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Abstract. We consider a class of finite%-player games (Markov decision pro-
cesses) where the winning objectives are specified in the branchingetimperal logic
gPECTL" (an extension of the qualitative PCTL We study decidability and com-
plexity of existence of a winning strategy in these games. We identify a Eagof
gPECTL" called detPECTL for which the existence of a winning strategy is decid-
able in exponential time, and also the winning strategy can be computeddneaxial
time (if it exists). Consequently we show that every formula of gPECan be trans-
lated to a formula of detPECTL(in exponential time) so that the resulting formula is
equivalent to the original one over finite Markov chains. From this weiotet for
the whole gPECTL, the existence of a winning finite-memory strategy is decidable in
double exponential time. An immediate consequence is that the existeaeeémfing
finite-memory strategy is decidable for the qualitative fragment of PQifliriple ex-
ponential time. We also obtain a single exponential upper bound on thesatiiem
for the qualitative PCTL. Finally, we study the power of finite-memory sgiatewith
respect to objectives described in the qualitative PCTL.

1 Introduction

We studyl%—player games (Markov decision processes), which have égglied in various
contexts, from computer science and engineering (modefetfork systems, models of
industrial processes, etc.) to biology [13, 9, 12].1/%\—player gameG is a directed graph
whose vertices are partitioned into two disjoint SétsandV( . For each vertex of there

is a fixed probability distribution on outgoing transitiors play is initiated by putting a
token on some vertex. This token is then moved from vertexettex by one ‘real’ played
and one ‘virtual’ playe0), who choose their moves in verticesiaf andV, respectively.
Player() chooses his moves randomly according to the fixed distohuflayerd chooses
his moves according to strategy Generally, strategies may depend on history of the play
and may be either randomized or deterministic (we denote KRHD the classes of the
history-dependent randomized and deterministic strasegespectively). In this paper we
also consideffinite-memorystrategies that depend on a finite-state information aldwait t
history of the play*. The classes of randomized and deterministic finite-meratategies
are denoted FR and FD, respectively.

* Supported by “Institute for Theoretical Computer Science (ITI)”j@coNo. 1M0545.
** Supported by the Czech Science Foundation, project No. 102/05/H050.
1 More formally, a finite-memory (randomized) strategy is represenyeal deterministic finite-state
automaton and a function which assigns a distribution on outgoing transitidhs turrent vertex
of the play and the state of the automaton after reading the history of the play.



Once playeiD fixes his strategy for the gameG, we obtain a Markov chaiidz(o)
where the states are finite pathginandws - wst if and only if (s, t) is a transition inG’
andz is either the fixed probability assigned(ta ¢) (if s € V(5), or the probability of s, t)
assigned by playen in ws. Now we may ask whether the resulting Markov chélfv)
satisfies a given property. Winning objectivas a property of Markov chains to be achieved
by playerO. A strategyo is calledwinningif the Markov chainG (o) satisfies the winning
objective.

Winning objectives can be expressed using various formalid=or example, various
kinds of linear-time objectives, such a&dhi, parity, and Rabin objectives, were intensively
studied in the past (see, e.qg., [7, 8, 6]). In this paper weeonimate on a different kind of
winning objectives specified by formulae of a branchingetimmporal logic.

Let us note that the semantics of branching-time formulacbeadefined directly fot%—
player games (see, e.g., [2]). In that case strategies asenlseparately for each temporal
operator occurring in a formula. This approach is diffeffenin the one taken in this paper
and results on model-checking such games are not related tesults.

The problem of solving games with branching-time winningectives was for the first
time studied in [11], where the existence of a winning meresy randomized strategy
for objectives expressed in PCTL (see, e.g., [10]) was shovre inPSPACE Results of
[11] were substantially extended in [3] where also histogpehdent strategies were taken
into account. The most relevant results of [3] are the foitmy First, the existence of a
winning HD (and also HR, FR and FD) strategy is undecidabielg}player games with
objectives specified in (quantitative) PCTL. Second, thebfam of existence of a winning
HD strategy iSEXPTIME -complete forl%—player games with objectives specified in the
L(F', G=! F~0) 2 fragment of the qualitative PCTL.

The question is whether the positive result about the fragmiéF=', G=", F>°) can
be extended to more expressive logics at least for finite-ongrstrategies. In this paper
we address this problem and show that the existence of a ngrfimite-memory strategy
is decidable even for a powerful temporal logic gPECTWe also show that the winning
finite-memory strategy can always be effectively syntheiZ his problem is well motivated
because in practice one usually does not only want to knoviheha strategy exists but also
wants to implement the strategy. Finite-memory stratelgéa® the advantage of being easy
to implement.

The logic gPECTE is the qualitative fragment of the logic PECTldefined in [5].
PECTL" is a generalization of the logic PCTLl(see, e.g., [5, 2]) which is a probabilistic
version of the well-known logic CTL Of course, PECTL contains the logic PCTL. Hence,
our results on gPECTLhave immediate consequences for thualitative PCTL* (denoted
gPCTL*) and thequalitative PCTL (denoted qPCTL).

Our contribution: The main results of this paper are summarized below.

— We show that the existence of a winning FR (or FD) strategyofgectives described
by gPCTL, qPECTE, and qPCTE formulae is decidable in single exponential, double
exponential, and triple exponential time, respectively 850 show that the winning
strategy can effectively be computed with the same comigléMioreover, we show that
all these problems can be solved in time polynomial in the sfzZyames.

2 Formulae of£(F=!, G=!, F~%) are built up from literals using conjunction, disjunction, and the
temporal operators ¥, G=*, F>° (negation is applied only to atomic propositions).



— In the course of the proof of the above results we identifyagrnent of qPECTL,
called detPECTL, and show that the existence of a winning HR (or HD) strategy f
objectives described in detPECTIs decidable in time exponential in the size of for-
mulae and polynomial in the size of games. The fragment deTRE contains the logic
L(F7',G=!,F>9), and hence our results improve on the corresponding resi|g]
by considering a more general logic, randomized strategiesproviding a polynomial
time upper bound in the size of games.

— Finally, it has been shown in [3] that an infinite-memory &gy is needed for satisfying
a formula of the fragmem‘:(G>O, F~0) of gPCTL. We extend this result and provide
(in a sense) complete classification of the power of finitenmey strategies for various
fragments of qPCTL.

Plan of the paper:In Section 2 we review basic definitions for Markov chains gathes. We
also introduce the logic gPECTland its fragments. In Section 3 we consider the problem of
existence of a winning history-dependent strategy foraibjes described in detPECTLIn
Section 4 we consider the same problem for finite-memoryegiies and gPECTL Finally,
Section 5 deals with the classification of fragments of qP@ith respect to the power of
finite-memory strategies.

2 Basic Definitions

In this section we introduce basic notions of Markov chaprspabilistic temporal logics,
and games. Most definitions (except the definition of gPEQHle taken from [3].

We start by recalling basic notions of probability theorgt I4 be a finite set. Aproba-
bility distributionon A is a functionf : A — [0, 1] suchthab _, f(a) = 1. Adistribution
fisDiracif f(a) =1 for somea € A. The set of all distributions oA is denotedD(A).

A o-field over a setX is a setF C 2¥ that includesX and is closed under complement
and countable union. Mneasurable spacis a pair(X, F) whereX is a set callecsample
spaceandF is ao-field overX. A probability measur@ver a measurable spac¥, F) is a
function? : F — R=Y such that, for each countable collectiph, } ;< of pairwise disjoint
elements ofF, P(lU,c; Xi) = >_;c; P(X;), and moreoveP (X )=1. A probability spacés
atriple (X, F,P) where(X, F) is a measurable space afds a probability measure over
(X, F).

2.1 Markov Chains

A Markov chainis a tripleM = (S, —, Prob) whereS is a finite or countably infinite set of
states — C S x S is atransition relation and Prob is a function which to each transition
s — t of M assigns its probabilityProb(s — t) € (0, 1] so that for every € S we have
Yoy Prob(s —t) = 1.

In the rest of this paper we also write” ¢ instead ofProb(s — t) = z. A pathin M
is a finite or infinite sequence = s, s1, . . . of states such that — s, for everyi. The
lengthof a given pathw is the number of transitions im. We also usev(7) to denote the
states; of w (by writing w(i) = s we implicitly impose the condition that the lengthwfis
at leasti). The prefixsg, s1, ..., s; of w is denoted byv®. A runis an infinite path. The sets
of all finite paths and all runs ¥/ are denoted’'Path and Run, respectively. Similarly, the



sets of all finite paths and runs that start in a given S are denoted'Path(s) andRun(s),
respectively.

We say that a sef’ C S is a bottom strongly connected component (BSCC)/bif for
all s,t € C there is a path from to ¢ in M, and whenever there is a path frome C' to
t € S, thent € C. Note that if we restrict the set of states/af to a BSCCC, we obtain a
Markov chain.

Eachw € FPath determines dasic cylinderRun(w) which consists of all runs that
start withw. To everys € S we associate the probability spatBun(s), F,P) where
F is theo-field generated by all basic cylindefaun(w) wherew starts withs, andP :
F — [0,1] is the unique probability measure such tR{Run(w)) = II;","x; where
W= 80, 8y, ands; = 5,41 for every0 < i < m (if m=0, we putP(Run(w)) = 1).

2.2 The Logic gPECTL*

A Buchi automaton is a tupl8 = (B, X, 4,q, F), whereX is a finitealphabet B is a
finite set ofstates§ C B x X x B is atransition relation(we write ¢ — ¢’ instead of
(¢,a,q") € 9), qr is theinitial state, andF' C B is a set of accepting states. The automaton
B is deterministidf for eachq € B and each: € X, there is at most on¢ € B such that
q->q.

The symbolY“ denotes the set of all infinite words over the alphabieA computation
of B on awordw = w(0)w(l)--- € X¥ is a sequence = o, q1, . . . of states of3 such

thatqy = ¢; and for alli > 0 we haveg; w® gi+1- A computationw of B is acceptingif
a state ofF' occurs infinitely many times iw. The automatois accepts a wordh € X« if
there exists an accepting computationbn w. The set of alkw € 3 accepted by5 is
denotedl(B).

The logic gPECTE has the following syntax:

D i=a | —a | BNQ(@M T 7@77.)

Herea ranges over the setp of atomic propositions;-p € {=1,<1,>0,=0},n > 1, Bis
a Buchi automaton over an alphabstC 2{%:--"} and eachp; is a qPECTL formula.

The semantics of qPECTLformulae is defined below. Let/ = (S, —, Prob) be a
Markov chain and let : Ap — 29 be a valuation. We define =¥ « iff s € v(a), and
s Y —aiff s € v(a). The semantics of a gPECTlformula® = B~2(P4,--- , P,,), where
B is a Bichi automaton with the alphabgt C 2{1-"} is defined as follows: First, we can
assume that the semantics of the qPECTdrmulae®,, ..., ®,, has already been defined.
For every states of M, let Run(s, @) be the set of all runsw € Run(s) satisfying the
following condition: There is a word € £(B) such that for ali > 0 and allk € v(i) holds
w(i) B &r. We stipulate that = @ if and only if P(Run(s,®)) ~ o.

We say that formula@ and¥ areequivalent(® = V) iff for each states of an arbitrary
Markov chainM and for arbitrary valuatior holds:s =¥ @ iff s =" W.

Remark 1.Note that once a formulB~2¢(®y, ..., ¥, ), a Markov chain}/, and a valuation
v are fixed, we can say th# (or any automaton with the alphabgtC 2{1-"}) accepts a
runw of M if there is aword € £(B) such that for alf > 0 we have/\, ., ;) w(i) " Px.
Then, e.g.P(Run(s,®)) is the probability thats accepts a run aRun(s). We can also say
that the automatofs goes from a statey to ¢;; after reading a finite pathy, ..., s; in M



if there is a sequenag), . . . , ¢;+1 of states of3 and a wordXy, . .., X; such thayy; = ¢;41
and/\kEXj w(y) =¥ ¢ forall0 < j <.

For computational purposes we assume that each formulglissented as a directed
acyclic multigraph obtained from the parse tree of the fdarhy merging similar sub-
trees. For example, the formul ®(B; % (a, a,a), By ?(a,a,a), By (B ¢(a,a,a))) is rep-
resented by a multigraph with four nodes, ns, ng, n4 labeled withB7?, B3¢, B¢, a, re-
spectively, and transitions;; L3 ng (here the numbers, 2 stand for the first and the second
argument)yy 3, N9, Na N ns, n3 12,3 ny. Heren, corresponds to the whole formula.

Expressing other operators in gPECTL The logic gPECTE, as defined above, is very
powerful and succinct, and hence ideal for theoretical ickemations. However, it is easier
to express complex properties when we have some additigeahtors. We show that all
operators of gPCTL can be expressed in qPECWe define automat&,, 15, as follows:

S EIRE) SOl

By: Bh:

It is easy to see that formuldg! (@1, $2) and B! (P, o) are equivalent to logical dis-
junction and conjunction, respectively, @&; and ®,. Hence, in what follows we write
@1 V &, andd; A &, instead of 371 (P4, P2) andBL ! (P4, 2), respectively.

We also define Bchi automata representing ‘next’, ‘until’ and ‘releastig dual of
‘until’) operators:

{2}

0 {1} 0 0
Bx: *O®—>O&>g BU: *&»g Br: _> {172} @

We write X™°¢;, $;U?P, and ¢;R~P, instead of By (1), Bj%(P1,P2) and
BR¢(®1,P2), respectively. We also define ‘future’ and ‘globally’ opena as follows: Let
tt andff stand fora V —a anda A —a, respectively, for some € Ap. Let F~¢® stands for
ttU™~2®, and let G'°® stands for £tR™?P.

Given a formula of the forn8~2(®y, ..., ®,), we write-=B~¢(&4, ..., b, ) to stand for
BXe(pq, ..., P,), where Mg’ is ‘=1", ‘ <1’, * >0, or ‘=0, depending on whethepdy’ is
‘<1, '=1","=0', or ‘>0, respectively. This clearly corresponds to the logicatigtion of
negation. Note thab, R™?®, is equivalent to-(—®; U~%—Ps).

Now gPCTL is the fragment of gPECTLconsisting of all formulae of the following
form:

di=a ‘ -a | @1 \/@2 | @1 /\452 ‘ XNQ@1 ‘ ¢1UN'Q@2 | @1RNQ¢2

Here~p ranges ovef=1,=0, <1, >0}.

One can also show that all formulae of gPCT(for definition see, e.g., [5]) can be trans-
lated to equivalent gPECTLformulae. This translation employs the algorithm for tiatis
ing LTL formulae to Bichi automata (see, e.g., [15]) which results in a singleegptial
blow-up in the size of formulae.



The logic detPECTL Now we define thedeterministicfragment of gPECTL (called
detPECTL*), which generalizes the fragmestF=!, F>°, G=') defined in [3] (see also
Section 5). This fragment (together with Theorem 6) playsdtucial role in the proof of
Theorem 8.

Given an automato#$ with an alphabet C 2{%"} we say that a statg of B is

terminal iff there is a transitiory LN ¢ and no transition of the form X q whereq # ¢'
in B. A formula® of gPECTL" is a detPECTL formula if all subformulae o# of the form
B~e(dq,-- -, P,) satisfy the following conditions:

1. ‘~p'is either ‘=1"or * >0’
2. if'~p"is ' >0, then all accepting states & are terminal;
3. All statesq of B satisfy the following condition: Fodistinct nonterminaktates;” and

¢" such thayy A ¢’ andgq 5 q", we have thap\,_, ,; ®; is notsatisfied in any state of
any Markov chain for any valuation (this must hold evenfor B).

Observe that X!, X>°, U=, U>°, and R*! are operators of detPECTL

2.3 Games and Strategies

A 131-player game(or Markov decision proceyss a tupleG = (V, E, (Va, Vi), Prob)
whereV is afinite set ofrertices E C V x V is a set otransitions (Vg, V) is a partition of
V', andProb is aprobability assignmenwhich to eachy € V- assigns a positive probability
distribution on the set of its outgoing transitions. Forhtgical convenience, we assume that
each vertex has at least one outgoing transition.

The game is played by a playgrwho selects the moves in th& vertices, and a “vir-
tual” player O) who selects the moves in thi&, vertices according to the corresponding
probability distribution.

A strategyfor playerd is a functiono which to eaclvs € V*V assigns a probability
distribution on the set of outgoing transitionssof\We say that a strategy is deterministic
if o(vs) is a Dirac distribution for eachs € V*V. Consistently with [1, 11, 3], we use HR
and HD to denote the classes of all (history-dependent rarmbal) strategies and (history-
dependent) deterministic strategies, respectively. Aigpéype of strategies are strategies
with finite-memory which are formally defined as paifsd, f) where A = (Q,V, 6, qo)
is a deterministic finite-state automaton over the alph&beif vertices andf is a func-
tion which to each paifq,s) € Q x Vg assigns a probability distribution on the set of
outgoing transitions of. The pair(.A, f) determines a unique strategy.4, f) such that
(A, f)(vs) = f(g,s), whereq = 6(qo,vs). Intuitively, the states ofA represent a finite
memory of sizelQ)| where selected properties of the history of a play are stoialde-
note FR and FD the classes of all finite-memory strategiediaite-memory deterministic
strategies, respectively.

Each strategy for playert determines a uniqualay of the game~, which is a Markov
chain G(c) where V™ is the set of states, angs = wvst iff (s,t) € E and one of the
following conditions holds:

— s € Vo andProb(s,t) = ;
— s € Vg ando(vs) assignse to (s, t).

For everyvs € V*V we denotdast(vs) = s. For every runw of G(o) and everyi > 0, we
definew[i] = last(w(i)) (note thatw(4) is a finite sequence of vertices of the ga@ie



An objectiveis a pair (v, ®), wherev : Ap — 2V is a valuation andb a qPECTL
formula. Note that each valuation: Ap — 2V determines a valuation : Ap — 2V
defined byr(a) = {vs € V*V | s € v(a)}. For a given objectivér, ), each state of/(o)
either does or does not satisby A (v, @)-winning strategyor playerd in a vertexs € V' is
a strategy such thats = @. We are interested in the following problem:

Synthesis problem:Given a vertex and an objectivér, @),
is there & v, ®)-winning strategy for playen in s ?

Moreover, if the winning strategy exists, then return itg#éimepresentation.

Remark 2.Let o be a finite-memory strategy determined(by; /) whereA = (Q,V, 0, qo).
Observe, that the chaiff(c) can be seen as an ‘unfolding’ of a finite Markov chain. For-
mally, let~ C V* x V* be an equivalence defined as follows:~ v if and only if
5(qo,u) = 8(qo,v) andlast(u) = last(v). Givenv € V* we denotgv] = {u | u ~ v},
the equivalence class of and we denot& +/ ~ = {[v] | v € VT }. Let us define a finite
Markov chainG (o) whereV*/ ~ is a set of states, arfd] % [vs] in G(o) if and only if

v % vs in G(o). Each valuations : Ap — 2V determines a valuation : Ap — 2V'/~
defined byr(a) = {[vs] | s € v(a)}. Now, it is easy to verify that for every qPECTL
formula®, every valuation, and every state of G(o), we have that = @ iff [v] =" .

3 The Synthesis Problem for detPECTL

In this section we prove that the synthesis problem is détidm exponential time for
both HR and HD strategies and detPECTdbjectives. The proof follows similar lines as
the analogous proof for HD strategies and &=, G, F~0) fragment of gPCTL (see
[3]). However, new technical difficulties arise from the usfeautomata connectives and
randomization.

Similarly to [3], we reduce the synthesis problem for detFECto the problem of
solvingl%-player games for a different type of objectives (and styia®) defined as follows.
LetG = (V,E, (Va, Vo), Prob) be alé-player game. AmixedBuchi objective is a pair
(P,0) whereP,O C V. A strategyo is (P, O)-winning in a vertexs iff all runs inG(o)
initiated in s visit a vertex of P infinitely often, andalmost allruns initiated ins visit a
vertex ofO infinitely often. To be able to control randomization in game introduce a new
restriction on strategies defined as follows: Given asét V5, we say that a (HR) strategy
o is R-mustiff for every v € V*, eachs € R and eacH(s, t) € E we haves(vs)(s,t) > 0,
and for eacht € Vo \ R we have thatr(vt) is a Dirac distribution. Intuitively, a strategy &
must if it always assigns non-zero probability to all susces of vertices oft and behaves
deterministically in vertices of \ R.

Letusfixagame = (V, E, (Vo, V), Prob), a vertexs,, of G, a detPECTL formula
@, and a valuatiow. The following lemma allows us to assume that the brancheuyek of
all vertices ofGG is at most two (we sketch the proof in [4]).

Lemma 3. There is alé-player game(, a vertexs;,, a fprmula@, and a valuationv
(computable in polynomial time), such that each vertexzdias at most two successors,
and there is a(v, ®)-winning strategy ins;,, iff there is a (7, ®)-winning strategy ins;,,.



Moreover, eact{r, #)-winning FR (FD) strategy im;,, can be polynomially translated to a
(v, @)-winning FR (FD) strategy ir;,,, and vice versa.

We construct a gamé’, a vertexs,,, of G’, a mixed Bichi objective(P, O), and a sefR,
such that there is @, O)-winning ®-must HR strategy s/, iff there is(v, ¢)-winning HR
strategy ins;,,. The size ofG’ will be single exponential in the size @ and polynomial in
the size ofG.

To simplify our presentation we introduce some additiormdhtion. We say that aighi
automatons correspondgo a formula? if and only if ¥ is of the formB~¢(®4,...,P,)
(for some~p and®y, ..., ®,). For technical convenience, we assume that edathBau-
tomaton corresponds to at most one subformule @ind that all automata occurring
have pairwise disjoint sets of states. |$¥#utes denote the set of all states of all automata
occurring in®, and letStates>? and States=' denote sets of states of all automata that
correspond to subformulae df of the form B>°(&,...,®,) and B~ (&, ..., d,), re-
spectively. ByL(s) we denote the set of all literals (i.e., atomic propositiansl negated
atomic propositions) satisfied in the vertex

Now we present a formal definition of the gaii& An intuition behind the definition is
given below.

Formal definition ofG’. We defineG’" = (V', E', (V3, V), Prob’) where the set” con-
sists of vertices of the following three forms:

— f-vertices are of the forms, A)f, wheres € V andA C States x {o, x}.
— g-vertices are of the forrs, D)9, where

D C{(t,B) | (s,t) € E, B C States x {o,*}}

is a non-empty set, for eactthere is at most one pair of the forth, B) in D, and if
s € Vo and(s,t) € E, thenD contains a pair of the forrft, B).
— distinguished vertices;,, anddead.

To V5, we put allg-vertices whose first component belongdtg, and we put/; = V/\V.
To formally defineE” we need some additional notation. Given a formula of the fére
B~e(dy,...,P,), we denoteRep(¥) the tuple(qo, x) whereq is the initial state of3.

Given a literal?, we defineRep(¥) = ¥. Given a transitiony X ¢ of an automaton

corresponding to a formula of the forB¢(&4, ..., ®,,), we denoteStart(q X q') the set
of all Rep(®;) wherei € X. The set of transition&’ is defined as follows:

- ((s,A)/, (5,D)9) € E' for all (s, A)! and(s,D)¢ satisfying the following: forevery
(¢, ) € Athereexists(q’, ') satisfyingg Xq andStart(q X q) C AU L(s) and

% if ¢’ is accepting;
_ Jo if ¢’ € States™" is notaccepting and N (States=' x {o}) =0
S P ¢ € States”" is not accepting and N (States™ x {o}) =0
x otherwise.

and either(q’,2’) € (; yep B Or (¢',2") € U4, 5)ep B, depending on whether €
States™' orq € States” ", respectively.



(s, A)f,dead) € E' for all f-vertices, anddead, dead) € E';
(s,D)9,(t,B)Y) € E' forall (t, B) € D;
— (s}, (sin, A))) € E' for all A C States x {o,*} satisfying Rep(®) € A (here we

assume thap is not a literal, because otherwise the synthesis problénvially solved)

- (
- (

We defineProb’((s, D)?, (t, B)Y) = Prob(s,t) whenevers € V and(t, B) € D.

Let P be the set of all vertices of the forfa, A)f such thatd does not contain any pair
of the form (g, o) whereq € States>°. Let O be the set of all vertices of the forfa, A)”
such that4 does not contain any pair of the forf, o) whereq € States='.

Let R be the set of aly-vertices of the fornis, D)9 wheres € V4.

Intuition behindG’. The game=’ simulates the gam@ (in the first component of vertices)
and at the same time maintains some information about subtae of® (the second com-
ponent of vertices). Each step of the simulated play-atorresponds to two steps @'.
The first step, going from the currefitvertex to ag-vertex, updates the information about
. The next one, going from thgvertex to anf-vertex, simulates a move .

While playing the gamé&”, playert simulates a play of the gandeéand at the same time
simulates computations oftBhi automata corresponding to subformulaé oferifying that
these subformulae are satisfied in appropriate places sirthdated play. Given afi-vertex
(s, A)/, every pair(q, z) € A represents a running instance of an automaton which is in the
stateq. (Herex maintains the information whether this particular insenecently entered
an accepting state.)

Going from thef-vertex (s, A)f to ag-vertex(s, {(t1, B1), (t2, B2)})9, playerO sim-
ulates one computational step for each running instdgce) € A. More concretely, let
(¢,x) € Awhereq is a state of an automaton correspondin@t® (&, ..., d,,). PlayerD

chooses a transitiomﬁ ¢’ such thatStart(q X q') € AU L(s), which intuitively means
that the running instances of automata corresponding taulare of{®; | i € X} have
already been initiated iis, A)/. Then(¢’,z’) (herez’ is an appropriate update af is
put either to bothB,, B, or to at least one of them, depending on whethep’‘is either
‘=1"or ‘>0, respectively. Note that in the case1’, the simulated computation goes to the
same state@’ for both successors. To ensure correctness of the simujati® needp to be

a detPECTE formula (intuitively this means that there is at most onereot’ non-terminal
successoy’ of ¢ after reading the current state).

Note that the definition of’ and the winning objectivéP, O) ensure thagll running
instances of automata corresponding to formulae of the ffh(...) are almost surely
accepting (i.e., enter an accepting state infinitely mamgsi), and thadll running instances
of automata corresponding to formulae of the fasaP(. . .) are surely accepting (i.e., enter
a terminal accepting state). Note that the 9@¢fsand B, may, in addition to the obligatory
contents, contain arbitrary pairs frofftates x {o,*}. This may be used by playér to
initiate new running instances needed in the next simulagiep to perform transitions of
Blchi automata (see above).

Finally, going from they-vertex (s, {(¢1, B1), (t2, B2)})? to an f-vertex, playerd ran-
domly chooses one of the success@is B1)”, (t2, B2)/, by which he chooses a successor
in the simulated play. Th&-must restriction ensures that each of the successors gecho
with non-zero probability, which prevents playerfrom erasing pairs oftates”° x {o, «}.



The following lemma is proved in [4].

Lemma 4. There is a(v, ?)-winning HR strategy irs;,, if and only if there is &P, O)-
winning ®-must HR strategy ir¥;,,. Moreover, each P, O)-winning #-must FR strategy
(A, f)in s, induces v, ?)-winning FR strategy ir¥;,, computable in time polynomial in
the size of A4, f).

It has been shown in [3] that the existence of a winning HDeg;ainl%—player games with
mixed Blchi objectives is decidable in polynomial time, and moerpthat the existence
of a winning HD strategy in such games implies the existerfca winning FD strategy
computable in polynomial time. By a slight modification oétproof from [3] we obtain the
following analogy forR-must HR strategies:

Lemma 5. The existence of a winnilg-must HR strategy in%—player games with mixed
Biichi objectives is decidable in polynomial time. Moreouethese games, the existence
of a winningR-must HR strategy implies the existence of a winriligwust FR strategy
computable in polynomial time.

Applying Lemma 4 and Lemma 5 we obtain the following theorem.

Theorem 6. The existence of a winning HR (HD) strategy lr%—player games with
detPECTL objectives is decidable in time exponential in the size ohédae and poly-
nomial in the size of games. Moreover, in these games, teterge of a winning HR (HD)
strategy implies the existence of a winning FR (FD) stratmyputable in time exponential
in the size of formulae and polynomial in the size of games.

Proof (Sketch).For HR strategies, the result follows immediately from Lemdh and
Lemma 5. For HD strategies, it suffices to slightly modify g@nstruction of the game
G’ by erasing ally-vertices(s, D)Y such thats € V5 and|D| > 1. Now for ® = (), each
R-must strategy ir¥;,, is deterministic. An inspection of the proof of Lemma 4 rdsdhat
the lemma remains valid even for deterministic stratediesyv using Lemma 5 we obtain
the desired result.

4 The Synthesis Problem for qPECTL* and Finite-Memory Strategies

In this section we show how to solve the synthesis problemR&ECTL* and finite-memory
strategies. We show that, in fact, the logic gPECHNd its fragment detPECTLare ex-
pressively equivalent over finite Markov chains, and thetaiokthe solution to the synthesis
problem as an immediate corollary of our previous resuldsfofmally capture this equiva-
lence, we writeb =;,, ¥ whenever for arbitrary stateof arbitraryfinite Markov chain and
arbitrary valuatiorv, holdss = @ iff s = ¥. The main aim of this section is formalized
by the following theorem.

Theorem 7. For every qPECTE formula® there is a detPECTLformula¥, computable
in exponential time, such that =, ¥. Moreover, if$ is a gPCTL formula, the is
computable in polynomial time.

An immediate corollary of Theorem 7, Theorem 6, and RemasktBe following

Theorem 8. For both FR and FD strategies, the synthesis problem for gBGPECTL,
and gPCTL objectives can be solved in single exponential, doublerexpttal, and triple
exponential time, respectively. Moreover, in all theseesashe synthesis problem can be
solved in time polynomial in the size of games.
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The rest of this section is devoted to the proof of Theoremét.us fix a gPECTL for-
mula®. First, observe that we may assume (w.l.0.g.) that for eabfosmula of® of the
form B~¢(&4,...,d,), every states of an arbitrary Markov chain and an arbitrary valua-
tion v, there isexactly ondetter A in the alphabet o3 such thats =" A, , @;. Indeed,
if @ does not have this property, it suffices to substitute eabfosmula of® of the form
B~e(®y,...,®,) with a formula of the formB3~¢(®,, ..., d,, ~d4,...,~P,), whereB is

obtained fromB by substituting each transition of the foqn’i ¢' with all transitions of the

form ¢ A" ¢ whereA C A C {1,....n} andA” = {m +njm € {1,...,n}\A'},
and consequently making the transition function total.&dbs that although the alphabet of
B may be exponentially larger than the alphabeBpthe number of states increases only
by 1 due to making the transition function total. Observe alsat the size of the (graph
representing) resulting formula is polynomial in the siz&@o

Now, to determinize the formul, it suffices to determinize (syntactically) transition
relations of all Bichi automata ip. However, the problem is that deterministiéi&hi au-
tomata are strictly weaker than non-deterministiccBi automata. We solve this problem by
first translating the Bchi automata to equivalent deterministic Rabin automaga results
of [14]) and then encoding the deterministic Rabin auton@atietPECTL: formulae.

First, let us formally define the notion of deterministic Rahutomata. Adeterministic
Rabin automatorR is a tuple(Q, X, v, g0, Acc), whereQ is a finite set of states, is an
input alphabety : @ x X' — @ is a transition functiong, is an initial state, andlcc =
{(Cy,Dy),...,(Ck, D)}, whereCy,...,Cx,D1,..., D C @, specifies the acceptance
condition. A wordw € X“ is accepted byR iff there is a sequence = qo, q1, . . . Of States
of R such that for alk > 0 we havey(g;, w(7)) = ¢i+1, and there ig € {1,...,k} such
that some state af'; occurs infinitely often inv and no state oD, occurs infinitely often
in w. We denoteL(R) the set of all words accepted I®. The following proposition was
proved in [14].

Theorem 9 ([14]). Given a Bichi automaton3 = (B, X, 6, q;, F') there is an effectively
computable deterministic Rabin automat®h = (Q, X, v, qo, Acc) such thatL(R) =
L(B), |R| = 20UBlg|B) and|Acc| = O(|B|).

Now let B~¢(®4,...,P,,) be a subformula oft and let us assume thdt,..., P, are
already detPECTL formulae. Let us denote’ the alphabet of3, and let us fix a Rabin
automatonR = (Q, X,~, qo, Acc), where Acc = {(C1,D;),...,(Ck, Dx)}, such that
L(R) = L(B). Let us assume (w.l.0.g.) that the transition functiofRois total.

Let us first assume that'o’ is either of the form >0’ or ‘' =1". Based onR, we define
deterministic Bichi automata,,, andB, ;, for all ¢ € @ and1 <1 < k, such that

BNQ<¢1, e 7¢n) =fin B;‘i(@h ce 7¢n7 Lplv . ,g/g)
where each?; is of the form B} (1, ...,®,) for one of the automat#, ; (i.e., { =
|Q] - k). In what follows we denoténdex(g, i) the numberj such that?; is the formula
By, ..., D).

Before we formally definés;,, andB,, ;, let us explain the intuition behind the definition.
Let us fix a state of a finite Markov chainM/ and a valuation, and let us assume that
(and hence als®) accepts a run aRun(sp) (see Remark 1) with a probability greater than
0 (the explanation is analogous for the probabitty). Becausé\! is finite, there is a finite
pathv € FPath(so) such thatkR accepts almost all runs dtun(v). Here, however, using
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basic results of the theory of finite Markov chains, one canes&n more. There is a finite
pathv € FPath(so) such that almost alb € Run(v) satisfy the following condition: the
automatori?, after reading the prefix of w, enters a state @ infinitely often and no state
of D; at all, for a suitablg. We defineB;, and, ; so thatBJ?i%(dil, ey @ W, W)
expresses precisely this property.

The automat#;,, andB, ; are formally defined as follows. L&, = (QU{¢a}, XU
T,0fin,q0,{qa}), whereT = {{n + 1},...,{n + ¢}}, and transitions oB are defined as
follows:

— ¢ % ¢'forall A € Y andg,¢' € Q such thaty(q, A) = ¢';
_ g @t | forallg € Qandalll <i < k;

0
= Ga = Gas
— nothing else is a transition.

We defineB, ; = (Q, X, 44, ¢, C;) where transitions are defined as follows: for@k @

and allA € X, we defingg A ¢ ifand only ifq,¢’ ¢ D; and~(q, A) = ¢ (i.e., there are
no transitions leaving or entering states/9y.

Lemma 10. If ‘ ~(' is either of the form >0’ or * =1’, then
BNL)(¢1, . ,@n) Efin B;‘i(@l, e ,(l')n, &ph . ,![’g)
Moreover, the right hand side formula is in detPECTL

Proof (Sketch)The fact thaﬁﬁ’;ﬁl(qﬁl, ey @, Wy, .., W) is a detPECTL formula follows
immediately from our assumption ababiand from the fact that the automasg,,, and3,, ;
are obtained from the deterministic automaforither by deleting transitions or by adding
transitions to the newly added terminal state

It remains to prove the equivalence. Let us fix a finite Markbaino M with the set
of statesS, a statesy of M, and a valuatiorv. Observe that for every stateof M there
is exactly oned; € X such thats = A, @:. Now an automaton with the alphahgt
accepts a rumg, s1, . . . of M if it accepts the wordd;, A, - - -.

First, let us assume that = Bfwifl(dil,...,@n,%,...,Wg). It follows immediately
from the definitions that, with probability o, there is a patR, s1, . . ., s;, 5,41 In M satis-
fying the following conditions:

— the automatorB;,, (and hence also the automat®r) moves from its initial state to a
stater after reading the wordl, - - - As,;

- Si11 E Bjjl(dil, ..., ®,) forsomel < j <k (and hence almost all runs &fun(s; 1)
are accepted by the Rabin automafinitiated inr).

However, this immediately implies that, with probabilityp, the automatorR (and hence
the automatoiB) accepts a run aRun(sg).

For the opposite direction, I/ x R be a Markov chain (the synchronous produciiof
andR) whose set of states & x (Q and transitions are defined as follows; q) = (¢, r) iff
s 5 tandg A5 1 Givenl < j < k,we say that a BSCC' of M is j-accepting iff a state of
C; occurs in (the second component of a state’bfind no state ab; occurs inC'. Basic re-
sults of the theory of Markov chains imply that the probapitheasure of all runs aRun(s)
accepted byR (hence also byB) is equal to the probability of reaching sonj@ccepting

12



BSCC of M x R. Thus, ifsg = B~¢(P4,...,P,), then, with probability~p, there is a path
(s0,90),---,(si,q;) In M x R such thaf(s;, ¢;) belongs to g-accepting BSCC. It is easy
to show thats; = B;}j(dﬁ, ..., ®,) andBy;, moves fromg, to ¢, after reading the word

Asyy- ooy As, i {n +index(q;, )} This implies thako = B (91, .., Pns i, - .-, W),
o

Now, let us consider the case whereg’ is either of the form =0’ or * <1". We denote<p
the ‘dual’ of ‘~¢’, i.e., =01is ‘=1", and <1 is *>0". Using very similar arguments, we prove
the following analogy of Lemma 10 (a proof can be found in.[4])

Lemma 11. If * ~ ¢’ is either of the form =0’ or * <1’, then there are Bchi automatas ;,,
andB, ;, forall ¢ € @ and1 < < k, such that

BNQ(QSM s ,@n) =fin BN/J\Q

fin

(D1, B U, T)

where each?; is of the formB_} (1, ..., #,,) for one of the automatB, ; (i.e../ = |Q|-k).
Moreover, the right hand side formula is in detPECTL

Using Lemma 10 and Lemma 11 one can easily design an algovithich transforms the
formula® to a detPECTL formula¥ using appropriate substitutions in a ‘bottom-up’ man-
ner.

For general gPECTLformulae, the time complexity of the algorithm is single exp
nential in the size of. Indeed, by [14] the Rabin automat@ can be computed in time
exponential in the number of states®fnd polynomial in the size of the alphabet, and con-
sequently the automafdy;,, and3, ; are computable in single exponential time. It follows
that the formulaZ is computable in exponential time (here we make use of theesepta-
tion of ¥ as a directed acyclic graph, i.e., we assume that severafrecces of the same
subformula are represented by one vertex).

Now observe that in the case of PCTL formulae, there are omtydistinct Bichi au-
tomata used to define Boolean connectives and operators AndJR. It follows that the
corresponding Rabin automata have bounded size, and tblu®€a L formula can be trans-
lated to a detPECTLformula in polynomial time. This finishes the proof of Theworé.

5 gPCTL and Finite-Memory Strategies

In this section we study the power of finite-memory strategia.t. the synthesis problem
for 1%—player games and gPCTL objectives.

Given) C {X™¢ F~¢,G™? | ~p € {=0,>0, <1,=1}}, we denote()) the fragment
of gPCTL which consists of formulae of the following form:

@:::a\ﬁa|¢1\/¢2|€151/\d52|YN9§151

where Y~¢ € ). For example, the fragmemt({F~', G=*, F>°}) (we usually omit the set
brackets and write(F=, G=', F>")) is the fragment of gPCTL whose formulae are built
up from literals using conjunction, disjunction, and thtemporal operators ®, G=!, F>°
(there is no operation of complement). Note that we work \ththoperators F¢ and G™*
only for simplicity: All results of this section remain valid even if one replac&$ with
U~? and G*¢ with R™¢,
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Definition 12. A fragmentZ()) is finitely determinedf for every formula® of £()), arbi-
trary vertexs of a 1%-player game, and arbitrary valuation, the following holds: If there
is a (v, ®)-winning strategy irs, then there is dv, ®)-winningfinite-memorystrategy ins.

First, we show which fragments anet finitely determined. Then we prove that no finitely
determined fragment is more expressive than the fragiext!, X>° G=! F=1 F>0),

It has been shown in [3] that(G~°, F>%) is not finitely determined. We extend this
result and show that als6(G~") is not finitely determined. Let us consider a gafie
depicted in the following figure (it is very similar to the cesponding game from [3]):

start

We use names of vertices as atomic propositions with an ab\demantics. Let us de-
noted = G”%(—stop A (mleft v G™%=right,)). The proof of the following lemma is
presented in [4].

Lemma 13. There is a(v, ?)-winning HD strategy instart. There isno (v, @)-winning FR
strategy instart.

We continue by proving that aIsb(GZO) is not finitely determined. Let us consider a for-
mula¥ = G>°(=stop A (—left v F1G”%—right,)) and the gameS defined above. It
is easy to show, using arguments similar to the proof of LeriBahat there is v, ¥)-
winning HD strategy instart, and no(v, ¥)-winning FR strategy instart. Now we trans-
form ¥ to a£(G=") formula®’ such that for an arbitrary strategy we havert =" ¥ iff
start =" W', Using obvious equivalencesG~"¢ = G="¢ and F'¢ = G="-¢, one can
easily show that is equivalent to-y wherexy = G=°(—stopA(—leftVG=G="—right,)).
Now it is easy to verify thaktart =" — if and only if start =" G=°(=start V x). It fol-
lows that£(G=") is not finitely determined.

Next, let us consider the fragmefitF<'). Using the equivalence @ ¢ = F<'-¢, one
can easily show thak is equivalent to F* (stop \V (left A F<'F<'right,)). It follows that
L(F<') is not finitely determined.

The last fragments we analyze adX=", F=!), £(X<', F7Y), £(F7° F~') and
L£(G<' F71). Using the equivalences ¢ = G=’-¢ and -F~'¢p = G -¢ one
can show thath = G”(—stop A (—left v G”%—right,)) is equivalent to—y where
x = F~(stop v (left A F='right,)). Now, using a similar trick as above, we obtain
start =¥ -y iff start =Y XZ0(x) iff start ¥ X<Y(x) iff start =Y F=C(start A x)
iff start =¥ G<'(—start V x).

Now we can give a complete classification of finitely deterxifragments.

Lemma 14. The fragmentC; = £(X~!, X<1 x>0 x=0 G=! F>° F=°,G<!) and the
fragmentL, = £(X™1, X>° G, F>Y F~1) are maximal (w.r.t. inclusion) finitely deter-
mined fragments.

Proof. We have proved above that the fragmefit&~°), £(G™), L(F<!), £(X=°, F71),
LX< FY), £(F7° F=1) and£(G<*, F=1) are not finitely determined. Clearly, any frag-
ment which contains one of these fragments is not finitelgmeined. On the other hand, it
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follows from Theorem 6 that the fragmef is finitely determined. By a close inspection of
various possibilities, we obtain that the only fragment agehnot yet classified i§; (and
some of its subsets).

However, we show that each formula®f can efficiently be translated i,, which im-
plies thatZ, is finitely determined. Le¥ be a formula ofZ;. First, using the equivalences
X0 = X71-p, X<1p = X>0-¢, F°¢ = G=' =@, G<'& = F*"~, one can remove
operators X°, X<, F=9 G=<! (introducing, however, some negations to the formula). The
negations introduced in the previous step can be pushedru@propositions using equiv-
alences-X=1¢p = X>0-¢, = X709 = X71-¢, -GTlp = FP'-¢, -G = F-1-¢p. O

Corollary 15. A fragmentZ()), where)) C {X~¢ F~¢, G™¢ | ~p € {=0,>0,<1,=1}},
is finitely determined if and only if each formula6f)) can be efficiently translated to an
equivalent formula of(X=!, X>° G=! F=1 F0).
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