
Verifying Team Formation Protocols
with Probabilistic Model Checking?

Taolue Chen, Marta Kwiatkowska, David Parker, and Aistis Simaitis

Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. Multi-agent systems are an increasingly important software paradigm
and in many of its applications agents cooperate to achieve a particular goal.
This requires the design of efficient collaboration protocols, a typical example
of which is team formation. In this paper, we illustrate how probabilistic model
checking, a technique for formal verification of probabilistic systems, can be
applied to the analysis, design and verification of such protocols. We start by
analysing the performance of an existing team formation protocol modelled as a
discrete-time Markov chain. Then, using a Markov decision process model, we
construct optimal algorithms for team formation. Finally, we use stochastic two-
player games to analyse the competitive coalitional setting, in which agents are
split into cooperative and hostile classes. We present experimental results from
these models using the probabilistic model checking tool PRISM, which we have
extended with support for stochastic games.

1 Introduction

Multi-agent systems have become an important software paradigm. One of the key ideas
behind this approach is that several different agents can cooperate to achieve certain
goals. This requires the design of efficient collaboration protocols, of which team for-
mation is a typical example. In this paper, we focus on a distributed team formation
protocol introduced in [10]. There, the authors used it to analyse team performance in
dynamic networks. The protocol has also been applied to coalition formation for data
fusion in sensor networks [11]. In both cases it has been used as a basis for designing
other algorithms, which makes it a compelling target for formal analysis.

The basic setting for the protocol of [10] consists of an agent organisation, i.e., a
network of interconnected agents which have certain resources. These agents attempt to
form teams in order to accomplish tasks which are generated periodically and globally
advertised to the agent organisation. The topology of the network restricts the set of
possible agent teams – for an agent to be on a team, the agent must have a connection
with at least one other agent in that team. Tasks are generic in that they only require a
team of agents with the necessary resources to accomplish the specific task. As in [10],
we do not consider the solution process, but only the team formation.

As is typical for multi-agent algorithms, probabilities play a crucial role in team for-
mation protocols. Firstly, agents are scheduled to act in a random order, following the

? This work is supported by the ERC Advanced Grant VERIWARE.

2

approach of [10]; secondly, in our setting, tasks are drawn from a task pool, following
some known probability distribution. This is particularly interesting for the online ver-
sion of the algorithm (see Alg. 3), where tasks are generated after teams have formed.
In this case, agents have to choose strategies to optimise against a set of tasks governed
by a certain probability distribution rather than a particular task. Finally, probabilities
are used to implement strategies of agents themselves, for example random selection of
a team to join. These issues motivate the use of analysis techniques that take can take
probabilistic behaviour into account.

Formal verification is an approach to check the correctness of a system using rig-
orous, mathematical reasoning. Fully automated verification techniques such as model
checking have proved to be widely applicable, including to multi-agent systems [17].
In this paper, as described above, the systems that we study exhibit probabilistic be-
haviour. Thus, we use probabilistic model checking, an automated technique for the
formal verification of stochastic systems.

Probabilistic model checking is based on the construction of a probabilistic model
from a precise, high-level description of a system’s behaviour. The model is then anal-
ysed against one or more formally specified quantitative properties, usually expressed
in temporal logic. These properties capture not just the correctness of the system, but
a wide range of measures such as reliability or performance. We can compute, for ex-
ample, “the probability that the algorithm successfully terminates within k rounds”. By
augmenting the model with rewards, a further range of properties can be analysed.

In addition to offering convenient high-level formalisms for representing models
and their properties, the strength of probabilistic model checking is that offers exact,
exhaustive analysis techniques. Rather than, for example, discrete-event simulation (as
it is done for team formation protocols in [10]), probabilistic model checking is based
on an exhaustive exploration and numerical solution of the model, allowing best- and
worst-case behaviour to be identified. This is particularly valuable for distributed proto-
cols (like the ones in this paper), whose behaviour is notoriously difficult to understand
precisely. Furthermore, efficient techniques and tools exist for this purpose.

In this paper, we use the PRISM probabilistic model checker [16] to analyse vari-
ous agent organisations for the team formation protocol of [10]. We use several different
types of probabilistic models and express quantitative performance properties of them
in temporal logic. Firstly, we model the original version of the protocol using discrete-
time Markov chains (DTMCs), where the behaviour of each agent is described entirely
in a probabilistic (deterministic) way. Then, we extend the original algorithm by allow-
ing agents to make decisions nondeterministically, instead of randomly, when forming
teams; such systems are naturally modelled by Markov decision processes (MDPs). By
analysing the MDP, we obtain the best- and worst-case performance of agent organisa-
tions. MDPs, however, can only model fully collaborative behaviour, whereas in many
scenarios it is crucial to address hostile behaviour of some agents in the organisation.
To cater for this we use stochastic two-player games (STPGs) as a model for the system
containing two groups of agents – collaborative and hostile – which try to, respectively,
maximise or minimise the performance of the organisation (i.e. this effectively becomes
a zero-sum stochastic two-player game). Orthogonal to these, we consider two differ-

3

ent settings, namely offline and online, depending on whether the tasks are generated
respectively before and after teams have formed (see Alg. 3).

Our experiments illustrate several aspects of agent organisation analysis. As a typ-
ical case, we choose four network topologies, each consisting of five agents, i.e., fully
connected, ring, star, and a network having one isolated agent. For each one, we com-
pute the expected performance of the organisation and find organisation-optimal re-
source allocation among agents. Then we show using MDP model checking what is the
best performance that can be achieved by this organisation. Lastly, we take the model
to the STPG setting to obtain the optimal coalitions of different sizes and evaluate their
performance. For all of these cases, we consider the offline and online dichotomy.

In summary, the main contributions of this paper are as follows:

(1) We perform a comprehensive and formal analysis of the performance of the team
formation protocol proposed in [10].

(2) We extend the original algorithm of [10], allowing agents to make decisions non-
deterministically when forming teams. Then, by modelling and analysing as an
MDP, we synthesise the best strategies for agents to achieve optimal performance,
partially solving an open problem posed in [10].1

(3) We extend the PRISM model checker with support for modelling and automated
analysis of STPGs and address the competitive coalitional setting, in which agents
are split into cooperative and hostile classes, using stochastic games to synthesise
optimal agent coalitions. To the best of our knowledge, this is the first work to
perform a fully-automated probabilistic analysis of this kind.

We note that it would be difficult to achieve (2) and (3) using simulation-based ap-
proaches; this demonstrates the strength of formal verification.

Related work. Cooperative behaviour, which is one of the greatest advantages of agent-
based computing, has been studied from many different angles over the years. Coali-
tional games have traditionally been analysed from a game-theoretic perspective [19],
but in recent years have attracted a lot of attention from researchers in artificial intel-
ligence, especially in cooperative task completion [20]. Several approaches for team
formation and collaborative task solving have been considered including team forma-
tion under uncertainty using simple heuristic rules [13], reinforcement learning tech-
niques [1] and methods using distributed graph algorithms [18]. To reason formally
about cooperative games, several logics (e.g., Alternating Time Logic [3], Coalitional
Game Logic [2], Strategy Logic [6]) and other formalisms (e.g., Cooperative Boolean
Games [8]) have been introduced and used to analyse coalitional behaviour [5]. Model
checking has been used to analyse (non-probabilistic) knowledge-based properties of
multi-agent systems, using the tool MCMAS [17]. Probabilistic model checking was
employed to analyse probabilistic agents in negotiation protocols [4] (but only for fixed
strategies modelled as DTMCs) and to Byzantine agreement protocols [14].

1 We quote: “the problem of developing or learning effective team initialising and team joining
policies is also important, and is included in our on-going and future work”.

4

2 Preliminaries

2.1 Probabilistic Models

We begin with a brief introduction to the three different types of probabilistic models
that we will use in this paper.

Discrete-time Markov chains (DTMCs) are the simplest of these models. A DTMC
(S,P) is defined by a set of states S and a probability transition matrix P : S × S →
[0, 1], where

∑
s′∈S P(s, s′) = 1 for all s ∈ S. This gives the probability P(s, s′) that

a transition will take place from state s to state s′.
Markov decision processes (MDPs) extend DTMCs by incorporating nondetermin-

istic choice in addition to probabilistic behaviour. An MDP (S,Act, Steps) comprises
a set of actions Act and a (partial) probabilistic transition function Steps : S ×Act→
Dist(S), which maps state-action pairs to probability distributions over the state space
S. In each state s ∈ S, one or more distinct actions can be taken and, assuming that
action a ∈ Act is chosen, the distribution Steps(s, a) gives the probability of making
a transition to each state.

Stochastic two-player games (STPGs) generalise MDPs by allowing the nondeter-
ministic choices in the model to be resolved by two distinct players. An STPG is a
tuple (S, (S1, S2), Act, Steps) where the set of states S is partitioned into two disjoint
subsets S1 and S2. As for MDPs, Steps : S × Act → Dist(S) is a function mapping
state-action pairs to distributions over states. This is a turn-based game: in each state s
of the game, either player 1 or player 2 selects an action a ∈ Act, depending on whether
s is in set S1 or S2.

2.2 Probabilistic Model Checking & PRISM

Probabilistic model checking involves the construction and analysis of a probabilistic
model. Usually, a high-level description language is used to model a system (here, we
use the PRISM [16] modelling language). Then, one or more quantitative properties are
formally specified and analysed on the model. Typically, probabilistic temporal logics
are used to formalise properties. In this paper, we use PRISM’s temporal logic-based
query language, which is essentially the logic PCTL [12], extended to include reward-
based properties [15,9]. This can be used to express properties of both DTMCs and
MDPs. We also generalise the logic to capture properties of stochastic games.

PCTL extends the well known temporal logic CTL with a probabilistic (P) operator.
Informally, this places bounds on the probability of the occurrence of certain events
in the model. We will illustrate the use of PRISM temporal logic queries, using some
simple examples, referring the reader to [12,15] for precise details of the syntax and
semantics. For a DTMC, typical queries would be:

– P<0.01[♦ fail] - “the probability of a failure occurring is less than 0.01”
– P≥0.95[♦ end] - “the probability of the protocol terminating is at least 0.95”.

For simplicity, we restrict our attention to reachability queries (in the examples above,
fail is a label, denoting a particular subset of the DTMC’s states S and ♦ fail refers to

5

the event in which a state from this set is reached). In practice, we often use a quanti-
tative variant of the P operator, denoted P=?, which returns the actual probability of an
event’s occurrence, e.g.:

– P=?[♦ fail] - “what is the probability of a failure occurring?”

Whereas in a DTMC it is relatively straightforward to define the probability of an event
such as ♦ fail , for MDPs we must also take account of the nondeterminism in the model.
The standard approach is to use the notion of strategies (also referred to as policies,
schedulers, etc.). A strategy resolves nondeterminism in an MDP (i.e. chooses an action
in a state), based on its execution history. For a specific strategy, we can define the prob-
ability of an event. Thus, probabilistic model checking focuses on best- or worst-case
analysis, quantifying over all possible strategies. We still employ quantitative proper-
ties, which now ask for minimum or maximum probabilities:

– Pmax=?[♦ fail] - “what is the maximum probability of a failure occurring?”

For a stochastic game, the same approach generalises naturally, but we require strategies
for both players. Usually, we assume that the two players have opposing objectives,
for example player 1 aims to minimise the probability of ♦ fail and player 2 tries to
maximise it. Extending the notation from above, we write:

– Pmin,max=?[♦ fail] - “what is the minimum probability of failure that player 1 can
guarantee, assuming that player 2 tries to maximise it?”

For this simple class of (zero-sum) properties, these values are well defined [7].
Finally, we also use properties based on rewards, which capture a variety of ad-

ditional quantitative measures. For consistency across all three types of models, we
assume a simple state-based scheme, i.e., a reward function ρ : S → R≥0. We consider
the expected total reward accumulated until some target set of states is reached. Con-
sider a DTMC with reward function time and a label end denoting a set of target states.
We write, for example:

– Rtime
=? [♦ end] - “what is the expected time for the algorithm to complete?”

In exactly the same style as above, these queries generalise to MDPs and STPGs:

– Rtime
max=?[♦ end] - “what is the maximum expected algorithm completion time?”

– Rtime
min,max=?[♦ end] - “what is the minimum expected time for algorithm comple-

tion that player 1 can guarantee, assuming player 2 tries to maximise it?”

PRISM [16] is a probabilistic model checker. It supports several different types of mod-
els, including DTMCs and MDPs (it also supports continuous-time Markov chains and
probabilistic timed automata). On these models, a wide range of temporal logic-based
properties can be checked, including all of those illustrated above. For the work pre-
sented here, we have built a prototype extension of PRISM that adds support for STPGs
in the form of solving turn-based stochastic two-player zero-sum games (i.e. model-
checking temporal formulae of the form described above). Models to be analysed by
PRISM are described in a high-level modelling language based on guarded command
notation; we discuss this further in Section 4.1.

6

3 Definitions and Algorithms

The purpose of this section is to provide definitions of terminology used throughout this
paper and then present the algorithms which will be analysed.

3.1 Definitions

We introduce definitions of agent organisations, tasks, teams, and formulae for com-
puting rewards to measure the performance of both individual agents and agent teams.

Definition 1 (Agent Organisation). An agent organisation is a tupleO = 〈A,N,R,RA〉
where:

– A = {a1, a2, ..., an} is a set of agents,
– N = {{ai, aj} : “ai and aj are neighbours” } is a neighbourhood relation,
– R = {r1, r2, . . . , rk} is a set of resource types, and
– RA = {Ra1 , Ra2 , . . . , Ran} is a set of agent resources where rj ∈ Rai ⇐⇒

“agent ai has a resource rj”.

Definition 2 (Task). A task Ti = {ri : “ri is required by the task i”} is a set of
resources that are required to accomplish Ti. By T = {T1, T2, . . . , Tt} we denote a
collection of tasks.

Definition 3 (Team). A team of agents is denoted by Mi = {aj : “aj is a member of
team i”}, and the set of all teams is M = {M1,M2, . . . ,Mm}. By M̄ =

⋃
1≤i≤mMi,

we denote the set of all agents that are committed to some team. For 1 ≤ i ≤ m,
RMi

=
⋃

a∈Mi
Ra is the set of resources the team Mi has. The team Mi is said to be

able to accomplish the task Tj iff Tj ⊆ RMi .

Definition 4 (Rewards). For agent a, we define two types of reward:

– Type W1, which rewards the agent with 1 point if it is in the team which was able
to complete its task after team formation is over; and 0 otherwise. Formally,

W1(a) =

{
1 if ∃Mi.a ∈Mi ∧ Ti ⊆ RMi ,
0 otherwise, (1)

– Type W2, which rewards 1 point to the team which was able to complete its task,
and 0 otherwise. The reward is shared equally between team members.

W2(a) =

{ 1
|Mi| if ∃Mi.a ∈Mi ∧ Ti ⊆ RMi

,
0 otherwise.

(2)

For a set of agents A, the rewards are defined accordingly as the total reward
achieved by its members, i.e.,

W1(A) =
∑
a∈A

W1(a) W2(A) =
∑
a∈A

W2(a). (3)

7

The underlying idea of these two types of rewards is thatW2 provides incentives for
agents to form smaller teams which can accomplish tasks, whereasW1 motivates agents
to be in a successful team. From the organisation’s perspective, the W1 reward should
be used when resources are limited, whereas the W2 reward will encourage agents to
introduce resource redundancy into teams, but this may ensure that tasks are completed
with higher probabilities.

3.2 Algorithms

In this section we provide pseudocode for the algorithms which we later analyse. During
the team formation process, each agent performs as follows: when it is not committed
to any team (meaning that it is available and not assigned to any task), it considers each
task in a random order. If a task currently has no other agents committed to it, the agent
can choose to initialise a team, and does so with the probability given in Eqn. (4) (i.e.,
the ratio between neighbours that are not committed to any team and total number of
neighbours).

IPa =
|{a′ ∈ A : {a, a′} ∈ N ∧ a′ /∈ M̄}|

|{a′ ∈ A : {a, a′} ∈ N}|
. (4)

For team joining, if an agent is eligible for a team, it always joins the team. Note that
only uncommitted agents can commit to a new or partially filled task, and committed
agents can not decommit from a given task.

In Alg. 1 we reproduce pseudocode for the JOINTEAM algorithm introduced in [10].
This combines team initialisation and team joining. This algorithm will be modelled and
analysed as a DTMC, as we shall see in Sec. 5.1.

Algorithm 1 JOINTEAM algorithm [10] (probabilistic and deterministic)
procedure JOINTEAM(a, T , M)

for all Ti ∈ T in random order do
if a /∈ M̄ then . agent is not committed

if |Mi| = 0 then . team for task i is empty
if Ra ∩ Ti 6= ∅ then . agent has skill (replaced by true if called from ONLINE, cf. Alg. 3)

with probability IPa: Mi ←Mi ∪ {a} . initialise a team (see Eqn. (4))
end if

else if ∃{a, a′} ∈ N.a′ ∈Mi then . there is neighbour in team for task i
if Ra ∩ Ti \ RMi

6= ∅ then . agent has a missing resource (replaced by true if called from ONLINE)
Mi ←Mi ∪ {a} . join team

end if
end if

end if
end for

end procedure

To tackle the problem of finding the best team initialisation and team joining strat-
egy, we modify the original JOINTEAM algorithm by allowing agents to make deci-
sions regarding what actions to take, instead of picking one randomly. Technically, the
changes are as follows, which are highlighted in Alg. 2.

– Allow agents to consider tasks in arbitrary order instead of randomly;

8

– Replace probabilistic choice to initialise the team by nondeterministic choice;
– Allow agent not to join a team even if it has a resource and neighbour in that team.

This algorithm allows analysis of the best-case performance that can be achieved by
the protocol. It also allows us to analyse agent organisations with hostile agents, which
aim to reduce organisation’s performance. It will be modelled and analysed as an MDP
and STPG respectively, as we shall see in Sec. 5.2 and Sec. 5.3. Furthermore, we ob-

Algorithm 2 JOINTEAM algorithm (non-deterministic extension)
procedure JOINTEAM(a, T , M)

for all Ti ∈ T in arbitrary order do
if a /∈ M̄ then . agent is not committed

if |Mi| = 0 then . team for task i is empty
if Ra ∩ Ti 6= ∅ then . agent has skill (replaced by true if called from ONLINE, cf. Alg. 3)

Mi ←Mi ∪ {a} or Mi ←Mi . initialise a team or do nothing
end if

else if ∃{a, a′} ∈ N.a′ ∈Mi then . there is neighbour in team for task i
if Ra ∩ Ti \ RMi

6= ∅ then . agent has a missing resource (replaced by true if called from ONLINE)
Mi ←Mi ∪ {a} or Mi ←Mi . join a team or do nothing

end if
end if

end if
end for

end procedure

serve that there are two natural ways to call JOINTEAM: the OFFLINE procedure first
initialises the set of tasks and then sequentially calls the JOINTEAM procedures of ev-
ery agent in random order, as described in Alg. 1. In contrast, the ONLINE routine calls
JOINTEAM procedures for agents before selecting the tasks. (The JOINTEAM algorithm
needs to be adapted slightly, see Alg. 1, the 5th line.) We investigate both the offline and
online versions of the algorithms because they provide a nice comparison between op-
timisation against specific tasks (offline), and distribution of tasks (online). As we will
see in Sec. 5.3, whether the offline or online version results in better performance de-
pends on network topology.

4 Models and Experimental Setup

4.1 PRISM Models

The PRISM model checker has been briefly described above. The purpose of this sec-
tion is to explain how we model the algorithms from the previous section in PRISM.
Due to space limitations we do not provide the source code of the models and prop-
erties used in this paper; instead, we have made them all available online2. Here we
use a toy example from Fig. 1 to illustrate the design concepts. The system modelled in
this example consists of two agents and a scheduling module which randomly generates
the number of tasks to be performed (1 or 2, each with probability 0.5). Then, agents
act in turn by choosing which team to join for each task. The reward structure “total”

2 See http://www.prismmodelchecker.org/files/clima11/.

http://www.prismmodelchecker.org/files/clima11/

9

Algorithm 3 Offline and online versions of JOINTEAM algorithm
procedure OFFLINE(t) . t - number of tasks

M = {Mi = ∅ : 1 ≤ i ≤ t} . initialise empty teams
T = {Ti 6= ∅ : Ti ⊆random R, 1 ≤ i ≤ t} . initialise tasks at random
for all a ∈ A in random order do

JOINTEAM(a, T , M)
end for
perform tasks and compute rewards

end procedure

procedure ONLINE(t) . t - number of tasks
M = {Mi = ∅ : 1 ≤ i ≤ t} . initialise empty teams
for all a ∈ A in random order do

JOINTEAM(a, T , M)
end for
T = {Ti 6= ∅ : Ti ⊆random R, 1 ≤ i ≤ t} . initialise tasks at random
perform tasks and compute rewards

end procedure

rewards 0.3 points for each task for which agents joined different teams and 1.0 points
when agents cooperate. The choice of teams for an agent is nondeterministic (i.e. the
underlying model will be either an MDP or STPG), but it could be made probabilistic
in a way similar to the scheduler’s generation of tasks (and thus become a DTMC).

The same principle has been applied to the models that we used for experiments.
Each agent is modelled as a module with Alg. 1 and Alg. 2 encoded as guarded com-
mands. There is a scheduler module which has Alg. 3 implemented as guarded com-
mands. The reward structures are also described according to definitions in Eqn. (1)-(3).

From this high-level description of the algorithm, our extension of PRISM then
constructs the corresponding models: DTMC, MDP, or STPG. For STPGs, we also
need to specify the split of model states into those controlled by players 1 and 2. This
is done with two expressions over PRISM model variables, describing these sets.

4.2 Experimental Setup

For our experiments we mainly consider organisations consisting of five agents which
are organised into four networks: fully connected, ring, star, and a network having one
isolated agent. Each agent is assigned one resource, and there are three different re-
sources available. For each network, we find the optimal resource allocation with re-
spect to task generation described3 below using DTMC model checking (see Sec. 5).
These organisations are then fixed and used in all experiments.

Agent Organisations. We run experiments with a set of five agentsA = {a1, a2, a3, a4,
a5} and a set of three resources R = {r1, r2, r3} arranged into four different agent or-
ganisations Ofc , Or, Os, Oia (see Fig. 2 for graphical representations of these).

3 We have chosen this way of allocating resources in order to easily show how the performance
can be improved by changing the strategy while keeping actions unchanged (i.e. compare
DTMC and MDP models).

10

module scheduler
turn : [1..3] init 1;
num tasks : [-1..2] init -1;
[gen] num tasks=-1→ 0.5 : (num tasks′=1) + 0.5 : (num tasks′=2);
[go1] num tasks>0 ∧ turn=1 → (turn′=2);
[go2] num tasks>0 ∧ turn=2 → (turn′=3);
[do] num tasks>0 ∧ turn=3 → (turn′=1) ∧ (num tasks′=num tasks − 1);

endmodule

module agent1
team1 : [1..2] init 1;
[go1] true → (team1 ′=1);
[go1] true → (team1 ′=2);

endmodule

module agent2 = agent1 [go1=go2 , team1=team2] endmodule

rewards “total”
turn=3 ∧ team1 6=team2 : 0.3;
turn=3 ∧ team1=team2 : 1.0;

endrewards

Fig. 1: Example of a two agent system, described in PRISM’s guarded command mod-
elling language; see [16] for further details and links

〈a1 r1〉

〈a2 r1〉

〈a3 r2〉〈a4 r2〉

〈a5 r3〉

(a) Fully connected (Ofc)

〈a1 r1〉

〈a2 r2〉

〈a3 r1〉〈a4 r2〉

〈a5 r3〉

(b) Ring (Or)

〈a1 r1〉

〈a2 r2〉

〈a3 r2〉〈a4 r3〉

〈a5 r3〉

(c) Star (Os)

〈a1 r1〉

〈a2 r2〉

〈a3 r3〉〈a4 r3〉

〈a5 r2〉

(d) Isolated agent (Oia)

Fig. 2: Experimental configurations of the agent organisations with optimal resource
allocation (see Tab. 2). In parentheses is the abbreviation that we will use to refer to the
organisation throughout this paper.

Tasks. We fix seven different tasks that will be used in experiments T = {{r1}, {r2},
{r3}, {r1, r2}, {r1, r3}, {r2, r3}, {r1, r2, r3}}. When running the algorithm, two tasks
T1 and T2 are picked uniformly and independently at random (with replacement) and
are advertised to the agent organisation. So, there are a total of 49 different combinations
of T1 and T2 that can be generated.

5 Experimental Results

In this section, we present results obtained using three models: DTMC, MDP, and
STPG. Tab. 1 compares model construction information for different sizes of fully con-
nected agent organisations4. All experiments are performed on a 2.8GHz Intel Core
2 PC, 4Gb of RAM running the Fedora Core 13 operating system. Nondeterministic

4 We choose a fully connected agent organisation because it produces the largest models.

11

Agents States Transitions Constr. Time (s)
2 1865 2256 0.1
3 17041 20904 0.3
4 184753 226736 3.4
5 2366305 2893536 74.4
6 35058241 42638400 2916.2

(a) DTMC

Agents States Transitions Constr. Time (s)
2 1405 1846 0.1
3 9721 12474 0.2
4 76865 96664 1.1
5 731233 907992 5.1
6 8155873 10040112 29.7

(b) MDP and STPG
Table 1: Model comparison for different numbers of agents in a fully connected agent
organisation for the offline version of Alg. 1.

Organisation O Additional constraints Example 〈Ra1Ra2Ra3Ra4Ra5〉
Ofc - RA = 〈{r1}{r1}{r2}{r2}{r3}〉
Or Ra1 6= Ra5 ∧ ∀i < 5.Rai 6= Rai+1 RA = 〈{r1}{r2}{r1}{r2}{r3}〉
Os Ra1 = {r} ∧ ∀i > 1.r /∈ Rai RA = 〈{r1}{r2}{r2}{r3}{r3}〉
Oia Ra5 = {r} ∧ ∃i < 4.r ∈ Rai RA = 〈{r1}{r2}{r3}{r3}{r2}〉

Table 2: Optimal resource allocations with respect to rewards defined in Eqn. (3). All
satisfy the constraint ∀i.|Rai | = 1 ∧ ∀i.1 ≤ |{Raj : ri ∈ Raj (1 ≤ j ≤ 5)}| ≤ 2.

models (MDPs/STPGs) have a smaller state space because agent choices do not have
to be resolved at the model construction stage. However, the model checking is gener-
ally more time consuming for MDPs and STPGs than for DTMCs. The time needed for
model checking is in the range of 5-240 seconds.

As mentioned in Sec. 4.2, for each topology from Fig. 2 we obtain optimal resource
allocations using probabilistic model checking on the DTMC model of the offline ver-
sion of the algorithm (see Alg. 3 and Alg. 1). The following PRISM temporal logic
queries are used to compute the expected rewards of the agent organisation under a
particular resource allocation:

– R
Wj

=? [♦finished] - “what is the expected total reward Wj of an agent organisation
when execution terminates?” (j ∈ {1, 2}).

After obtaining the expected rewards for all possible resource allocations, we selected
the one with the highest expected reward. The results are summarised in Tab. 2. The
resource allocations given in column “Example” of Tab. 2 will be used for all future
experiments and are shown in Fig. 2. We decided to fix resource allocations in this way
in order to show how model-checking techniques can be used to improve algorithm
performance by synthesising strategies (see discussion of MDP results in Sec. 5.2).

5.1 DTMC Analysis

In this section, we present the results for model checking the DTMC model of Alg. 1
for experimental agent organisations from Fig. 2, as well as offline and online versions
of the algorithm (see Alg. 3 for details).

12

O W1(O) mina∈A W1(a) maxa∈A W1(a)

Ofc 2.54906 0.44958 0.75073
Or 2.30359 0.35494 0.63985
Os 1.87278 0.28677 0.72568
Oia 2.38529 0.28867 0.68769

(a) Offline. W1 reward structure.

O W2(O) mina∈A W2(a) maxa∈A W2(a)

Ofc 1.49125 0.26721 0.42238
Or 1.42923 0.23531 0.38625
Os 1.16649 0.18582 0.42321
Oia 1.43599 0.20621 0.39907

(b) Offline. W2 reward structure.

O W1(O) mina∈A W1(a) maxa∈A W1(a)

Ofc 3.53645 0.64101 0.97239
Or 3.48638 0.55089 0.91190
Os 2.52500 0.41934 0.84761
Oia 3.37359 0.41186 0.93601

(c) Online. W1 reward structure.

O W2(O) mina∈A W2(a) maxa∈A W2(a)

Ofc 1.29743 0.24247 0.32657
Or 1.31882 0.23157 0.31297
Os 0.94404 0.16060 0.30158
Oia 1.25560 0.17970 0.31990

(d) Online. W2 reward structure.
Table 3: Model checking results for agent organisations from Fig. 2 with optimal re-
source allocations from Tab. 2 for offline and online versions of Alg. 3. Tables also
show largest and smallest individual agent rewards. For a histogram view of the total
reward data, see Fig. 3.

Tab. 3 shows the results obtained for the expected rewards of agent organisations in
different settings, namely, using W1 and W2 reward structures (see Eqn. (3) for organi-
sations and Eqn. (1) and Eqn. (2) for individual agents), and offline and online versions
of Alg. 1. The following PRISM temporal logic queries were used to obtain the results:

– R
Wj

=? [♦finished] - “what is the expected total reward Wj?” (j ∈ {1, 2}),
– R

Wj

=? [♦ (finished ∧ ai∈M̄)] - “what is the expected reward Wj for agent ai?” (j ∈
{1, 2}, i ∈ {1, 2, 3, 4, 5}).

As can be seen in Tab. 3, agents organised in Os have the worst expected rewards in all
settings, and also the largest disparity between the worst and best performing individual
agents. Both of these characteristics are not surprising because agent a1, which is placed
in the middle, is most likely to be in a winning team, whereas the others do not have
any choice but to join the team with a1. OrganisationOia, which has one isolated agent,
shows a smaller differences between the worst and the best performing agents, but this
is only because the performance of the “best” agents is lower, whereas the “worst”
agent’s performance is very close to that of Os.

Fig. 3 compares total rewards of all organisations in offline and online settings. It
can be seen that a fully connected organisation Ofc has the best overall performance
in all but the online version using the W2 reward structure, where it is outperformed
by Or. It is interesting to note that a more significant difference between Ofc and Oia

only emerges when moving to the online setting. This shows that having one agent
which is isolated does not affect the ability of the organisation to efficiently respond to
the generated tasks, but impacts its chances to organise before the tasks are generated.
This is where the advantages of Or emerge: in the online setting, it not only starts
outperformingOia with respect to overall performance and disparity, but gets very close

13
Sheet1

Page 1

0

1

2

3

4
Offline Online

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(a) Reward W1(O).

Sheet1

Page 1

0

1

2
Offline Online

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(b) Reward W2(O).

Fig. 3: Expected rewards for agent organisations when using online and offline (see
Alg. 3) versions of Alg. 1.

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 0.74562 0.74562 0.49596
Or 0.71461 0.71461 0.47062
Os 0.58324 0.58324 0.23639
Oia 0.71799 0.71799 0.44839

(a) Offline

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 0.64871 0.64871 0.31320
Or 0.65941 0.65941 0.36712
Os 0.47202 0.47202 0.07465
Oia 0.62780 0.62780 0.29270

(b) Online
Table 4: Task completion probabilities for optimal agent organisations using Alg. 1’s
offline and online versions (see Alg. 3).

to the performance ofOfc using theW1 reward structure, and produces a better totalW2

reward while keeping similar disparity levels. An attentive reader would have noticed
that the online version produces larger expected W1, but smaller expected W2 rewards.
This observation shows that, in an online version, the algorithm organises agents into
teams that increase the expectation for more agents to be in a successful team, but
decrease the expected total number of tasks completed. This is summarised in Tab. 4,
which shows the task completion probabilities. The following PRISM temporal logic
queries were used to find the probabilities:

– P=?[♦Tj done] - “what is the probability to complete task Tj?” (j ∈ {1, 2}),
– P=?[♦ (T1 done ∧ T2 done)] - “what is the probability to complete both tasks?”.

Using formal analysis for DTMCs, we produced exact values of expectations for prop-
erties of the system (task completion probabilities and rewards were used as examples),
so that even small differences between different organisations can be captured precisely.
Also, we focused on one particular strategy defined in Alg. 1, but the PRISM code can
be adapted easily to analyse other strategies and reward structures. In the next section
we will explore how the performance can be improved by changing the strategy of the
agents so that they collaborate to optimise the performance of the organisation.

14

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 1.0 1.0 0.67346
Or 1.0 1.0 0.67346
Os 0.82857 0.82857 0.39183
Oia 1.0 1.0 0.67346

(a) Offline

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 1.0 1.0 0.42857
Or 1.0 1.0 0.42857
Os 0.88571 0.88571 0.12653
Oia 1.0 1.0 0.42857

(b) Online
Table 5: Maximum task completion probabilities for optimal agent organisations using
Alg. 2’s online and offline versions (see Alg. 3).

5.2 MDP Analysis

In this section, we present the analysis of Alg. 2, which is modelled as an MDP. Using
PRISM we find the maximum expected rewards and task completion probabilities for
all agent organisations and compare the results with the strategy used in Alg. 1. This
is achieved by synthesizing the optimal strategy for the MDP using PRISM and then
model-checking the formulae on the resulting DTMC. Due to space limitations we do
not present the actual strategies here.5 In Tab. 5 we can see the maximum expected task
completion probabilities that can be achieved. All organisations except Os can ensure
that at least one task is completed with probability 1.0, no matter what the scheduling
is. The following PRISM temporal logic queries were used to get the results:

– Pmax=?[♦Tj done] - “what is the maximum probability to complete task Tj?”
(j ∈ {1, 2}),

– Pmax=?[♦ (T1 done ∧ T2 done)] - “what is the maximum probability to complete
both tasks?”.

Fig. 4 compares maximum expected rewards for Alg. 1 that can be achieved by all
agents collaborating. It is not very difficult to see that Ofc , Or and Oia have the same
maximum reward, no matter whether W1/W2 reward or online/offline version is taken.
These outperform the star organization Os in all circumstances. More significant im-
provement can be obtained for the offline version for both rewards than for the online
version. This result shows that there is more potential for collaboration for agents in
the offline version. The small performance improvement for the online version suggests
that the original strategy of Alg. 1 is close to optimal when teams are formed before
tasks are advertised.

The PRISM temporal logic queries used to find the rewards were the following:

– R
Wj

max=?[♦finished] - “what is the maximum expected total reward Wj?” (j ∈
{1, 2}),

– R
Wj

max=?[♦ (finished ∧ ai∈M̄)] - “what is the maximum expected reward Wj for
agent ai?” (j ∈ {1, 2}, i ∈ {1, 2, 3, 4, 5}).

5 The instructions on how to generate optimal strategies for MDPs can be found at:
http://www.prismmodelchecker.org/manual/RunningPRISM/Adversaries

http://www.prismmodelchecker.org/manual/RunningPRISM/Adversaries

15
Sheet1

Page 1

0

1

2

3

4
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

0

1

2

3

4
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(a) Offline. Reward W1(O).

Sheet1

Page 1

0

1

2

3

4
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(b) Online. Reward W1(O).

Sheet1

Page 1

0

1

2
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

0

1

2
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(c) Offline. Reward W2(O).

Sheet1

Page 1

0

1

2
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(d) Online. Reward W2(O).

Fig. 4: Bar charts comparing offline and online versions of Alg. 1 analysed as a DTMC
with the best-case performance of Alg. 2 analysed as an MDP.

Using MDP model checking we have obtained the optimal strategy for the proto-
col and compared its performance to Alg. 1. The designer could choose to synthesize
and use this strategy but it is worth noting that, even if the designer chooses not to
implement this particular strategy, it still serves as a “best-case” benchmark for mea-
suring other algorithms’ performance. This analysis allows us to evaluate the effects of
a fully collaborative behaviour of agents. However often only limited collaboration can
be achieved. In order to facilitate analysis of such systems, one has to go beyond MDPs.
In the next section we show how STPGs can be used for this purpose.

5.3 STPG Analysis

In this section we focus on the analysis of Alg. 2, but, in contrast to the previous section,
we distinguish agents as either cooperative or hostile. This is naturally modelled as an
STPG, by considering each class of agents (cooperative or hostile) as a separate player
in a zero-sum game. Cooperative agents collaborate fully to act in the interest of the
organisation, i.e., maximising rewards W1 or W2, whereas all hostile agents together
take actions so as to minimise the expected rewards gained by the organisation. As a
result of solving the STPG, we are able to obtain (synthesise) the optimal strategies for
both cooperative and hostile agents, these can be used in further design of the system.

16 Sheet1

Page 1

1 2 3 4 5
0

1

2

3

4

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(a) Offline. Reward W1(O).

Sheet1

Page 1

1 2 3 4 5
0

1

2

3

4

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(b) Online. Reward W1(O).

Sheet1

Page 1

1 2 3 4 5
0

0.3

0.6

0.9

1.2

1.5

1.8

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(c) Offline. Reward W2(O).

Sheet1

Page 1

1 2 3 4 5
0

0.3

0.6

0.9

1.2

1.5

1.8

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(d) Online. Reward W2(O).

Fig. 5: Graphs comparing how the optimal coalition’s performance depends on its size.

Here we present the expected rewards achieved by the optimal strategies, but due to
space limitations we omit the strategies themselves.

We are mainly interested in finding the optimal coalition. In general, a coalition
C⊆A is a subset of agents who cooperate to ensure certain goals, irrespective of how the
other agents behave in the organization. We consider two criteria: the largest probability
to accomplish tasks, and the largest reward (W1 or W2) achieved by the coalition. To
this aim, we use the following PRISM temporal logic queries which, as mentioned
earlier, have been extended for STPGs.

– Pmax,min=?[♦Tj done] - “what is the maximum probability for coalition C to
complete task Tj when agents in A \ C are hostile?” (j ∈ {1, 2}),

– Pmax,min=?[♦ (T1 done∧T2 done)] - “what is the maximum probability for coali-
tion C to complete both tasks T1 and T2 when agents in A \ C are hostile?”,

– R
Wj

max,min=?[♦finished] - “what is the maximum expected reward Wj for coalition
C when agents in A \ C are hostile?” (j ∈ {1, 2}).

For all agent organisations from Fig. 2, we enumerate all possible coalitions with dif-
ferent sizes and use PRISM to compute task completion probabilities (one task or both
tasks) and rewards obtained (W1 orW2). These are done for both online and offline ver-
sions of the algorithm. It turns out that there exist coalitions of all sizes that are optimal
with respect to all evaluated criteria; they are shown in Tab. 6. This result highlights the

17

O 1 2 3 4 5
Ofc 〈a1〉 〈a1, a3〉 〈a1, a3, a5〉 〈a1, a2, a3, a5〉 〈a1, a2, a3, a4, a5〉
Or 〈a1〉 〈a2, a3〉 〈a1, a4, a5〉 〈a1, a2, a4, a5〉 〈a1, a2, a3, a4, a5〉
Os 〈a1〉 〈a1, a2〉 〈a1, a2, a4〉 〈a1, a2, a3, a4〉 〈a1, a2, a3, a4, a5〉
Oia 〈a1〉 〈a1, a4〉 〈a1, a2, a4〉 〈a1, a2, a4, a5〉 〈a1, a2, a3, a4, a5〉

Table 6: Optimal coalitions of all sizes for agent organisations from Fig. 2.

importance of positions in the network and resources held by the agents. For example,
agent a4 is in all optimal coalitions of sizes greater than 1 for Oia. This is because it
is connected to all agents, including agent a5 which is isolated from other agents. For
Or, however, the structure of the optimal coalition varies depending on coalition size.
For example, for size 2 the optimal coalition consists of agents a2 and a3, but neither
of them is in the optimal coalition of size 3.

Fig. 5 shows a comparison of agent organisations in terms of the maximum per-
formance for different coalition sizes. Ofc outperforms others in all examples. This is
interesting, because it suggests that having strong connectivity within the team out-
weighs the exposure to many hostile agents. Performance of Or is the most consistent,
as the maximum reward increases steadily with the coalition size. However, to be as ef-
fective as more connected networks likeOfc , the coalition has to contain most agents in
the network. Better performance of Os against Or for coalition sizes up to 3 illustrates
the importance of having a highly interconnected agent for small coalitions.

Important differences between the online and offline settings can be seen for reward
W1 in Fig. 5a and 5b. When going from coalition size 2 to 3, especially, for strongly
connectedOfc andOia, coalitions can ensure that one task is completed with probability
1.0 , and thus guaranteeing reward of at least 3 for the coalition, which results in a jump
of performance.

In this section, we have shown how an extension of PRISM to support STPGs can
be used to verify properties of the multi-agent system that can be enforced by particular
agent coalitions. This competitive scenario allowed us to analyse the team formation
algorithm from the coalitional perspective, finding the optimal coalitions and comparing
their performance on different network topologies.

6 Conclusion and Future Work

In this paper, we have presented a comprehensive, formal analysis of a team formation
algorithm using probabilistic model checking. We believe this demonstrates the strong
potential of these techniques to the formal analysis of multi-agent systems and hope
that this case study will serve as a motivation for further work in this area.

As ongoing and future work, we plan to explore parallel execution of the JOINTEAM
algorithm for multiple agents, as here we only considered sequential execution, and
consider the problem of synthesising optimal agent organisations for task distributions
from a mechanism design perspective. We also plan to develop our prototype extension
of PRISM into a fully-fledged model checker for stochastic games and to equip the
analysis with abstraction techniques to allow for analysis of larger systems.

18

References

1. S. Abdallah and V.R. Lesser. Organization-based cooperative coalition formation. In IAT,
pp. 162–168. IEEE, 2004.

2. T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about coalitional games.
Artificial Intelligence, 173(1):45–79, 2009.

3. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

4. P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agent verification through probabilistic
model-checking. In Proc. of SASEMAS’06, 2006.

5. E. Bonzon, M.-C. Lagasquie-Schiex, and J. Lang. Efficient coalitions in Boolean games. In
Texts in Logic and Games, vol.5, pp. 293–297. 2008.

6. K. Chatterjee, T. Henzinger, and N. Piterman. Strategy logic. In Proc. CONCUR 2007,
LNCS 4703, pp. 59–73. Springer, 2007.

7. A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
8. P.E. Dunne, W. van der Hoek, S. Kraus, and M. Wooldridge. Cooperative boolean games. In

Proc. of AAMAS’08, pp. 1015–1022. ACM, 2008.
9. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated Verification Techniques

for Probabilistic Systems. In Proc. SFM’11, Springer, 2011. To appear.
10. M.E. Gaston and M. desJardins. Agent-organized networks for dynamic team formation. In

Proc. of AAMAS’05, pp. 230–237. ACM, 2005.
11. R. Glinton, P. Scerri, and K. Sycara. Agent-based sensor coalition formation. In Proc.

Fusion’08, pp. 1–7. IEEE, 2008.
12. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects

of Computing, 6(5):512–535, 1994.
13. S. Kraus, O. Shehory, and G. Taase. Coalition formation with uncertain heterogeneous in-

formation. In Proc. of AAMAS’03, pp. 1–8. ACM, 2003.
14. M. Kwiatkowska and G. Norman. Verifying randomized Byzantine agreement. In Proc. of

FORTE’02, LNCS 2529, pp. 194–209. Springer, 2002.
15. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In Proc. SFM’07,

LNCS 4486, pp. 220–270. Springer, 2007.
16. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-

time systems. In Proc. of CAV’11, LNCS. Springer, 2011. To appear.
17. A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. In Proc.

of TACAS’06, LNCS 3920, pp. 450–454. Springer, 2006.
18. E. Manisterski, E. David, S. Kraus, and N.R. Jennings. Forming efficient agent groups for

completing complex tasks. In Proc. of AAMAS’06, pp. 834–841. ACM, 2006.
19. M.J. Osborne and A. Rubinstein. A course in game theory. The MIT press, 1994.
20. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation. Artificial

Intelligence, 101(1-2):165–200, 1998.

	Verifying Team Formation Protocols with Probabilistic Model Checking
	Introduction
	Preliminaries
	Probabilistic Models
	Probabilistic Model Checking & PRISM

	Definitions and Algorithms
	Definitions
	Algorithms

	Models and Experimental Setup
	PRISM Models
	Experimental Setup

	Experimental Results
	DTMC Analysis
	MDP Analysis
	STPG Analysis

	Conclusion and Future Work

