
Strategy Synthesis for Markov Decision Processes and
Branching-Time Logics

Tomá̌s Bŕazdil⋆ and Vojťech Forejt⋆⋆

Faculty of Informatics, Masaryk University,
Botanicḱa 68a, 60200 Brno,

Czech Republic.
{brazdil,forejt}@fi.muni.cz

Abstract. We consider a class of finite1 1

2
-player games (Markov decision pro-

cesses) where the winning objectives are specified in the branching-timetemporal logic
qPECTL∗ (an extension of the qualitative PCTL∗). We study decidability and com-
plexity of existence of a winning strategy in these games. We identify a fragment of
qPECTL∗ called detPECTL∗ for which the existence of a winning strategy is decid-
able in exponential time, and also the winning strategy can be computed in exponential
time (if it exists). Consequently we show that every formula of qPECTL∗ can be trans-
lated to a formula of detPECTL∗ (in exponential time) so that the resulting formula is
equivalent to the original one over finite Markov chains. From this we obtain that for
the whole qPECTL∗, the existence of a winning finite-memory strategy is decidable in
double exponential time. An immediate consequence is that the existence ofa winning
finite-memory strategy is decidable for the qualitative fragment of PCTL∗ in triple ex-
ponential time. We also obtain a single exponential upper bound on the sameproblem
for the qualitative PCTL. Finally, we study the power of finite-memory strategies with
respect to objectives described in the qualitative PCTL.

1 Introduction

We study1 1
2 -player games (Markov decision processes), which have beenapplied in various

contexts, from computer science and engineering (models ofnetwork systems, models of
industrial processes, etc.) to biology [13, 9, 12]. A1 1

2 -player gameG is a directed graph
whose vertices are partitioned into two disjoint setsV2 andV©. For each vertex ofV© there
is a fixed probability distribution on outgoing transitions. A play is initiated by putting a
token on some vertex. This token is then moved from vertex to vertex by one ‘real’ player2
and one ‘virtual’ player©, who choose their moves in vertices ofV2 andV©, respectively.
Player© chooses his moves randomly according to the fixed distribution. Player2 chooses
his moves according to astrategy. Generally, strategies may depend on history of the play
and may be either randomized or deterministic (we denote HR and HD the classes of the
history-dependent randomized and deterministic strategies, respectively). In this paper we
also considerfinite-memorystrategies that depend on a finite-state information about the
history of the play1. The classes of randomized and deterministic finite-memorystrategies
are denoted FR and FD, respectively.
⋆ Supported by “Institute for Theoretical Computer Science (ITI)”, project No. 1M0545.

⋆⋆ Supported by the Czech Science Foundation, project No. 102/05/H050.
1 More formally, a finite-memory (randomized) strategy is represented by a deterministic finite-state

automaton and a function which assigns a distribution on outgoing transitions tothe current vertex
of the play and the state of the automaton after reading the history of the play.

Once player2 fixes his strategyσ for the gameG, we obtain a Markov chainG(σ)

where the states are finite paths inG, andws
x
→ wst if and only if (s, t) is a transition inG

andx is either the fixed probability assigned to(s, t) (if s ∈ V©), or the probability of(s, t)
assigned by player2 in ws. Now we may ask whether the resulting Markov chainG(σ)
satisfies a given property. Awinning objectiveis a property of Markov chains to be achieved
by player2. A strategyσ is calledwinning if the Markov chainG(σ) satisfies the winning
objective.

Winning objectives can be expressed using various formalisms. For example, various
kinds of linear-time objectives, such as Büchi, parity, and Rabin objectives, were intensively
studied in the past (see, e.g., [7, 8, 6]). In this paper we concentrate on a different kind of
winning objectives specified by formulae of a branching-time temporal logic.

Let us note that the semantics of branching-time formulae can be defined directly for1 1
2 -

player games (see, e.g., [2]). In that case strategies are chosen separately for each temporal
operator occurring in a formula. This approach is differentfrom the one taken in this paper
and results on model-checking such games are not related to our results.

The problem of solving games with branching-time winning objectives was for the first
time studied in [11], where the existence of a winning memoryless randomized strategy
for objectives expressed in PCTL (see, e.g., [10]) was shownto be inPSPACE. Results of
[11] were substantially extended in [3] where also history dependent strategies were taken
into account. The most relevant results of [3] are the following. First, the existence of a
winning HD (and also HR, FR and FD) strategy is undecidable for 1 1

2 -player games with
objectives specified in (quantitative) PCTL. Second, the problem of existence of a winning
HD strategy isEXPTIME -complete for1 1

2 -player games with objectives specified in the
L(F=1, G=1, F>0) 2 fragment of the qualitative PCTL.

The question is whether the positive result about the fragment L(F=1, G=1, F>0) can
be extended to more expressive logics at least for finite-memory strategies. In this paper
we address this problem and show that the existence of a winning finite-memory strategy
is decidable even for a powerful temporal logic qPECTL∗. We also show that the winning
finite-memory strategy can always be effectively synthesized. This problem is well motivated
because in practice one usually does not only want to know whether a strategy exists but also
wants to implement the strategy. Finite-memory strategieshave the advantage of being easy
to implement.

The logic qPECTL∗ is the qualitative fragment of the logic PECTL∗ defined in [5].
PECTL∗ is a generalization of the logic PCTL∗ (see, e.g., [5, 2]) which is a probabilistic
version of the well-known logic CTL∗. Of course, PECTL∗ contains the logic PCTL. Hence,
our results on qPECTL∗ have immediate consequences for thequalitativePCTL∗ (denoted
qPCTL∗) and thequalitativePCTL (denoted qPCTL).

Our contribution: The main results of this paper are summarized below.

– We show that the existence of a winning FR (or FD) strategy forobjectives described
by qPCTL, qPECTL∗, and qPCTL∗ formulae is decidable in single exponential, double
exponential, and triple exponential time, respectively. We also show that the winning
strategy can effectively be computed with the same complexity. Moreover, we show that
all these problems can be solved in time polynomial in the size of games.

2 Formulae ofL(F=1
, G=1

, F>0) are built up from literals using conjunction, disjunction, and the
temporal operators F=1

, G=1
, F>0 (negation is applied only to atomic propositions).

2

– In the course of the proof of the above results we identify a fragment of qPECTL∗,
called detPECTL∗, and show that the existence of a winning HR (or HD) strategy for
objectives described in detPECTL∗ is decidable in time exponential in the size of for-
mulae and polynomial in the size of games. The fragment detPECTL∗ contains the logic
L(F=1, G=1, F>0), and hence our results improve on the corresponding resultsof [3]
by considering a more general logic, randomized strategies, and providing a polynomial
time upper bound in the size of games.

– Finally, it has been shown in [3] that an infinite-memory strategy is needed for satisfying
a formula of the fragmentL(G>0, F>0) of qPCTL. We extend this result and provide
(in a sense) complete classification of the power of finite-memory strategies for various
fragments of qPCTL.

Plan of the paper:In Section 2 we review basic definitions for Markov chains andgames. We
also introduce the logic qPECTL∗ and its fragments. In Section 3 we consider the problem of
existence of a winning history-dependent strategy for objectives described in detPECTL∗. In
Section 4 we consider the same problem for finite-memory strategies and qPECTL∗. Finally,
Section 5 deals with the classification of fragments of qPCTLwith respect to the power of
finite-memory strategies.

2 Basic Definitions

In this section we introduce basic notions of Markov chains,probabilistic temporal logics,
and games. Most definitions (except the definition of qPECTL∗) are taken from [3].

We start by recalling basic notions of probability theory. Let A be a finite set. Aproba-
bility distributiononA is a functionf : A → [0, 1] such that

∑
a∈A f(a) = 1. A distribution

f is Dirac if f(a) = 1 for somea ∈ A. The set of all distributions onA is denotedD(A).
A σ-field over a setX is a setF ⊆ 2X that includesX and is closed under complement

and countable union. Ameasurable spaceis a pair(X,F) whereX is a set calledsample
spaceandF is aσ-field overX. A probability measureover a measurable space(X,F) is a
functionP : F → R

≥0 such that, for each countable collection{Xi}i∈I of pairwise disjoint
elements ofF ,P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreoverP(X)=1. A probability spaceis

a triple(X,F ,P) where(X,F) is a measurable space andP is a probability measure over
(X,F).

2.1 Markov Chains

A Markov chainis a tripleM = (S,→,Prob) whereS is a finite or countably infinite set of
states, → ⊆ S × S is a transition relation, andProb is a function which to each transition
s → t of M assigns its probabilityProb(s → t) ∈ (0, 1] so that for everys ∈ S we have∑

s→t Prob(s → t) = 1.
In the rest of this paper we also writes

x
→ t instead ofProb(s → t) = x. A path in M

is a finite or infinite sequencew = s0, s1, . . . of states such thatsi → si+1 for everyi. The
lengthof a given pathw is the number of transitions inw. We also usew(i) to denote the
statesi of w (by writing w(i) = s we implicitly impose the condition that the length ofw is
at leasti). The prefixs0, s1, . . . , si of w is denoted bywi. A run is an infinite path. The sets
of all finite paths and all runs ofM are denotedFPath andRun, respectively. Similarly, the

3

sets of all finite paths and runs that start in a givens ∈ S are denotedFPath(s) andRun(s),
respectively.

We say that a setC ⊆ S is a bottom strongly connected component (BSCC) ofM if for
all s, t ∈ C there is a path froms to t in M , and whenever there is a path froms ∈ C to
t ∈ S, thent ∈ C. Note that if we restrict the set of states ofM to a BSCCC, we obtain a
Markov chain.

Eachw ∈ FPath determines abasic cylinderRun(w) which consists of all runs that
start with w. To everys ∈ S we associate the probability space(Run(s),F ,P) where
F is theσ-field generated by all basic cylindersRun(w) wherew starts withs, andP :
F → [0, 1] is the unique probability measure such thatP(Run(w)) = Πm−1

i=0 xi where
w = s0, · · · , sm andsi

xi→ si+1 for every0 ≤ i < m (if m=0, we putP(Run(w)) = 1).

2.2 The Logic qPECTL∗

A Büchi automaton is a tupleB = (B,Σ, δ, qI , F), whereΣ is a finitealphabet, B is a
finite set ofstates, δ ⊆ B × Σ × B is a transition relation(we write q

a
→ q′ instead of

(q, a, q′) ∈ δ), qI is theinitial state, andF ⊆ B is a set of accepting states. The automaton
B is deterministicif for eachq ∈ B and eacha ∈ Σ, there is at most oneq′ ∈ B such that
q

a
→ q′.

The symbolΣω denotes the set of all infinite words over the alphabetΣ. A computation
of B on a wordw = w(0)w(1) · · · ∈ Σω is a sequenceω = q0, q1, . . . of states ofB such

thatq0 = qI and for alli ≥ 0 we haveqi
w(i)
→ qi+1. A computationω of B is acceptingif

a state ofF occurs infinitely many times inω. The automatonB accepts a wordw ∈ Σω if
there exists an accepting computation ofB on w. The set of allw ∈ Σω accepted byB is
denotedL(B).

The logic qPECTL∗ has the following syntax:

Φ ::= a | ¬a | B∼̺(Φ1, · · · , Φn)

Herea ranges over the setAp of atomic propositions,∼̺ ∈ {=1, <1, >0,=0}, n ≥ 1, B is
a Büchi automaton over an alphabetΣ ⊆ 2{1,...,n}, and eachΦi is a qPECTL∗ formula.

The semantics of qPECTL∗ formulae is defined below. LetM = (S,→,Prob) be a
Markov chain and letν : Ap → 2S be a valuation. We defines |=ν a iff s ∈ ν(a), and
s |=ν ¬a iff s 6∈ ν(a). The semantics of a qPECTL∗ formulaΦ = B∼̺(Φ1, · · · , Φn), where
B is a Büchi automaton with the alphabetΣ ⊆ 2{1,...,n}, is defined as follows: First, we can
assume that the semantics of the qPECTL∗ formulaeΦ1, . . . , Φn has already been defined.
For every states of M , let Run(s, Φ) be the set of all runsw ∈ Run(s) satisfying the
following condition: There is a wordv ∈ L(B) such that for alli ≥ 0 and allk ∈ v(i) holds
w(i) |=ν Φk. We stipulate thats |=ν Φ if and only ifP(Run(s, Φ)) ∼ ̺.

We say that formulaeΦ andΨ areequivalent(Φ ≡ Ψ) iff for each states of an arbitrary
Markov chainM and for arbitrary valuationν holds:s |=ν Φ iff s |=ν Ψ .

Remark 1.Note that once a formulaB∼̺(Φ1, . . . , Φn), a Markov chainM , and a valuation
ν are fixed, we can say thatB (or any automaton with the alphabetΣ ⊆ 2{1,...,n}) accepts a
runw of M if there is a wordv ∈ L(B) such that for alli ≥ 0 we have

∧
k∈v(i) w(i) |=ν Φk.

Then, e.g.,P(Run(s, Φ)) is the probability thatB accepts a run ofRun(s). We can also say
that the automatonB goes from a stateq0 to qi+1 after reading a finite paths0, . . . , si in M

4

if there is a sequenceq0, . . . , qi+1 of states ofB and a wordX0, . . . ,Xi such thatqj
Xj

→ qj+1

and
∧

k∈Xj
w(j) |=ν Φk for all 0 ≤ j ≤ i.

For computational purposes we assume that each formula is represented as a directed
acyclic multigraph obtained from the parse tree of the formula by merging similar sub-
trees. For example, the formulaB∼̺

1 (B∼̺
1 (a, a, a),B∼̺

1 (a, a, a),B∼̺
2 (B∼̺

1 (a, a, a))) is rep-
resented by a multigraph with four nodesn1, n2, n3, n4 labeled withB∼̺

1 ,B∼̺
2 ,B∼̺

1 , a, re-

spectively, and transitions:n1
1,2
→ n3 (here the numbers1, 2 stand for the first and the second

argument),n1
3
→ n2, n2

1
→ n3, n3

1,2,3
→ n4. Heren1 corresponds to the whole formula.

Expressing other operators in qPECTL∗. The logic qPECTL∗, as defined above, is very
powerful and succinct, and hence ideal for theoretical considerations. However, it is easier
to express complex properties when we have some additional operators. We show that all
operators of qPCTL can be expressed in qPECTL∗. We define automataB∧, B∨ as follows:

B∨:
{1}, {2}

∅

B∧:
{1, 2}

∅

It is easy to see that formulaeB=1
∨ (Φ1, Φ2) andB=1

∧ (Φ1, Φ2) are equivalent to logical dis-
junction and conjunction, respectively, ofΦ1 and Φ2. Hence, in what follows we write
Φ1 ∨ Φ2 andΦ1 ∧ Φ2 instead ofB=1

∨ (Φ1, Φ2) andB=1
∧ (Φ1, Φ2), respectively.

We also define B̈uchi automata representing ‘next’, ‘until’ and ‘release’ (the dual of
‘until’) operators:

BX :

∅

∅ {1}
BU:

{2}

∅{1}

BR:
{1, 2}

∅{2}

We write X∼̺Φ1, Φ1U∼̺Φ2 and Φ1R∼̺Φ2 instead of B∼̺
X (Φ1), B∼̺

U (Φ1, Φ2) and
B∼̺

R (Φ1, Φ2), respectively. We also define ‘future’ and ‘globally’ operators as follows: Let
tt andff stand fora ∨ ¬a anda ∧ ¬a, respectively, for somea ∈ Ap. Let F∼̺Φ stands for
ttU∼̺Φ, and let G∼̺Φ stands forffR∼̺Φ.

Given a formula of the formB∼̺(Φ1, . . . , Φn), we write¬B∼̺(Φ1, . . . , Φn) to stand for
B1̺(Φ1, . . . , Φn), where ‘1̺’ is ‘ =1’, ‘ <1’, ‘ >0’, or ‘=0’, depending on whether ‘1̺’ is
‘<1’, ‘ =1’, ‘ =0’, or ‘>0’, respectively. This clearly corresponds to the logical operation of
negation. Note thatΦ1R∼̺Φ2 is equivalent to¬(¬Φ1U∼̺¬Φ2).

Now qPCTL is the fragment of qPECTL∗ consisting of all formulae of the following
form:

Φ ::= a | ¬a | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | X∼̺Φ1 | Φ1U∼̺Φ2 | Φ1R∼̺Φ2

Here∼̺ ranges over{=1,=0, <1, >0}.
One can also show that all formulae of qPCTL∗ (for definition see, e.g., [5]) can be trans-

lated to equivalent qPECTL∗ formulae. This translation employs the algorithm for translat-
ing LTL formulae to B̈uchi automata (see, e.g., [15]) which results in a single exponential
blow-up in the size of formulae.

5

The logic detPECTL∗. Now we define thedeterministicfragment of qPECTL∗ (called
detPECTL∗), which generalizes the fragmentL(F=1, F>0, G=1) defined in [3] (see also
Section 5). This fragment (together with Theorem 6) plays the crucial role in the proof of
Theorem 8.

Given an automatonB with an alphabetΣ ⊆ 2{1,...,n}, we say that a stateq of B is

terminal iff there is a transitionq
∅
→ q and no transition of the formq

X
→ q′ whereq 6= q′

in B. A formulaΦ of qPECTL∗ is a detPECTL∗ formula if all subformulae ofΦ of the form
B∼̺(Φ1, · · · , Φn) satisfy the following conditions:

1. ‘∼̺’ is either ‘=1’ or ‘ >0’;
2. if ‘∼̺’ is ‘ >0’, then all accepting states ofB are terminal;
3. All statesq of B satisfy the following condition: Fordistinct nonterminalstatesq′ and

q′′ such thatq
A
→ q′ andq

B
→ q′′, we have that

∧
i∈A∪B Φi is not satisfied in any state of

any Markov chain for any valuation (this must hold even forA = B).

Observe that X=1, X>0, U=1, U>0, and R=1 are operators of detPECTL∗.

2.3 Games and Strategies

A 1 1
2 -player game(or Markov decision process) is a tupleG = (V,E, (V2, V©),Prob)

whereV is a finite set ofvertices, E ⊆ V ×V is a set oftransitions, (V2, V©) is a partition of
V , andProb is aprobability assignmentwhich to eachv ∈ V© assigns a positive probability
distribution on the set of its outgoing transitions. For technical convenience, we assume that
each vertex has at least one outgoing transition.

The game is played by a player2 who selects the moves in theV2 vertices, and a “vir-
tual” player© who selects the moves in theV© vertices according to the corresponding
probability distribution.

A strategyfor player2 is a functionσ which to eachvs ∈ V ∗V2 assigns a probability
distribution on the set of outgoing transitions ofs. We say that a strategyσ is deterministic
if σ(vs) is a Dirac distribution for eachvs ∈ V ∗V2. Consistently with [1, 11, 3], we use HR
and HD to denote the classes of all (history-dependent randomized) strategies and (history-
dependent) deterministic strategies, respectively. A special type of strategies are strategies
with finite-memory, which are formally defined as pairs(A, f) whereA = (Q,V, δ, q0)
is a deterministic finite-state automaton over the alphabetV of vertices andf is a func-
tion which to each pair(q, s) ∈ Q × V2 assigns a probability distribution on the set of
outgoing transitions ofs. The pair(A, f) determines a unique strategyσ(A, f) such that
σ(A, f)(vs) = f(q, s), whereq = δ(q0, vs). Intuitively, the states ofA represent a finite
memory of size|Q| where selected properties of the history of a play are stored. We de-
note FR and FD the classes of all finite-memory strategies andfinite-memory deterministic
strategies, respectively.

Each strategyσ for player2 determines a uniqueplayof the gameG, which is a Markov
chainG(σ) whereV + is the set of states, andvs

x
→ vst iff (s, t) ∈ E and one of the

following conditions holds:

– s ∈ V© andProb(s, t) = x;
– s ∈ V2 andσ(vs) assignsx to (s, t).

For everyvs ∈ V ∗V we denotelast(vs) = s. For every runw of G(σ) and everyi ≥ 0, we
definew[i] = last(w(i)) (note thatw(i) is a finite sequence of vertices of the gameG).

6

An objectiveis a pair(ν, Φ), whereν : Ap → 2V is a valuation andΦ a qPECTL∗

formula. Note that each valuationν : Ap → 2V determines a valuationν : Ap → 2V +

defined byν(a) = {vs ∈ V ∗V | s ∈ ν(a)}. For a given objective(ν, Φ), each state ofG(σ)
either does or does not satisfyΦ. A (ν, Φ)-winning strategyfor player2 in a vertexs ∈ V is
a strategyσ such thats |=ν Φ. We are interested in the following problem:

Synthesis problem:Given a vertexs and an objective(ν, Φ),

is there a(ν, Φ)-winning strategy for player2 in s ?

Moreover, if the winning strategy exists, then return its finite representation.

Remark 2.Letσ be a finite-memory strategy determined by(A, f) whereA = (Q,V, δ, q0).
Observe, that the chainG(σ) can be seen as an ‘unfolding’ of a finite Markov chain. For-
mally, let ≈ ⊆ V + × V + be an equivalence defined as follows:u ≈ v if and only if
δ(q0, u) = δ(q0, v) and last(u) = last(v). Givenv ∈ V + we denote[v] = {u | u ≈ v},
the equivalence class ofv, and we denoteV +/ ≈ = {[v] | v ∈ V +}. Let us define a finite
Markov chainḠ(σ) whereV +/ ≈ is a set of states, and[v]

x
→ [vs] in Ḡ(σ) if and only if

v
x
→ vs in G(σ). Each valuationν : Ap → 2V determines a valuation̄ν : Ap → 2V +/≈

defined byν(a) = {[vs] | s ∈ ν(a)}. Now, it is easy to verify that for every qPECTL∗

formulaΦ, every valuationν, and every statev of G(σ), we have thatv |=ν Φ iff [v] |=ν̄ Φ.

3 The Synthesis Problem for detPECTL∗

In this section we prove that the synthesis problem is decidable in exponential time for
both HR and HD strategies and detPECTL∗ objectives. The proof follows similar lines as
the analogous proof for HD strategies and theL(F=1, G=1, F>0) fragment of qPCTL (see
[3]). However, new technical difficulties arise from the useof automata connectives and
randomization.

Similarly to [3], we reduce the synthesis problem for detPECTL∗ to the problem of
solving1 1

2 -player games for a different type of objectives (and strategies) defined as follows.
Let G = (V,E, (V2, V©), P rob) be a1 1

2 -player game. AmixedBüchi objective is a pair
(P,O) whereP,O ⊆ V . A strategyσ is (P,O)-winning in a vertexs iff all runs inG(σ)
initiated in s visit a vertex ofP infinitely often, andalmost all runs initiated ins visit a
vertex ofO infinitely often. To be able to control randomization in games we introduce a new
restriction on strategies defined as follows: Given a setℜ ⊆ V2, we say that a (HR) strategy
σ is ℜ-mustiff for every v ∈ V ∗, eachs ∈ ℜ and each(s, t) ∈ E we haveσ(vs)(s, t) > 0,
and for eacht ∈ V2\ℜ we have thatσ(vt) is a Dirac distribution. Intuitively, a strategy isℜ-
must if it always assigns non-zero probability to all successors of vertices ofℜ and behaves
deterministically in vertices ofV2\ℜ.

Let us fix a gameG = (V,E, (V2, V©), P rob), a vertexsin of G, a detPECTL∗ formula
Φ, and a valuationν. The following lemma allows us to assume that the branching degree of
all vertices ofG is at most two (we sketch the proof in [4]).

Lemma 3. There is a1 1
2 -player gameḠ, a vertexs̄in, a formula Φ̄, and a valuationν̄

(computable in polynomial time), such that each vertex ofḠ has at most two successors,
and there is a(ν, Φ)-winning strategy insin iff there is a(ν̄, Φ̄)-winning strategy in̄sin.

7

Moreover, each(ν, Φ)-winning FR (FD) strategy insin can be polynomially translated to a
(ν̄, Φ̄)-winning FR (FD) strategy in̄sin, and vice versa.

We construct a gameG′, a vertexs′in of G′, a mixed B̈uchi objective(P,O), and a setℜ,
such that there is a(P,O)-winningℜ-must HR strategy ins′in iff there is(ν, Φ)-winning HR
strategy insin. The size ofG′ will be single exponential in the size ofΦ and polynomial in
the size ofG.

To simplify our presentation we introduce some additional notation. We say that a B̈uchi
automatonB correspondsto a formulaΨ if and only if Ψ is of the formB∼̺(Φ1, . . . , Φn)
(for some∼̺ andΦ1, . . . , Φn). For technical convenience, we assume that each Büchi au-
tomaton corresponds to at most one subformula ofΦ and that all automata occurring inΦ
have pairwise disjoint sets of states. LetStates denote the set of all states of all automata
occurring inΦ, and letStates>0 andStates=1 denote sets of states of all automata that
correspond to subformulae ofΦ of the formB>0(Φ1, . . . , Φn) andB=1(Φ1, . . . , Φn), re-
spectively. ByL(s) we denote the set of all literals (i.e., atomic propositionsand negated
atomic propositions) satisfied in the vertexs.

Now we present a formal definition of the gameG′. An intuition behind the definition is
given below.

Formal definition ofG′. We defineG′ = (V ′, E′, (V ′
2
, V ′

©), P rob′) where the setV ′ con-
sists of vertices of the following three forms:

– f -vertices are of the form(s,A)f , wheres ∈ V andA ⊆ States × {◦, ⋆}.
– g-vertices are of the form(s,D)g, where

D ⊆ {(t, B) | (s, t) ∈ E,B ⊆ States × {◦, ⋆}}

is a non-empty set, for eacht there is at most one pair of the form(t, B) in D, and if
s ∈ V© and(s, t) ∈ E, thenD contains a pair of the form(t, B).

– distinguished verticess′in anddead.

ToV ′
© we put allg-vertices whose first component belongs toV©, and we putV ′

2
= V ′\V ′

©.
To formally defineE′ we need some additional notation. Given a formula of the formΨ =
B∼̺(Φ1, . . . , Φn), we denoteRep(Ψ) the tuple(q0, ⋆) whereq0 is the initial state ofB.

Given a literalΨ , we defineRep(Ψ) = Ψ . Given a transitionq
X
→ q′ of an automaton

corresponding to a formula of the formB∼̺(Φ1, . . . , Φn), we denoteStart(q
X
→ q′) the set

of all Rep(Φi) wherei ∈ X. The set of transitionsE′ is defined as follows:

– ((s,A)f , (s,D)g) ∈ E′ for all (s,A)f and(s,D)g satisfying the following: forevery

(q, x) ∈ A thereexists(q′, x′) satisfyingq
X
→ q′ andStart(q

X
→ q′) ⊆ A ∪ L(s) and

x′ =

⋆ if q′ is accepting;

◦ if q′ ∈ States=1 is not accepting andA ∩ (States=1 × {◦}) = ∅;

◦ if q′ ∈ States>0 is not accepting andA ∩ (States>0 × {◦}) = ∅;

x otherwise.

and either(q′, x′) ∈
⋂

(t,B)∈D B or (q′, x′) ∈
⋃

(t,B)∈D B, depending on whetherq ∈

States=1 or q ∈ States>0, respectively.

8

– ((s,A)f , dead) ∈ E′ for all f -vertices, and(dead, dead) ∈ E′;

– ((s,D)g, (t, B)f) ∈ E′ for all (t, B) ∈ D;

– (s′in, (sin, A)f) ∈ E′ for all A ⊆ States × {◦, ⋆} satisfyingRep(Φ) ∈ A (here we
assume thatΦ is not a literal, because otherwise the synthesis problem istrivially solved)

We defineProb′((s,D)g, (t, B)f) = Prob(s, t) whenevers ∈ V© and(t, B) ∈ D.

Let P be the set of all vertices of the form(s,A)f such thatA does not contain any pair
of the form(q, ◦) whereq ∈ States>0. Let O be the set of all vertices of the form(s,A)f

such thatA does not contain any pair of the form(q, ◦) whereq ∈ States=1.

Letℜ be the set of allg-vertices of the form(s,D)g wheres ∈ V2.

Intuition behindG′. The gameG′ simulates the gameG (in the first component of vertices)
and at the same time maintains some information about subformulae ofΦ (the second com-
ponent of vertices). Each step of the simulated play ofG corresponds to two steps inG′.
The first step, going from the currentf -vertex to ag-vertex, updates the information about
Φ. The next one, going from theg-vertex to anf -vertex, simulates a move inG.

While playing the gameG′, player2 simulates a play of the gameG and at the same time
simulates computations of Büchi automata corresponding to subformulae ofΦ, verifying that
these subformulae are satisfied in appropriate places in thesimulated play. Given anf -vertex
(s,A)f , every pair(q, x) ∈ A represents a running instance of an automaton which is in the
stateq. (Herex maintains the information whether this particular instance recently entered
an accepting state.)

Going from thef -vertex(s,A)f to ag-vertex(s, {(t1, B1), (t2, B2)})
g, player2 sim-

ulates one computational step for each running instance(q, x) ∈ A. More concretely, let
(q, x) ∈ A whereq is a state of an automaton corresponding toB∼̺(Φ1, . . . , Φn). Player2

chooses a transitionq
X
→ q′ such thatStart(q

X
→ q′) ⊆ A ∪ L(s), which intuitively means

that the running instances of automata corresponding to formulae of{Φi | i ∈ X} have
already been initiated in(s,A)f . Then (q′, x′) (herex′ is an appropriate update ofx) is
put either to bothB1, B2 or to at least one of them, depending on whether ‘∼̺’ is either
‘=1’ or ‘ >0’, respectively. Note that in the case ‘=1’, the simulated computation goes to the
same stateq′ for both successors. To ensure correctness of the simulation, we needΦ to be
a detPECTL∗ formula (intuitively this means that there is at most one ‘correct’ non-terminal
successorq′ of q after reading the current state).

Note that the definition ofx′ and the winning objective(P,O) ensure thatall running
instances of automata corresponding to formulae of the formB=1(. . .) are almost surely
accepting (i.e., enter an accepting state infinitely many times), and thatall running instances
of automata corresponding to formulae of the formB>0(. . .) are surely accepting (i.e., enter
a terminal accepting state). Note that the setsB1 andB2 may, in addition to the obligatory
contents, contain arbitrary pairs fromStates × {◦, ⋆}. This may be used by player2 to
initiate new running instances needed in the next simulation step to perform transitions of
Büchi automata (see above).

Finally, going from theg-vertex(s, {(t1, B1), (t2, B2)})
g to anf -vertex, player2 ran-

domly chooses one of the successors(t1, B1)
f , (t2, B2)

f , by which he chooses a successor
in the simulated play. Theℜ-must restriction ensures that each of the successors is chosen
with non-zero probability, which prevents player2 from erasing pairs ofStates>0×{◦, ⋆}.

9

The following lemma is proved in [4].

Lemma 4. There is a(ν, Φ)-winning HR strategy insin if and only if there is a(P,O)-
winning ℜ-must HR strategy ins′in. Moreover, each(P,O)-winning ℜ-must FR strategy
(A, f) in s′in induces a(ν, Φ)-winning FR strategy insin computable in time polynomial in
the size of(A, f).

It has been shown in [3] that the existence of a winning HD strategy in1 1
2 -player games with

mixed Büchi objectives is decidable in polynomial time, and moreover, that the existence
of a winning HD strategy in such games implies the existence of a winning FD strategy
computable in polynomial time. By a slight modification of the proof from [3] we obtain the
following analogy forℜ-must HR strategies:

Lemma 5. The existence of a winningℜ-must HR strategy in1 1
2 -player games with mixed

Büchi objectives is decidable in polynomial time. Moreover,in these games, the existence
of a winningℜ-must HR strategy implies the existence of a winningℜ-must FR strategy
computable in polynomial time.

Applying Lemma 4 and Lemma 5 we obtain the following theorem.

Theorem 6. The existence of a winning HR (HD) strategy in1 1
2 -player games with

detPECTL∗ objectives is decidable in time exponential in the size of formulae and poly-
nomial in the size of games. Moreover, in these games, the existence of a winning HR (HD)
strategy implies the existence of a winning FR (FD) strategycomputable in time exponential
in the size of formulae and polynomial in the size of games.

Proof (Sketch).For HR strategies, the result follows immediately from Lemma 4 and
Lemma 5. For HD strategies, it suffices to slightly modify theconstruction of the game
G′ by erasing allg-vertices(s,D)g such thats ∈ V2 and |D| > 1. Now for ℜ = ∅, each
ℜ-must strategy ins′in is deterministic. An inspection of the proof of Lemma 4 reveals that
the lemma remains valid even for deterministic strategies.Now using Lemma 5 we obtain
the desired result.

4 The Synthesis Problem for qPECTL∗ and Finite-Memory Strategies

In this section we show how to solve the synthesis problem forqPECTL∗ and finite-memory
strategies. We show that, in fact, the logic qPECTL∗ and its fragment detPECTL∗ are ex-
pressively equivalent over finite Markov chains, and then obtain the solution to the synthesis
problem as an immediate corollary of our previous results. To formally capture this equiva-
lence, we writeΦ ≡fin Ψ whenever for arbitrary states of arbitraryfiniteMarkov chain and
arbitrary valuationν, holdss |=ν Φ iff s |=ν Ψ . The main aim of this section is formalized
by the following theorem.

Theorem 7. For every qPECTL∗ formulaΦ there is a detPECTL∗ formulaΨ , computable
in exponential time, such thatΦ ≡fin Ψ . Moreover, ifΦ is a qPCTL formula, thenΨ is
computable in polynomial time.

An immediate corollary of Theorem 7, Theorem 6, and Remark 2 is the following

Theorem 8. For both FR and FD strategies, the synthesis problem for qPCTL, qPECTL∗,
and qPCTL∗ objectives can be solved in single exponential, double exponential, and triple
exponential time, respectively. Moreover, in all these cases, the synthesis problem can be
solved in time polynomial in the size of games.

10

The rest of this section is devoted to the proof of Theorem 7. Let us fix a qPECTL∗ for-
mulaΦ. First, observe that we may assume (w.l.o.g.) that for each subformula ofΦ of the
form B∼̺(Φ1, . . . , Φn), every states of an arbitrary Markov chain and an arbitrary valua-
tion ν, there isexactly oneletterA in the alphabet ofB such thats |=ν

∧
i∈A Φi. Indeed,

if Φ does not have this property, it suffices to substitute each subformula ofΦ of the form
B∼̺(Φ1, . . . , Φn) with a formula of the formB̄∼̺(Φ1, . . . , Φn,¬Φ1, . . . ,¬Φn), whereB̄ is

obtained fromB by substituting each transition of the formq
A
→ q′ with all transitions of the

form q
A′∪A′′

→ q′ whereA ⊆ A′ ⊆ {1, . . . , n} andA′′ = {m + n|m ∈ {1, . . . , n}\A′},
and consequently making the transition function total. Observe that although the alphabet of
B̄ may be exponentially larger than the alphabet ofB, the number of states increases only
by 1 due to making the transition function total. Observe also that the size of the (graph
representing) resulting formula is polynomial in the size of Φ.

Now, to determinize the formulaΦ, it suffices to determinize (syntactically) transition
relations of all B̈uchi automata inΦ. However, the problem is that deterministic Büchi au-
tomata are strictly weaker than non-deterministic Büchi automata. We solve this problem by
first translating the B̈uchi automata to equivalent deterministic Rabin automata (using results
of [14]) and then encoding the deterministic Rabin automatato detPECTL∗ formulae.

First, let us formally define the notion of deterministic Rabin automata. Adeterministic
Rabin automatonR is a tuple(Q,Σ, γ, q0, Acc), whereQ is a finite set of states,Σ is an
input alphabet,γ : Q × Σ → Q is a transition function,q0 is an initial state, andAcc =
{(C1,D1), . . . , (Ck,Dk)}, whereC1, . . . , Ck,D1, . . . ,Dk ⊆ Q, specifies the acceptance
condition. A wordw ∈ Σω is accepted byR iff there is a sequenceω = q0, q1, . . . of states
of R such that for alli ≥ 0 we haveγ(qi, w(i)) = qi+1, and there isj ∈ {1, . . . , k} such
that some state ofCj occurs infinitely often inω and no state ofDj occurs infinitely often
in ω. We denoteL(R) the set of all words accepted byR. The following proposition was
proved in [14].

Theorem 9 ([14]). Given a B̈uchi automatonB = (B,Σ, δ, qI , F) there is an effectively
computable deterministic Rabin automatonR = (Q,Σ, γ, q0, Acc) such thatL(R) =
L(B), |R| = 2O(|B| log |B|) and|Acc| = O(|B|).

Now let B∼̺(Φ1, . . . , Φn) be a subformula ofΦ and let us assume thatΦ1, . . . , Φn are
already detPECTL∗ formulae. Let us denoteΣ the alphabet ofB, and let us fix a Rabin
automatonR = (Q,Σ, γ, q0, Acc), whereAcc = {(C1,D1), . . . , (Ck,Dk)}, such that
L(R) = L(B). Let us assume (w.l.o.g.) that the transition function ofR is total.

Let us first assume that ‘∼̺’ is either of the form ‘>0’ or ‘ =1’. Based onR, we define
deterministic B̈uchi automataBfin andBq,i, for all q ∈ Q and1 ≤ i ≤ k, such that

B∼̺(Φ1, . . . , Φn) ≡fin B∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ)

where eachΨj is of the formB=1
q,i (Φ1, . . . , Φn) for one of the automataBq,i (i.e., ℓ =

|Q| · k). In what follows we denoteindex(q, i) the numberj such thatΨj is the formula
B=1

q,i (Φ1, . . . , Φn).
Before we formally defineBfin andBq,i, let us explain the intuition behind the definition.

Let us fix a states0 of a finite Markov chainM and a valuationν, and let us assume thatB
(and hence alsoR) accepts a run ofRun(s0) (see Remark 1) with a probability greater than
0 (the explanation is analogous for the probability=1). BecauseM is finite, there is a finite
pathv ∈ FPath(s0) such thatR accepts almost all runs ofRun(v). Here, however, using

11

basic results of the theory of finite Markov chains, one can say even more. There is a finite
pathv ∈ FPath(s0) such that almost allw ∈ Run(v) satisfy the following condition: the
automatonR, after reading the prefixv of w, enters a state ofCj infinitely often and no state
of Dj at all, for a suitablej. We defineBfin andBq,i so thatB>0

fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ)
expresses precisely this property.

The automataBfin andBq,i are formally defined as follows. LetBfin = (Q∪{qa}, Σ ∪
T, δfin, q0, {qa}), whereT = {{n + 1}, . . . , {n + ℓ}}, and transitions ofB are defined as
follows:

– q
A
→ q′ for all A ∈ Σ andq, q′ ∈ Q such thatγ(q,A) = q′;

– q
{n+index(q,i)}

→ qa for all q ∈ Q and all1 ≤ i ≤ k;

– qa
∅
→ qa;

– nothing else is a transition.

We defineBq,i = (Q,Σ, δq,i, q, Ci) where transitions are defined as follows: for allq ∈ Q

and allA ∈ Σ, we defineq
A
→ q′ if and only if q, q′ 6∈ Di andγ(q,A) = q′ (i.e., there are

no transitions leaving or entering states ofDi).

Lemma 10. If ‘∼̺’ is either of the form ‘>0’ or ‘ =1’, then

B∼̺(Φ1, . . . , Φn) ≡fin B∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ)

Moreover, the right hand side formula is in detPECTL∗.

Proof (Sketch).The fact thatB∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ) is a detPECTL∗ formula follows

immediately from our assumption aboutΦ and from the fact that the automataBfin andBq,i

are obtained from the deterministic automatonR either by deleting transitions or by adding
transitions to the newly added terminal stateqa.

It remains to prove the equivalence. Let us fix a finite Markov chain M with the set
of statesS, a states0 of M , and a valuationν. Observe that for every states of M there
is exactly oneAs ∈ Σ such thats |=

∧
i∈As

Φi. Now an automaton with the alphabetΣ
accepts a runs0, s1, . . . of M if it accepts the wordAs0

As1
· · · .

First, let us assume thats0 |= B∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ). It follows immediately

from the definitions that, with probability∼̺, there is a paths0, s1, . . . , si, si+1 in M satis-
fying the following conditions:

– the automatonBfin (and hence also the automatonR) moves from its initial state to a
stater after reading the wordAs0

· · ·Asi
;

– si+1 |= B=1
r,j (Φ1, . . . , Φn) for some1 ≤ j ≤ k (and hence almost all runs ofRun(si+1)

are accepted by the Rabin automatonR initiated inr).

However, this immediately implies that, with probability∼̺, the automatonR (and hence
the automatonB) accepts a run ofRun(s0).

For the opposite direction, letM ×R be a Markov chain (the synchronous product ofM
andR) whose set of states isS ×Q and transitions are defined as follows:(s, q)

x
→ (t, r) iff

s
x
→ t andq

As→ r. Given1 ≤ j ≤ k, we say that a BSCCC of M is j-accepting iff a state of
Cj occurs in (the second component of a state of)C and no state ofDj occurs inC. Basic re-
sults of the theory of Markov chains imply that the probability measure of all runs ofRun(s)
accepted byR (hence also byB) is equal to the probability of reaching somej-accepting

12

BSCC ofM ×R. Thus, ifs0 |= B∼̺(Φ1, . . . , Φn), then, with probability∼̺, there is a path
(s0, q0), . . . , (si, qi) in M × R such that(si, qi) belongs to aj-accepting BSCC. It is easy
to show thatsi |= B=1

qi,j
(Φ1, . . . , Φn) andBfin moves fromq0 to qa after reading the word

As0
, . . . , Asi−1

, {n + index(qi, j)}. This implies thats0 |= B∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ).

⊓⊔

Now, let us consider the case where ‘∼̺’ is either of the form ‘=0’ or ‘ <1’. We denote∼̺̂
the ‘dual’ of ‘∼̺’, i.e., =̂0 is ‘=1’, and<̂1 is ‘>0’. Using very similar arguments, we prove
the following analogy of Lemma 10 (a proof can be found in [4]).

Lemma 11. If ‘∼̺’ is either of the form ‘=0’ or ‘ <1’, then there are B̈uchi automataBfin

andBq,i, for all q ∈ Q and1 ≤ i ≤ k, such that

B∼̺(Φ1, . . . , Φn) ≡fin B∼̺
fin(Φ1, . . . , Φn, Ψ1, . . . , Ψℓ)

where eachΨj is of the formB=1
q,i (Φ1, . . . , Φn) for one of the automataBq,i (i.e.,ℓ = |Q| ·k).

Moreover, the right hand side formula is in detPECTL∗.

Using Lemma 10 and Lemma 11 one can easily design an algorithmwhich transforms the
formulaΦ to a detPECTL∗ formulaΨ using appropriate substitutions in a ‘bottom-up’ man-
ner.

For general qPECTL∗ formulae, the time complexity of the algorithm is single expo-
nential in the size ofΦ. Indeed, by [14] the Rabin automatonR can be computed in time
exponential in the number of states ofB and polynomial in the size of the alphabet, and con-
sequently the automataBfin andBq,i are computable in single exponential time. It follows
that the formulaΨ is computable in exponential time (here we make use of the representa-
tion of Ψ as a directed acyclic graph, i.e., we assume that several occurrences of the same
subformula are represented by one vertex).

Now observe that in the case of PCTL formulae, there are only five distinct B̈uchi au-
tomata used to define Boolean connectives and operators X, U,and R. It follows that the
corresponding Rabin automata have bounded size, and thus each PCTL formula can be trans-
lated to a detPECTL∗ formula in polynomial time. This finishes the proof of Theorem 7.

5 qPCTL and Finite-Memory Strategies

In this section we study the power of finite-memory strategies w.r.t. the synthesis problem
for 1 1

2 -player games and qPCTL objectives.
GivenY ⊆ {X∼̺, F∼̺, G∼̺ | ∼̺ ∈ {=0, >0, <1,=1}}, we denoteL(Y) the fragment

of qPCTL which consists of formulae of the following form:

Φ ::= a | ¬a | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | Y∼̺ Φ1

where Y∼̺ ∈ Y. For example, the fragmentL({F=1, G=1, F>0}) (we usually omit the set
brackets and writeL(F=1, G=1, F>0)) is the fragment of qPCTL whose formulae are built
up from literals using conjunction, disjunction, and threetemporal operators F=1, G=1, F>0

(there is no operation of complement). Note that we work withthe operators F∼̺ and G∼̺

only for simplicity: All results of this section remain valid even if one replaces F∼̺ with
U∼̺, and G∼̺ with R∼̺.

13

Definition 12. A fragmentL(Y) is finitely determinedif for every formulaΦ ofL(Y), arbi-
trary vertexs of a 1 1

2 -player game, and arbitrary valuationν, the following holds: If there
is a (ν, Φ)-winning strategy ins, then there is a(ν, Φ)-winningfinite-memorystrategy ins.

First, we show which fragments arenot finitely determined. Then we prove that no finitely
determined fragment is more expressive than the fragmentL(X=1, X>0, G=1, F=1, F>0).

It has been shown in [3] thatL(G>0, F>0) is not finitely determined. We extend this
result and show that alsoL(G>0) is not finitely determined. Let us consider a gameG
depicted in the following figure (it is very similar to the corresponding game from [3]):

s0

right2

1/4

3/4

1/4

3/4

left

s1

right1

stop

start s2

We use names of vertices as atomic propositions with an obvious semantics. Let us de-
note Φ = G>0(¬stop ∧ (¬left ∨ G>0¬right2)). The proof of the following lemma is
presented in [4].

Lemma 13. There is a(ν, Φ)-winning HD strategy instart. There isno (ν, Φ)-winning FR
strategy instart.

We continue by proving that alsoL(G=0) is not finitely determined. Let us consider a for-
mula Ψ = G>0(¬stop ∧ (¬left ∨ F=1G>0¬right2)) and the gameG defined above. It
is easy to show, using arguments similar to the proof of Lemma13, that there is a(ν, Ψ)-
winning HD strategy instart, and no(ν, Ψ)-winning FR strategy instart. Now we trans-
form Ψ to aL(G=0) formulaΨ ′ such that for an arbitrary strategy we havestart |=ν Ψ iff
start |=ν Ψ ′. Using obvious equivalences¬G>0φ ≡ G=0φ and F=1φ ≡ G=0¬φ, one can
easily show thatΨ is equivalent to¬χ whereχ = G=0(¬stop∧(¬left∨G=0G=0¬right2)).
Now it is easy to verify thatstart |=ν ¬χ if and only if start |=ν G=0(¬start ∨ χ). It fol-
lows thatL(G=0) is not finitely determined.

Next, let us consider the fragmentL(F<1). Using the equivalence G>0φ ≡ F<1¬φ, one
can easily show thatΨ is equivalent to F<1(stop ∨ (left ∧ F<1F<1right2)). It follows that
L(F<1) is not finitely determined.

The last fragments we analyze areL(X=0, F=1), L(X<1, F=1), L(F=0, F=1) and
L(G<1, F=1). Using the equivalences F=1φ ≡ G=0¬φ and ¬F=1φ ≡ G>0¬φ one
can show thatΦ = G>0(¬stop ∧ (¬left ∨ G>0¬right2)) is equivalent to¬χ where
χ = F=1(stop ∨ (left ∧ F=1right

2
)). Now, using a similar trick as above, we obtain

start |=ν ¬χ iff start |=ν X=0(χ) iff start |=ν X<1(χ) iff start |=ν F=0(start ∧ χ)
iff start |=ν G<1(¬start ∨ χ).

Now we can give a complete classification of finitely determined fragments.

Lemma 14. The fragmentL1 = L(X=1, X<1, X>0, X=0, G=1, F>0, F=0, G<1) and the
fragmentL2 = L(X=1, X>0, G=1, F>0, F=1) are maximal (w.r.t. inclusion) finitely deter-
mined fragments.

Proof. We have proved above that the fragmentsL(G>0), L(G=0), L(F<1), L(X=0, F=1),
L(X<1, F=1), L(F=0, F=1) andL(G<1, F=1) are not finitely determined. Clearly, any frag-
ment which contains one of these fragments is not finitely determined. On the other hand, it

14

follows from Theorem 6 that the fragmentL2 is finitely determined. By a close inspection of
various possibilities, we obtain that the only fragment we have not yet classified isL1 (and
some of its subsets).

However, we show that each formula ofL1 can efficiently be translated toL2, which im-
plies thatL1 is finitely determined. LetΨ be a formula ofL1. First, using the equivalences
X=0Φ ≡ X=1¬Φ, X<1Φ ≡ X>0¬Φ, F=0Φ ≡ G=1¬Φ, G<1Φ ≡ F>0¬Φ, one can remove
operators X=0, X<1, F=0, G<1 (introducing, however, some negations to the formula). The
negations introduced in the previous step can be pushed to atomic propositions using equiv-
alences¬X=1φ ≡ X>0¬φ, ¬X>0φ ≡ X=1¬φ, ¬G=1φ ≡ F>0¬φ, ¬G>0φ ≡ F=1¬φ. ⊓⊔

Corollary 15. A fragmentL(Y), whereY ⊆ {X∼̺, F∼̺, G∼̺ | ∼̺ ∈ {=0, >0, <1,=1}},
is finitely determined if and only if each formula ofL(Y) can be efficiently translated to an
equivalent formula ofL(X=1, X>0, G=1, F=1, F>0).

References

1. C. Baier, M. Gr̈oßer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for probabilistic
systems. InProceedings of IFIP TCS’2004. Kluwer, 2004.

2. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In
Proceedings of FST&TCS’95, vol. 1026 ofLNCS, pp. 499–513. Springer, 1995.

3. T. Bŕazdil, V. Brǒzek, V. Forejt, and A. Kǔcera. Stochastic games with branching-time winning
objectives. InProceedings of LICS 2006. IEEE, 2006.

4. T. Bŕazdil and V. Forejt. Strategy synthesis for Markov decision processesand branching-time
logics. Technical report FIMU-RS-2007-03, 2007.

5. T. Bŕazdil, A. Kučera, and O. Strǎzovsḱy. On the decidability of temporal properties of proba-
bilistic pushdown automata. InProceedings of STACS’2005, vol. 3404 ofLNCS, pp. 145–157.
Springer, 2005.

6. K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of stochastic Rabin and Streett
games. InProceedings of ICALP 2005, vol. 3580 ofLNCS, pp. 878–890. Springer, 2005.

7. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Simple stochastic parity games. InProceedings
of CSL’93, vol. 832 ofLNCS, pp. 100–113. Springer, 1994.

8. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Quantitative stochastic parity games. InProceed-
ings of SODA 2004, pp. 121–130. SIAM, 2004.

9. E. Feinberg and A. Shwartz, editors.Handbook of Markov Decision Processes. Kluwer, 2002.
10. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of

Computing, 6:512–535, 1994.
11. A. Kučera and O. Strǎzovsḱy. On the controller synthesis for finite-state Markov decision pro-

cesses. InProceedings of FST&TCS 2005, vol. 3821 ofLNCS, pp. 541–552. Springer, 2005.
12. S. Mahadevan. Partially observable semi-Markov decision processes: Theory and applications in

engineering and cognitive science. InAAAI: Fall Symposium on Planning with Partially Observ-
able Markov Decision Processes, 1998.

13. M.L. Puterman.Markov Decision Processes. Wiley, 1994.
14. S. Safra.Complexity of automata on infinite objects. PhD thesis, 1989.
15. M. Y. Vardi. An automata-theoretic approach to linear temporal logic.In Banff Higher Order

Workshop, pp. 238–266, 1995.

15

