BNN on a prediction problem with
data manifold Mp C R? and posterior weight distribution p(w|D). Assuming Mp € C* almost
everywhere, in the large data limit we have a.e. on Mp

((VxL(x,W)) p(w|p)) = 0. 3)

By the definition of the FGSM attack (Equation (2)) and other gradient-based attacks, Theorem [I]
directly implies that any gradient-based attack will be ineffective against a BNN in the limit. The
theorem is proved by first showing that in a fully trained BNN in the large data limit, the gradient of the
loss is orthogonal to the data manifold (Lemma|[I]and Corollary|[I)), then proving a symmetry property
of a fully trained BNN with an uninformative prior, guaranteeing that the orthogonal component of
the gradient cancels out in expectation with respect to the BNN posterior (Lemma [2)).

Dimensionality of the data manifold To investigate the effect of dimensionality of the data
manifold on adversarial examples, we start from the following

Lemma 1. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with a.e.
smooth data manifold Mp C RY. Let x* € Mp s.t. Bq(x*,€) C Mp, with B4(x*, €) being the
d-dimensional ball centred at x* of radius € for some € > 0. Then f(x, w) is robust to gradient-based
attacks at x* of strength < ¢ (i.e. restricted in By(x*,€)).

This is a trivial consequence of an important result proved in [Du et al.,|2018| |[Rotskoff and Vanden+
Eijnden, [2018| [Mei et al., |2018]]: at convergence, overparametrised NNs provably achieve zero loss
on the whole data manifold M p in the infinite data limit, which implies that the function f would be
locally constant at x*. A corollary of Lemmal[T]is

Corollary 1. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with data
manifold Mp C R? smooth a.e. (where the measure is given by the data distribution p(D)). If f is
vulnerable to gradient-based attacks at ©* € M p in the infinite data limit, then a.s. dim (Mp) < d
in a neighbourhood of x*.

This corollary confirms the widely held conjecture that adversarial attacks may originate from
degeneracies of the data manifold [Goodfellow et al., 2014} [Fawzi et al.| 2018]). In fact, it had been
already empirically noticed [[Khoury and Hadfield-Menell| [2018]] that adversarial perturbations often
arise in directions which are normal to the data manifold. The higher the codimension of the data
manifold into the embedding space, the more it is likely to select random directions which are normal
to it. The suggestion that lower-dimensional data structures might be ubiquitous in NN problems
is also corroborated by recent results [[Goldt et al., [2019]] showing that the characteristic training
dynamics of NNs are intimately linked to data lying on a lower-dimensional manifold. Notice that
the implication is only one ways; it is perfectly possible for the data manifold to be low dimensional
and still not vulnerable at many points.

Notice that the assumption of smoothness a.e. for the data manifold is needed to avoid pathologies
in the data distribution (e.g. its support being a closed but dense subset of R%). Additionally, this
assumption guarantees that the dimensionality of M p, is locally constant. A consequence of Corollary
[T)is that ¥x € M p the gradient of the loss function is orthogonal to the data manifold as it is zero
along the data manifold, i.e., Vx L(x,w) = V | x L(x, w), where V | » denotes the gradient projected
into the normal subspace of M at x.

Bayesian averaging of normal gradients In order to complete the proof of Theorem|[I] we there-
fore need to show that the normal gradient has expectation zero under the posterior distribution

VJ_X<L(X, W)>p(w\D) = 0.

The key to this result is the fact that, assuming an uninformative primﬂ on the weights w, all NNs that
agree on the data manifold will by definition receive the same posterior weight in the ensemble, since
they achieve exactly the same likelihood. Therefore, it remains to be proved the following symmetry
of the normal gradient at almost any point X € M p:

3Both a uniform distribution and a wide Gaussian distribution act as uninformative priors.



Lemma 2. Ler f(x,w) be a fully trained overparametrized NN on a prediction problem on data
manifold Mp C R a.e. smooth. Let X € Mp to be the perturbed input and let the normal gradient
at X be vy, (X) = V1 2 L(x,w) be different from zero. Then, in the infinite data limit and for almost
all X, there exists a set of weights w' such that

f(x,w') = f(x,w) a.e. in Mp, “4)

VL,?L()A(, W/) = 7VW()A(). (5)

The proof of this lemma rests on constructing a function satisfying (@) and (3] by suitably perturbing
locally the fully trained NN f(x, w), i.e. by adding a function ¢ which is zero on the data manifold
and enforces condition (3)) on X. Since we are in the overparametrized, large data limit, any such
function will be realisable as a NN with suitable weights choice w’'.
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Figure 1: Expected loss gradients components on 100 two-dimensional test points from the Half
Moons dataset [Rozza et al.| 2014] (both partial derivatives of the loss function are shown). Each dot
represents a different NN architecture. We used a collection of HMC BNNss, by varying the number
of hidden neurons and training points. Only models with test accuracy greater than 80% were taken
into account. We refer the reader to the supplementary material for training hyperparameters.

4 Consequences and limitations

Theorem [T] has the natural consequence of protecting BNNs against all gradient-based attacks, due
to the vanishing average of the expectation of the gradients in the limit. Its proof also sheds light
on a number of observations made in recent years. Before moving on to empirically validating the
theorem, it is worth reflecting on some of its implications and limitations:

e Theorem [I] holds in a specific thermodynamic limit, however we expect the averaging effect
of BNN gradients to still provide considerable protection in conditions where the network
architecture and the data amount lead to high accuracy and strong expressivity. In practice,
high accuracy might be a good indicator of robustness for BNNs. In Figure[I] we examine the
impact of the assumptions made in Theorem [I] by exploiting a setting in which we have access to
the data-generating distribution, the half-moons dataset [Rozza et al.,[2014]]. We show that the
magnitude of the expectation of the gradient shrinks as we increase the network’s parameters and
the number of training inputs.

e Theorem E] holds when the ensemble is drawn from the true posterior; nevertheless it is not
obvious (and likely not true) that the posterior distribution is the sole ensemble with the zero
averaging property of the gradients. Cheaper approximate Bayesian inference methods which
retain ensemble predictions such as VI may in practice provide good protection.

e Theorem [l|is proven under the assumption of uniform priors; in practice, (vague) Gaussian
priors are more frequently used for computational reasons. Once again, unless the priors are too
informative, we do not expect a major deviation from the idealised case.

e Gaussian Processes [Williams and Rasmussen, 2006] are equivalent to infinitely wide BNNs
and therefore constitute overparametrized BNNs by definition (although scaling their training
to the large data limit might be problematic). Theorem [I| provides theoretical backing to recent
empirical observations of their adversarial robustness [Blaas et al.| 2019 |Cardelli et al., | 2019b].

e While the Bayesian posterior ensemble may not be the only randomization to provide protection,
it is clear that some simpler randomizations such as bootstrap will be ineffective, as noted



empirically in [Bekasov and Murrayl, 2018]]. This is because bootstrap resampling introduces
variability along the data manifold, rather than in orthogonal directions. In this sense, the often
repeated mantra that bootstrap is an approximation to Bayesian inference is strikingly inaccurate
when the data distribution has zero measure support. Similarly, we do not expect gradient
smoothing approaches to be successful [Athalye et al., 2018, since the type of smoothing
performed by Bayesian inference is specifically informed by the geometry of the data manifold.
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Figure 2: The expected loss gradients of BNNs exhibit a vanishing behaviour when increasing the
number of samples from the posterior predictive distribution. We show example images from MNIST
(top row) and Fashion MNIST (bottom row) and their expected loss gradients wrt networks trained
with HMC (left) and VI (right). To the right of the images we plot a heat map of gradient values.
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5 Empirical Results

In this section we empirically investigate our theoretical findings on different BNNs. We train a
variety of BNNs on the MNIST and Fashion MNIST [Xiao et al., [2017] datasets, and evaluate
their posterior distributions using HMC and VI approximate inference methods. In Section[5.1] we
experimentally verify the validity of the zero-averaging property of gradients implied by Theorem

and discuss its implications on the behaviours of FGSM and PGD attacks on BNNs in Section
% In Section [5.3| we analyse the relationship between robustness and accuracy on thousands of
different NN architectures, comparing the results obtained by Bayesian and by deterministic training.
Details on the experimental settings and BNN training parameters can be found in the Supplementary
Material.

5.1 Evaluation of the Gradient of the Loss for BNNs

We investigate the vanishing behavior of input gradients - established by Theorem ] for the thermo-
dynamic limit regime - in the finite, practical settings, that is with a finite number of training data and
with finite-width BNNs. Specifically, we train a two hidden layers BNN (with 1024 neurons per layer
for a total of about 1.8 million parameters) with HMC and a three hidden layers BNN (512 neurons
per layer) with VL. These achieve approximately 95% test accuracy on MNIST and 89% on Fashion
MNIST when trained with HMC; as well as 95% and 92%, respectively, when trained with VI. More
details about the hyperparameters used for training can be found in the Supplementary Material.

Figure [2] depicts anecdotal evidence on the behaviour of the component-wise expectation of the loss
gradient as more samples from the posterior distribution are incorporated into the BNN predictive
distribution. Similarly to how in Figure[T|for the half-moons dataset we observe that the gradient
of the loss goes to zero when increasing number of training points and number of parameters, here
we have that, as the number of samples taken from the posterior distribution of w increases, all the
components of the gradient approach zero. Notice that the gradient of the individual NNs (that is
those with just one sampled weight), is far away from being zero. As shown in Theorem|[T] it is only
through the Bayesian averaging of ensemble predictor that the gradients cancel out.

This is confirmed in Figure [3] where we provide a systematic analysis of the aggregated gradient
convergence properties on 1k test images for MNIST and Fashion-MNIST. Each dot shown in the
plots represents a component of the expected loss gradient from each one of the images, for a total of
784k points used to visually approximate the empirical distribution of the component-wise expected
loss gradient. For both HMC and VI the magnitude of the gradient components drops as the number



of samples increases, and tends to stabilize around zero already with 100 samples drawn from the
posterior distribution, suggesting that the conditions laid down in Theorem [I] are approximately met
by the BNN analysed here. Notice that the gradients computed on HMC trained networks drops
more quickly toward zero. This is in accordance to what is discussed in Section4] as VI introduces
additional approximations in the Bayesian posterior computation.
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Figure 3: The components of the expected loss gradients approach zero as the number of samples
from the posterior distribution increases. For each number of samples, the figure shows 784 gradient
components for 1k different test images, from both the MNIST and Fashion MNIST datasets. The
gradients are computed on HMC (a) and VI (b) trained BNNs.

5.2 Gradient-Based Attacks for BNNs

The fact that gradient cancellation occurs in the limit does not directly imply that BNN predic-
tions are robust to gradient-based attacks in the finite case. For example, FGSM attacks are
crafted such that the direction of the manipulation is given only by the sign of the expecta-
tion of the loss gradient and not by its magnitude. Thus, even if the entries of the expectation
drop to an infinitesimal magnitude but maintains a meaningful sign, then FGSM could poten-
tially produce effective attacks. In order to test the implications of vanishing gradients on the
robustness of the posterior predictive distribution against gradient-based attacks, we compare the
behaviour of FGSM and PGIf] attacks to a randomly devised attack. Namely, the random at-
tack mimics a randomised version of FGSM in which the sign of the attack is sampled at ran-
dom. In practice, we perturb each component of a test image by a random value in {—¢,€}.
In Table |I| we compare the effectiveness of
feGSM, PGD and .of the random attack. 'V'Ve Dataset/Method ‘ Rand ‘ FGSM ‘ PGD
port the adversarial accuracy (i.e. probability
that the network returns the ground truth label MNIST/HMC 0.850 | 0.960 | 0.970
for the perturbed input) for 500 images. For MNIST/VI 0.956 | 0.936 | 0.938
each image, we compute the expected gradient Fashion/HMC 0.812 | 0.848 | 0.826
using 250 posterior samples. The attacks were Fashion/VI 0.744 | 0.834 | 0916
performed with e = 0.1. In almost all cases,

we see that the random attack outperforms the Taple 1: Adversarial robustness of BNNs trained

gradient-based attacks, showing how the van-  yith HMC and VI with respect to the random at-
ishing behaviour of the gradient makes FGSM 4,k (Rand), FGSM and PGD.

and PGD attacks uneffective. For all attacks we

used the categorical cross-entropy loss function

which is related to the likelihood used during training. Furthermore, in Table2]in the Supplementary
we also run the same evaluation for when the same network employed in Table[T]is trained with SGD
and deep ensembles. In both cases both FGSM and PGD are effective, suggesting how simply model
averaging and mini-batches are not enough to achieve a robust model.

“with 15 iterations and 1 restart.



5.3 Robustness Accuracy Analysis in Deterministic and Bayesian Neural Networks

In Section[d] we noticed that as a consequence of Theorem [I] high accuracy might be related to high
robustness to gradient-based attacks for BNNs. Notice, that this would run counter to what has been
observed for deterministic NN trained with SGD [2018]. In this section, we look at an array
of more than 1000 BNNs with different hyperparameters trained with HMC and VI on MNIST and
Fashion—MNISTﬂ We experimentally evaluate their accuracy/robustness trade-off on FGSM attacks as
compared to that obtained with deterministic NN trained via SGD based methods. For the robustness
evaluation we consider the average difference in the softmax prediction between the original test points
and the crafted adversarial input, as this provides a quantitative and smooth measure of adversarial
robustness that is closely related with mis-classification ratios [Cardelli et al.,[2019a]]. That is, for a

collection of IV test point, we compute Zjvzl [(f (%5, W) p(w|D) = (f (X5, W)) p(w| D) | oo

1o 1£.= 0-.%5) . (a) (b) ; (€=0.25)

0.6

. 1
: -
= & & W
sap
e
04 —
[ ] [ |
m = I — I

LSINW

0.2

1 - Softmax Difference

o I I I
I

0.0 - . 0.0 00 d
256 512 1024 2048 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 64.0 128.0 256.0 512.0 1024.0 075 0.80 085 090 095 100
0.4

! B R
02 T :-'%?

512 1024 1536 2048 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 64.0 128.0 256.0 512.0 1024.0 n.g.SS 070 0,75 0.80 0.85 0,90 095 100
Number of Neurons Accuracy Model width Accuracy

(&€= 0.025*%, 0.0025**) (g = 0.15%, 0.0025**)

Y

1.0 - . SGD** 1.0
. - sGD*

. HMC* .
i 1 |
P . | —
n el 11,
LN
[ ] H
: ! ]

0.6

LSINW uolyseg

1 - Softmax Difference

Figure 4: Robustness-Accuracy trade-off on MNIST (first row) and Fashion MNIST (second row) for
BNNSs trained with HMC (a), VI (b) and SGD (blue dots). While a trade-off between accuracy and
robustness occur for deterministic NNs, experiments on HMC show a positive correlation between
accuracy and robustness. The boxplots show the correlation between model capacity and robustness.
Different attack strength (¢) are used for the three methods accordingly to their average robustness.

The results of the analysis are plotted in Figure 4] for MNIST and Fashion MNIST. Each dot in the
scatter plots represents the results obtained for each specific network architecture trained with SGD
(blue dots), HMC (pink dots in plots (a)) and VI (pink dots in plots (b)). As already reported in the
literature 2018]] we observe a marked trade-off between accuracy and robustness (i.e., 1
- softmax difference) for high-performing deterministic networks. Interestingly, this trend is fully
reversed for BNNs trained with HMC (plots (a) in FigureE[) where we find that as networks become
more accurate, they additionally become more robust to FGSM attacks as well. We further examine
this trend in the boxplots that represent the effect that the network width has on the robustness of
the resulting posterior. We find the existence of an increasing trend in robustness as the number of
neurons in the network is increased. This is in line with our theoretical findings, i.e., as the BNN
approaches the over-parametrised limit, the conditions for Theorem [I] are approximately met and the
network is protected against gradient-based attacks. On the other hand, the trade-off behaviours are
less obvious for the BNNs trained with VI and on Fashion-MNIST. In particular, in plot (b) of Figure
Ewe find that, similarly to the deterministic case, also for BNNs trained with VI, robustness seems to
have a negative correlation with accuracy. Furthermore, for VI we observe that there is some trend
dealing with the size of the model, but we only observe this in the case of VI trained on MNIST
where it can be seen that model robustness may increase as the width of the layers increases, but this
can also lead to poor robustness (which may be indicative of mode collapse).

>Details on the NN architectures used can be found in the Supplementary Material.



6 Conclusions

The quest for robust, data-driven models is an essential component towards the construction of
Al-based technologies. In this respect, we believe that the fact that Bayesian ensembles of NNs can
evade a broad class of adversarial attacks will be of great relevance. While promising, this result
comes with some significant limitations. First and foremost, performing Bayesian inference in large
non-linear models is extremely challenging. While in our experiments cheaper approximations such
as VI also enjoyed a degree of adversarial robustness, albeit reduced, there are no guarantees that this
will hold in general. To this end, we hope that this result will spark renewed interest in the pursuit of
efficient Bayesian inference algorithms. Secondly, our theoretical results hold in a thermodynamic
limit which is never realised in practice. More worryingly, we currently have no rigorous diagnostics
to understand how near we are to the limit case, and can only reason about this empirically. We notice
here that several other studies [Bekasov and Murray}, 2018 |[Li and Gal, 2017}, [Feinman et al.,[2017,
Rawat et al.| [2017]] have focused on pointwise uncertainty to detect adversarial behaviour; while this
does not appear relevant in the limit scenario, it might be a promising indicator of robustness in finite
data conditions. Thirdly, we have focused on two attack strategies which directly utilise gradients in
our empirical evaluation. More complex gradient-based attacks, such as [Carlini and Wagnerl, 2016,
Papernot et al., 2017}, [Moosavi-Dezfooli et al., [2016f], as well as non-gradient based/ query-based
attacks, also exist [Ilyas et al.,[2018| [Wicker et al., 2018]]. Evaluating the robustness of BNNs against
these attacks would also be interesting.

Finally, the proof of our main result highlighted a profound connection between adversarial vul-
nerability and the geometry of data manifolds; it was this connection that enabled us to show that
principled randomisation might be an effective way to provide robustness in the high dimensional
context. We hope that this connection will inspire novel algorithmic strategies which can offer
adversarial protection at a cheaper computational cost.

7 Broader Impact

This work is a theoretical investigation in the large data limit of vulnerability of Bayesian Neural
Networks to gradient-based attacks. The main result is that, in this limit, BNNs are not vulnerable to
such attacks, as the input gradient vanishes in expectation. This advancement provides a theoretically-
provable rational for selecting BNNs in applications where there is concern about attackers performing
fast, gradient-based attacks. However, it does not provide any guarantee on the actual safety of
BNN:Ss trained on a finite amount of data. Our work may positively benefit the study of adversarial
robustness for BNNs and the investigation of properties that make these networks less vulnerable than
deterministic ones. These features could then potentially be transferred to other network paradigms
and lead to greater robustness of machine learning algorithms in general. However, there may still
exist different attacks leading BNNs to misclassifications and our contribution does not provide any
defence technique against them.

In the last few years adversarial examples have presented a major hurdle to the adoption of Al systems
in any security related field, whose applications go from self-driving vehicles to medical diagnoses.
Machine learning algorithms show remarkable performance and generalization capabilities, but they
also manifest weaknesses that are not consistent with human understanding of the world. Ultimately,
the lack of knowledge about the difference between human and machine interpretation of reality
leads to an issue of public trust. The development of procedures that are robust to changes in the
output and that represent calibrated uncertainty, would inherently be more trust-worthy and allow for
wide-spread adoption of deep learning in safety and security critical tasks.
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Additional theory background and proofs

9 Global convergence of over-parameterised DNNs

We briefly recapitulate here the main results on global convergence of over-parameterised neural
networks [Du et al.| 2018, Mei et al.| 2018}, |[Rotskoff and Vanden-Eijnden, 2018]]. We follow more
closely the notation of Rotskoff and Vanden-Eijnden|[2018] and reference to that paper for more
formal proofs and definitions.

The setup of the problem is as follows: we are using a NN f(x, w) to approximate a function f(x).
The target function is observed at points drawn from a data distribution p(D) while the weights of the
NN are drawn from a measure p(w). The support of the data distribution p(D) is the data manifold
Mp C RY. The discrepancy between the observed target function and the approximating function
is measured through a suitable loss function L(x, w) which needs to be a convex function of the
difference between observed and predicted values (e.g. squared loss for regression or cross-entropy
loss for classification).

These results require a set of technical but rather standard assumptions on the target function and the
NN units (assumptions 2.1-2.4 and 3.1 in|Rotskoff and Vanden-Eijnden! [2018]]), which we recall here
for convenience:

e The input and feature space are closed Riemannian manifolds, and the NN units are differentiable.

e The unit is discriminating, i.e. if it integrates to zero when multiplied by a function g for all
values of the weights, then g = 0 a.e. .

The network is sufficiently expressive to be able to represent the target function.

The distribution of the data input is not degenerate (Assumption 3.1).
One can then prove the following results:

e The loss function is a convex functional of the measure on the space of weights.

e Training a NN (with a finite number of units/ weights) by gradient descent approximates a
gradient flow in the space of measures. Therefore, by the Law of Large Numbers, gradient
descent on the exact loss (infinite data limit) converges to the global minimum (constant zero
loss) when the number of hidden units grows to infinity (overparameterised limit).

e Stochastic gradient descent also converges to the global minimum under the assumption that
every minibatch consists of novel examples.

In other words, Rotskoff and Vanden-Eijnden|[2018]] show that the celebrated Universal Approxima-
tion Theorem of |Cybenko| [1989] is realised dynamically by stochastic gradient descent in the infinite
data/ overparameterised limit.

10 Proofs of technical results

We provide here additional details for the theoretical results in the main text. We will assume that the
assumptions of |[Rotskoff and Vanden-Eijnden| [2018]] hold, as recalled in Section@

Lemma 3. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with a.e.
smooth data manifold Mp C R Let x* € Mp s.t. By(x*,€) C Mp, with B4(x*,€) the d-
dimensional ball centred at x* of radius € for some € > 0. Then f(x,w) is robust to gradient-based
attacks at x* of strength < ¢ (i.e. restricted in Bq(x*,€)).

Proof. By the results of Rotskoff and Vanden-Eijnden| [2018]], Mei et al.[[2018]], Du et al.| [2018] we
know that, in the large data limit, an overparametrized NN will achieve zero loss on the data manifold
once fully trained. By assumption, the data manifold contains a whole open ball centred at x*, so the
loss will be constant (and zero) in an open neighbourhood of x*. Consequently, the loss gradient
at x* will be zero in a whole open neighbourhood of x*; therefore, any attack based on moving the
input point in the direction of the gradient at x* or a nearby point (such as PGD) will fail to change
the input and consequently fail to change the output value, thus guaranteeing robustness. O
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Corollary 2. Let f(x,w) be a fully trained overparametrized NN on a prediction problem with data
manifold M p C R? smooth a.e. (where the measure is given by the data distribution p(D)). If f is
vulnerable to gradient-based attacks at x* € Mp in the infinite data limit, then a.s. dim (Mp) < d
in a neighbourhood of x*.

Proof. If f is vulnerable at x* to gradient based attacks, then the gradient of the loss at x* must be
non-zero. By Lemmal T[] we know that, if the data manifold M p has locally dimension d, then the
gradient has to be zero. Hence dim (M p) < d in a neighbourhood of x*. O

Lemma 4. Let f(x,w) be a fully trained overparametrized NN on a prediction problem on data
manifold Mp C R a.e. smooth. Let X € M p to be attacked and let the normal gradient at X be
vw(X) := Vi xL(X,w) be different from zero. Then, in the infinite data limit and for almost all X,
there exists a set of weights w' such that

fx,w') = f(x,w) a.e. in Mp,
VixL(Z,w') = —vg(R).

Proof. By assumption, the function f(x, w) is realisable by the NN and therefore differentiable. To
show that there exists (at least) one set of weights that lead to a function satisfying the constraints
in and (5), we proceed by steps. First, we observe that the loss is a functional over functions
g: Mp — [0,1], given explicitly by

Lig) = /M da' 3" p(y16) log 9(6)

Y

where 0 is a parametrisation on M p, and we have written the data generating distribution p(D) =
p(y|0)q(0) as the product of the distribution of input values times the class conditional distribution.
However, evaluating the loss over a function ¢ : R% — [0, 1] defined over the whole ambient space
only makes sense if one also defines a projection from the ambient space into the data manifold.
It is however still possible, given a function defined over the whole ambient space, to define the
loss computed on its restriction over M p and the normal gradient to the manifold by using the
ambient space metric and the decomposition it induces of the tangent space into directions along
M p and directions orthogonal. Normal derivatives of L[¢(x)] can then be defined as standard. For
any function ¢(x) on M p the normal gradient of the loss functiorﬂis

VixL(p(x)) = (stff)vbdb(x)

Assuming the functional derivative of the loss is a differentiable function, as is the case e.g. with
cross-entropy, then condition [5]can be rewritten as

h(p(%), V 1x¢(%X)) =0 (6)
for a suitably smooth function h.

To construct a function ¢ that satisfies both conditions (@) and (3), we assume that the data manifold
admits smooth local coordinates in an open ball M p N By(X, €) of radius € centred at X (which is
true for almost all points by assumption). We then define ¢(x) = f(x,w) + g(x), where g(x) is
smooth, supported in B, (X, €) and zero on the boundary of the ball 0B,4(%,¢€), and g(x) =0 Vx €
Mp N By(%,€). Therefore, ¢ satisfies condition {@) by construction. In particular we can impose
condition (@) on g in the local coordinates around X, by using a slice chart on M p N By(X, €).

In the overparametrized limit, it will always be possible to approximate the resulting function ¢ by
choosing suitable weights w’ for the NN, thus proving the Lemma. Notice that condition E]holds on
a fixed point X under attack, hence at different attack points we may in principle have different w’
satisfying the lemma.

O

®Notice that this is only defined on the data manifold M p, while x is a coordinate system in the ambient
d
space R“.
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11 Comparison with Deep Ensembles

Deep ensembles, as proposed by [Lakshminarayanan et al.[[2017], are an ensemble of neural networks
trained from different randomly selected initial conditions, which are then averaged in order to make
a prediction. In Table[2] we consider the same network used to perform the experiments in Section [5.2]
(hyper-parameters are reported in Table|4)) and run a comparison with both deterministic NNs and
deep ensembles. As expected, Bayesian NNs are more robust than deterministic ones. Moreover, we
find that deep ensembles and deterministic NNs are comparable in terms of robustness, suggesting
that simply averaging predictions for different weight initialization and mini-batching is not enough

to achieve a robust model.

Test FGSM PGD
Model
accuracy | accuracy | accuracy
Deterministic NN 97.69 21.19 1.45
Ensemble NN 99.4 20.6 0.3
Bayesian NN 96.1 90.0 89.8

Table 2: FGSM and PGD attacks on the network employed in Section We compare a deterministic
NN, a deep ensemble NN (of size 100), and a BNN (trained with VI). Attacks are performed on 1k
test points from the MNIST dataset. We observe that VI trained network achieve better robustness

against PGD and FGSM.

12 Training hyperparameters for BNNs

Half moons grid search

Posterior samples

{250}

HMC warmup samples

{100, 200, 500}

Training inputs

{5000, 10000, 15000}

Hidden size

{32, 128, 256, 512

Nonlinear activation

Leaky ReL.U

Architecture

2 fully connected layers

Figure 5: Hyperparameters for training BNNs in Figure

Training hyperparameters for HMC

Dataset MNIST Fashion MNIST
Training inputs 60k 60k

Hidden size 1024 1024

Nonlinear activation ReLU ReLU
Architecture Fully Connected Fully Connected
Posterior Samples 500 500

Numerical Integrator Stepsize 0.002 0.001

Number of steps for Numerical Inte- || 10 10

grator

Table 3: Hyperparameters for training BNNs using HMC in Figures [2|and
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Training hyperparameters for VI

Dataset MNIST Fashion MNIST
Training inputs 60k 60k

Hidden size 512 1024

Nonlinear activation Leaky ReLU Leaky ReLLU
Architecture Convolutional Convolutional
Training epochs 5 10

Learning rate 0.01 0.001

Table 4: Hyperparameters for training BNNs using VI in Figures [2{and

HMC MNIST/Fashion MNIST grid search

Posterior samples

{250, 500, 750%}

Numerical Integrator Stepsize

{0.01, 0.005%, 0.001, 0.0001}

Numerical Integrator Steps

{10%*, 15, 20}

Hidden size

{128, 256, 512*}

Nonlinear activation

{relu*, tanh, sigmoid}

Architecture

{1%*,2,3} fully connected layers

Table 5: Hyperparameters for training BNNs with HMC in Figure E} * indicates the parameters used

in Table 1 of the main text.

SGD MNIST/Fashion MNIST grid search

Learning Rate

{0.001%}

Minibatch Size

{128, 256*, 512, 1024}

Hidden size

{64, 128, 256, 512, 1024%*}

Nonlinear activation

{relu*, tanh, sigmoid}

Architecture

{1*,2,3} fully connected layers

Training epochs

{3,5%,7,9,12,15} epochs

Table 6: Hyperparameters for training BNNs with SGD in Figure E} * indicates the parameters used

in Table 1 of the main text.

SGD MNIST/Fashion MNIST grid search

Learning Rate

{0.001, 0.005, 0.01, 0.05}

Hidden size

(64,128, 256, 512}

Nonlinear activation

{relu, tanh, sigmoid}

Architecture

{2, 3,4, 5} fully connected layers

Training epochs

{5, 10, 15, 20, 25} epochs

Table 7: Hyperparameters for training BNNs with SGD in Figure
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