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Abstract

Stochastic evolution of Chemical Reactions Networks (CRNs) over time is
usually analysed through solving the Chemical Master Equation (CME) or
performing extensive simulations. Analysing stochasticity is often needed,
particularly when some molecules occur in low numbers. Unfortunately, both
approaches become infeasible if the system is complex and/or it cannot be
ensured that initial populations are small. We develop a probabilistic logic
for CRNs that enables stochastic analysis of the evolution of populations
of molecular species. We present an approximate model checking algorithm
based on the Linear Noise Approximation (LNA) of the CME, whose com-
putational complexity is independent of the population size of each species
and polynomial in the number of different species. The algorithm requires
the solution of first order polynomial differential equations. We prove that
our approach is valid for any CRN close enough to the thermodynamical
limit. However, we show on four case studies that it can still provide good
approximation even for low molecule counts. Our approach enables rigorous
analysis of CRNs that are not analyzable by solving the CME, but are far
from the deterministic limit. Moreover, it can be used for a fast approximate
stochastic characterization of a CRN.
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Logic, Model Checking

1. Introduction

Chemical reaction networks (CRNs) and mass action kinetics are well
studied formalisms for modelling biochemical systems [1]. In recent years,
CRNs have also been successfully used as a formal programming language
for biochemical systems [2, 3, 4]. There are two well established approaches
for analyzing chemical networks: deterministic and stochastic [5]. The de-
terministic approach models the kinetics of a CRN as a system of ordinary
differential equations (ODEs) and represents average behaviour, valid in the
thermodynamic limit, when the molecular population is sufficiently high [6].
The stochastic approach, on the other hand, is based on the Chemical Master
Equation (CME) and models the CRN as a continuous-time Markov chain
(CTMC) [7]. The stochastic behavior can be analyzed by stochastic simula-
tion [5] or by exhaustive probabilistic model checking of the CTMC, which
can be performed, for example, by using PRISM [8]. Exhaustive analysis of
the CTMC is able to find the best- and worst-case scenarios and is correct for
any population size, but suffers from the state-space explosion problem [9]
and can only be used for relatively small systems. In contrast, deterministic
methods are much more robust with respect to state-space explosion, but
unable to represent stochastic fluctuations, which play a fundamental role
when the system is not in thermodynamic equilibrium. As a consequence,
approximate approaches to efficiently solve the CME are appealing. For in-
stance, in [10, 11], the authors use proper generalized decomposition in order
to efficiently derive a numerical solution of the CME. These approaches are
based on the assumption that the probability of the system being in a par-
ticular state can be written as a finite sum of separable functions. Herein, we
consider a different approach based on a continuous stochastic approximation
of the CME [12].

1.0.1. Contributions

In this paper we develop a novel approach for analysing the stochastic
evolution of a CRN based on the Linear Noise Approximation (LNA) of the
CME. We formulate SEL (Stochastic Evolution Logic), a probabilistic logic
for CRNs that enables reasoning about probability, expectation and variance
of linear combinations of populations of the species. Examples of properties
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that can be specified in our logic include “the maximum expected popula-
tion size of species λ1 during the first 20 seconds is 75 molecules” and “the
probability that the combined population of species λ1 and λ2 has degraded
between 10 and 30 seconds is less than 0.1”. We propose an approximate
model checking algorithm for the logic based on the LNA and implement it
in Matlab and Java. We demonstrate that the complexity of model check-
ing is polynomial in the initial number of species and independent of the
initial molecule counts, thus ameliorating state-space explosion. Further, we
show that model checking is exact when approaching the thermodynamic
limit. Though the algorithm may not be accurate for systems far from the
deterministic limit, this generally happens when the populations are small, in
which case the analysis can be performed by transient analysis of the induced
CTMC [13]. Our approach is essential for CRNs that cannot be analyzed
by (partial) state space exploration, because of large or infinite state spaces.
Moreover, it is useful for a fast (approximate) stochastic characterization
of CRNs, since solving the LNA is much faster than solving the CME [14].
We prove asymptotic correctness of LNA-based model checking and show on
four examples that it is still possible to obtain very good approximations
even for small population systems, compared to standard uniformisation [13]
and statistical model checking implemented in PRISM [8].

1.0.2. Related work

The closest work to ours is by Bortolussi et al. [15], which uses the Central
Limit Approximation (CLA) (essentially the same as the LNA) for checking
restricted timed automata specifications, assuming a fixed population size.
Wolf et al. [16] develop a sliding window method to approximately verify
infinite-state CTMCs, which applies to cases where most of the probability
mass is concentrated in a confined region of the state space. Recently, Finite
State Projection algorithms (FSP algorithms) for the solution or approxi-
mation of the CME have been introduced [17]. Sliding window and FSP
algorithms apply to the induced CTMC, but require at least partial explo-
ration of the state space, and are thus not immune to state-space explosion.
Moment closure techniques [18, 19] improve scalability by estimating the first
k ∈ N moments of the distribution of the species over time. The LNA itself
can be seen as a moment closure technique, as a Gaussian distribution is
completely characterized by the first two moments. However, the LNA tells
us more because it guarantees that, if certain conditions are satisfied, the
distribution of the process is Gaussian.
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Continuous Stochastic Logic (CSL), originally introduced in [20] and ex-
tended by Baier et al. [21], is a logic widely used to perform model checking
of continuous-time Markov chains. CSL combines temporal operators of the
logic CTL with the probabilistic and steady-state operators, and is further
extended with reward operators in [13]. CSL model checking is based on solv-
ing the CME and proceeds through uniformisation of the CTMC, essentially
a time discretisation, and thus involves traversal of the full state space. This
can be partially ameliorated by fast adaptive uniformisation [22] that does
not consider states with negligible probability. An alternative is statistical
model checking (SMC) which involves A key operator of CSL is probabilistic
reachability, that is, computing the probability that a particular region of the
state space is reached over a given time interval. Although SEL is endowed
with a probabilistic operator, this operator gives the average value of the
probability over time and, if the time interval is not a singleton, this is not
equivalent to probabilistic reachability. Nevertheless, as shown in [23], SEL
and our approximate model checking algorithm can be extended to express
reachability, but currently lacks reward operators. The CSL steady-state op-
erator of CSL cannot be added to CSL because LNA is acccurate only for
finite time. PRISM [8] implements CSL model checking using uniformisation,
fast adaptive uniformisation and statistical model checking.

Hybrid Automata Stochastic Logic HASL [24] is an expressive specifica-
tion formalism for stochastic Petri nets based on linear hybrid automata that
is employed by the tool Cosmos [25]. CRNs have a natural interpretation in
terms of stochastic Petri nets, see e.g. [26]. The HASL formalism is more
expressive than SEL and CSL, and can express CSL probabilistic reachabil-
ity and expected reward properties. HASL model checking proceeds through
statistical model checking of the product of a HASL specification automaton
and the Petri net, and is implemented in Cosmos. In contrast, SEL model
checking follows through approximating the solution of the CME with the
Gaussian process induced by the LNA.

1.0.3. Structure of the paper

In Section 2 we summarise the deterministic and stochastic modelling
approaches for CRNs, and in Section 3 we describe the Linear Noise Approx-
imation method. Section 4 introduces the logic SEL and the corresponding
model checking algorithm based on the LNA. In Section 5 we demonstrate
our approach on four networks taken from the literature. Section 6 concludes
the paper.
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2. Chemical Reaction Networks

A chemical reaction network (CRN) C = (Λ, R) is a pair of finite sets,
where Λ is the set of chemical species and R the set of reactions. |Λ| denotes
the size of the set of species. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ),
where rτ , pτ ∈ N|Λ| and kτ ∈ R>0. rτ and pτ represent the stoichiometry of
reactants and products and kτ is the coefficient associated to the rate of the
reaction; its dimension is s−1. We often write reactions as λ1 + λ3 →k1 2λ2

instead of τ1 = ([1, 0, 1]T , [0, 2, 0]T , k1), where ·T indicates the transpose of a
vector. We define the net change associated to a reaction τ by υτ = pτ − rτ .
For example, for τ1 as above, we have υτ1 = [−1, 2,−1]T .

We make the assumption that the system is well stirred, that is, the prob-
ability of the next reaction occurring between two molecules is independent
of the location of those molecules. We consider fixed volume V and tempera-
ture; under these assumptions a configuration or state x ∈ N|Λ| of the system
is given by the number of molecules of each species. We define [x] = x

N
, the

vector of the species concentration in x for a given N , where N = V ·NA is
the volumetric factor, V is the volume of the solution and NA is Avogadro’s
number. The physical dimension of N is Mol−1 · L, where Mol indicates
mole and L is litre. Given λi ∈ Λ then #λi x ∈ N represents the number
of molecules of λi in x and [λi] x ∈ R the concentration of λi in the same
configuration. In some cases we elide x, and we simply write #λi and [λi]
instead of #λi x and [λi] x. They are related by [λi] = #λi

N
. The dimension

of [λi] is Mol · L−1.
The propensity αn,τ of a reaction τ in terms of the number of molecules

(here subscript n stands for the numebr of molecules) is a function of the
current configuration of the system x such that αn,τ (x)dt is the probability
that a reaction event occurs in the next infinitesimal interval dt. In this
paper we assume as valid the stochastic form of the law of mass action, so
the propensity rates are proportional to the number of molecules that partic-
ipate in the reaction [7]. Stochastic models consider the system in terms of
numbers of molecules, while deterministic ones, generally, in terms of concen-
trations, denoted αc,τ (x) where subscript c stands for concentrations, and the
relationship is as follows. For a reaction τ = (rτ , pτ , kτ ), given the configu-

ration x and rτ,i, the i-th component of rτ , then αc,τ (x) = kτ
∏|Λ|

i=1 ([λi] x)rτ,i

is the propensity function expressed in terms of concentrations as given by
the deterministic law of mass action. It is possible to show that, for any
order of reaction, αn,τ (x) ≈ Nαc,τ (x) if N is sufficiently large [27]. Note that
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Figure 1: Expected number and standard deviation of species of the CRN of Example 2.1
for the given initial conditions, calculated by simulating the CME.

αc,τ is independent of N . In this paper we are interested only in finite time
horizon, because of the problematic character of studying solutions of ODEs
for infinite time horizon [28].

Example 2.1. Consider the CRN C = ({λ1, λ2, λ3}, R), where R = {(λ1 +
λ2 →10 λ2 + λ2), (λ2 + λ3 →10 λ3 + λ3)}, with initial conditions #λ1 =
98,#λ2 = 1,#λ3 = 1, for a system with N = 1000. Figure 1 plots the ex-
pectation and standard deviation of population sizes. We may wish to check
if the maximum expected value of #λ2 remains smaller than 75 molecules
during the first 2sec. However, the system is stochastic, so we also need to
analyse whether the variance is limited enough when #λ2 reaches the maxi-
mum. Sometimes, analysis of first and second moments does not suffice, so
it could be of interest to check the probability of some events, for instance,
is the probability that #λ2 − (#λ1 + #λ3) > 0, between t1 = 0.5sec and
t2 = 1.0sec, greater than 0.6?

2.1. Deterministic semantics

Let C = (Λ, R) be a CRN. The deterministic model approximates the
concentration of the species of the system over time as a set of autonomous
polynomial first order differential equations:

dΦ(t)

dt
= F (Φ(t)) (1)

where F (Φ(t)) =
∑

τ=(rτ ,pτ ,kτ )∈R υταc,τ (Φ(t)) and αc,τ (Φ(t)) = kτ
∏|Λ|

i=1 Φi(t)
rτ,i .

Function Φ : R≥0 → R|Λ| describes the behaviour of the system as a set of

6



deterministic equations assuming a continuous state-space semantics, and
therefore Φ(t) ∈ R|Λ| is the vector of the species concentrations at time t.
Assuming t0 = 0, the initial condition is Φ(0) = [x0], expressed as a concen-
tration. Note that F (Φ(t)) is Lipschitz continuous, so Φ exists and is unique
[29]. Φ represents the evolution of the system deterministically, neglecting
stochastic fluctuations. However, it is often the case that stochasticity can-
not be neglected. This is true especially when there are species with small
populations. As a consequence, in such cases a stochastic model is needed.

2.2. Stochastic semantics

CRNs are well represented by CTMCs, whose transient analysis can be
performed via the Chemical Master Equation (CME) [12].

Definition 1. Given a CRN C = (Λ, R) and the volumetric factor N , we
define a time-homogeneous CTMC [30, 31] (XN(t), t ∈ R≥0) with state space
S ⊆ N|Λ|. Given x0 ∈ S, the initial configuration of the system, then
P (XN(0) = x0) = 1. The transition rate from state xi to state xj is de-
fined as r(xi, xj) =

∑
{τ∈R|xj=xi+vτ}Nαc,τ (xi).

XN(t) describes the stochastic evolution of molecular populations of each
species at time t. For x ∈ S, we define P (t)(x) = P (XN(t) = x|XN(0) = x0),
where x0 is the initial configuration. The CME describes the time evolution
of XN as:

d

dt

(
P (t)(x)

)
=
∑
τ∈R

{Nαc,τ (x− υτ )P (t)(x− υτ )−Nαc,τ (x)P (t)(x)}. (2)

The CME can be equivalently defined in terms of the infinitesimal generator
matrix [16], which admits computing an approximation of the CME using, for
example, fast adaptive uniformisation [32, 22] or the sliding window method
[16].

We also define the CTMC (X
N (t)
N

, t ∈ R≥0) with state space S ⊆ Q|Λ|. If

[x0] ∈ S is the initial configuration, then P (X
N (0)
N

= [x0]) = 1. The transition
rate from state [xi] to [xj] is defined as r([xi], [xj]) =

∑
{τ∈R|[xj ]=[xi]+

vτ
N
}Nαc,τ (xi).

XN (t)
N

is the random vector describing the system at time t in terms of con-

centrations. In [27, 29] it is proved that lim
N→∞

sup
t′≤t
‖X

N (t′)
N
−Φ(t′)]‖ = 0 almost

surely for any time t. This explains the relationship between the two differ-
ent semantics, where the deterministic solution can be viewed as a limit of
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the stochastic solution, valid when close enough to the thermodynamic limit
(i.e., for large molecular counts).

3. Linear Noise Approximation

The solution of the CME can be computationally expensive, or even in-
feasible, because the set of reachable states can be huge or infinite. The
Linear Noise Approximation (LNA) has been introduced by Van Kampen
as a second order approximation of the system size expansion of the CME
[12]. It permits a stochastic characterization of the evolution of a CRN, still
maintaining scalability comparable to that of the deterministic models.

In what follows, we introduce the LNA following the derivation in [33].
This approach clearly shows that, assuming mass action kinetics, the LNA
is always accurate for any CRN, if N is large enough, at least for a limited
time. In fact, the original derivation of [12] does not shield much light on
the validity of such an approximation because truncating the expansion of
the CME works fine only if terms of higher order are well behaved, and this
is not always the case [33].

In order to derive the LNA, we first consider the following conditions,
namely the leap conditions. Given a CRN C = (Λ, R), XN satisfies the leap
conditions at time t, if for any τ ∈ R, it holds that there exists a finite time
interval dt such that:

αn,τ (X
N(t)) is constant in [t, t+ dt] and

αn,τ (X
N(t)) · dt� 1.

In [34], Gillespie shows that if these conditions are satisfied then the CME
can be approximated by the following Chemical Langevin Equation (CLE):

XN(t+dt) = XN(t)+
∑
τ∈R

υταn,τ (X
N(t))dt+

∑
τ∈R

υτ

√
αn,τ (XN(t))Nτ (0, 1)

√
dt

(3)
where Nτ (0, 1) are a set of independent normally distributed random vari-
ables with expected value 0 and variance 1. It is possible to show that,
assuming mass action kinetics, for N large enough, the leap conditions can
always be satisfied, and so Eqn (3) can be considered as a valid approxima-
tion of the real Markov process, at least for finite time: the Gaussian nature
of the CLE makes it impossible to handle rare events. Since stochastic fluc-
tuations depend on the volumetric factor, N , of the system, and, specifically,
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for average concentrations are of the order of N
1
2 [35], we can assume that

Eqn (3) has a solution of the form:

XN(t) ≈ NΦ(t) +N
1
2Z(t) (4)

where Z(t) = (Z1(t), Z2(t), ..., Z|Λ|) is a random vector, independent of N ,
representing the stochastic fluctuations at time t and Φ(t) is given by the
solution of Eqn (1). This assumption can also be justified by considering the
work of Either and Kurtz [29]. Assuming such a structure for the solution
of Eqn (3), then the probability distribution of Z(t) can be approximated by
the following linear Fokker-Plank equations [36]:

∂P (Z, t)

∂t
= −

|Λ|∑
i=1

|Λ|∑
j=1

∂Fj(Φ(t))

∂Φi

∂(ZjP (Z, t))

∂Zi
+

1

2

|Λ|∑
i=1

|Λ|∑
j=1

Gi,j(Φ(t))
∂2P (Z, t)

∂Zi∂Zj

(5)
where G(Φ(t)) =

∑
τ∈R υτυτ

Tαc,τ (Φ(t)) and Fj(Φ(t)) is the j−th component
of F (Φ(t)). Solving a general Fokker-Planck equation generally cannot be
done in closed form [37]. However, it is well known that the solution of Eqn
(5) yields a Gaussian process [12]. For every time t, Z(t) has a multivariate
normal distribution whose expected value, E[Z(t)], and covariance matrix,
C[Z(t)], are the solution of the following equations [35]:

dE[Z(t)]

dt
= JF (Φ(t))E[Z(t)] (6)

dC[Z(t)]

dt
= JF (Φ(t))C[Z(t)] + C[Z(t)]JT F (Φ(t)) +G(Φ(t)) (7)

where JF (Φ(t)) is the Jacobian of F (Φ(t)). We consider as initial conditions
E[Z(0)] = 0 and C[Z(0)] = 0. This means that E[Z(t)] = 0 for every t.

The LNA is therefore obtained as an approximation of the CLE, and so it
yields all its conditions of validity. However, we need to check that hypoth-
esis (4) is effectively satisfied, which implies the need to check that C[Z(t)]
remains bounded. This ensures that the LNA can be an accurate approx-
imation, at least for a limited time, for any CRN. The following theorem
ensures that, for N →∞, the LNA is always an accurate approximation.

Theorem 1. [29] Let C = (Λ, R) be a CRN in a system of size N and XN

the CTMC induced by C. Let Φ(t) be the solution of Eqn (1) with initial
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condition Φ(0) = x0
N

and Z be the Gaussian process with expected value and

variance given by Eqns (6) and (7). Call X̄N = N
1
2

(
XN (t)
N
− Φ(t)

)
. Then,

for any x ∈ R|Λ|,
lim
N→∞

FX̄N (t)(x) = FZ(t)(x), (8)

where FX̄N (t) and FZ(t) are the cumulative distribution functions of random
variables X̄N(t) and Z(t), respectively.

Even if both LNA and CLE give rise to a Gaussian process, solving the
LNA is much simpler than solving the CLE as explained in [33]. As a conse-
quence, it can be used for a fast stochastic characterization of the stochastic
semantics of any CRN. LNA is exact in the limit of high populations, but
can also be used for quite small populations. In fact, if the species of in-
terest present a unimodal distribution, and the molecular count is such that
a continuous approximation can be reasonable, then the LNA is generally
surprisingly accurate.

To compute the LNA it is necessary to solve O(|Λ|2) first order differ-
ential equations, but the complexity is independent of the initial number of
molecules of each species. Therefore, one can avoid the exploration of the
state space that methods based on uniformization rely upon.

3.1. Probabilistic analysis of CRNs

The LNA thus permits approximation of the probability distribution
of XN(t) with the probability distribution of Y N(t) = NΦ(t) + N

1
2Z(t),

where Z, and hence Y N , are Gaussian processes. As a consequence, Y N(t)
has a multivariate Gaussian distribution, so it is completely characterized
by its expected value and covariance matrix, whose values are respectively
E[Y N(t)] = NΦ(t) and C[Y N(t)] = N

1
2C[Z(t)]N

1
2 = NC[Z(t)].

Since Y N has a multivariate normal distribution, then every linear com-
bination of its components is normally distributed. Therefore, given B =
[b1, b2, · · · , b|Λ|] where b1, b2, ..., b|Λ| ∈ Z, we can consider the random vari-
able BY N(t), which defines a linear combination of the species at time t.
For every t, BY N(t) is a normal random variable, whose expected value and
variance are:

E[BY N(t)] = BE[Y N(t)] (9)

C[BY N(t)] = BC[Y N(t)]BT . (10)
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For a specific time tk, it is possible to calculate the probability that BY N(tk)
is within a set I of closed, disjoint real intervals [li, ui], where li, ui ∈ R ∪
{+∞,−∞}. This probability ΩY N ,B,I(tk) is given by:

ΩY N ,B,I(tk) =
∑

[li,ui]∈I

ui∫
li

g(x|E[BY N(tk)], C[BY N(tk)])dx (11)

where g(x|EV, σ2) is the Gaussian distribution with expected value EV and
covariance σ2. We recall that it is possible to find numerical solution of Eqn
(11) in constant time using the Z table [38].

Example 3.1. Consider the CRN of Example 2.1, then we can obtain the
probability that #λ1 − 2#λ3 is at least 10 at time 20 by defining B′ =
[1, 0,−2], I ′ = {[10,+∞]} and calculating ΩY N ,B′,I′(20).

The following theorems are consequences of results in [33, 29], which can
be generalized for reactions with a finite number of reagents and products.
They show asymptotic pointwise convergence of expected value, variance and
probability.

Theorem 2. Let C = (Λ, R) be a CRN. Suppose the solution of Eqn (7) is
bounded, then, for any finite instant of time ti

lim
N→∞

‖ΩY N ,B,I(ti)− Ω̃XN ,B,I(ti)‖ = 0, (12)

where Ω̃XN ,B,I(ti) is the probability that B(XN) is within I at time ti.

Theorem 3. Suppose the solution of Eqn (7) is bounded, then, approaching
the thermodynamic limit, for any finite instant of time tk:

lim
N→∞

‖C[BY N(tk)]− C[BXN(tk)]‖ = 0 (13)

lim
N→∞

‖E[BY N(tk)]− E[BXN(tk)]‖ = 0. (14)

To solve the differential equations (6) and (7), it is necessary to use a
numerical method such as the adaptive Runge-Kutta algorithm [39]. This
yields the solution for a finite set of sampling times Σ = [t1, ..., t|Σ|] ∈ R|Σ|,
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where t1 ≤ ... ≤ tk ≤ ... ≤ t|Σ| and |Σ| is the sample size. Assuming Y N is
separable, that is, it is possible to completely define the behavior of Y N by
only considering a countable number of points, we can calculate ΩY N ,B,I for
any point in Σ and, if points are dense enough, then this set exhaustively
describes the probability that BXN is within I over time. This restriction
is not a limitation since for any stochastic process there exists a separable
modification of it [40].

4. Stochastic Evolution Logic (SEL)

Let C = (Λ, R) be a CRN with initial state x0, in a system of size N .
We now define the logic SEL (Stochastic Evolution Logic) which enables
evaluation of the probability, variance and expectation of linear combinations
of populations of the species of C.

The syntax of SEL is given by:

η := P∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2

where Q = {supV, infV, supE, infE}, ∼∈ {<,>}, p ∈ [0, 1], v ∈ R, B ∈
Z|Λ|, I = {[li, ui] | li, ui ∈ R ∪ [+∞,−∞] ∧ [li, ui] ∩ [lj, ui] = ∅, i 6= j} and
[t1, t2] is a closed interval, with the constraint that t1 ≤ t2 and t1, t2 ∈ R. If
t1 = t2 the interval reduces to a singleton.

Formulae η describe global properties of the stochastic evolution of the
system. (B, I) specifies a linear combination of the species of C and a set
of intervals, where B ∈ Z|Λ| is the vector defining the linear combination
and I represents a set of disjoint closed real intervals. P∼p[B, I][t1,t2] is the
probabilistic operator, which specifies the probability that the linear combi-
nation defined by B falls within the range I over the time interval [t1, t2].
supE, infE, infV, supV respectively yield the supremum and infimum of ex-
pected value and variance of the random variables associated to B within the
specified time interval.

Example 4.1. Consider the CRN of Example 2.1. Checking if the vari-
ance of #λ1 remains smaller than K1 within [tj, tk] can be expressed as
supV<K1 [[1, 0, 0]][tj ,tk]. Another example is checking if, in the same inter-
val, (#λ1 − #λ2) is at least K2 or within [K3, K4], with K3 < K4 < K2,
with probability greater than 0.95: P>0.95[[1,−1, 0], ([K3, K4], [K2,∞])][tj ,tk].
Equivalently, instead of writing B, we write directly the linear combination it
defines. For example, in the latter case we have P>0.95[(#λ1−#λ2), ([K3, K4],
[K2,∞])][tj ,tk].
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We now comment about expressiveness of SEL in relation to CSL, the
logic typically employed to specify properties of the CTMCs induced by
CRNs. Though SEL includes the probabilistic operator P∼p[B, I][t1,t2], this
is different from the probabilistic reachability operator of CSL. As shown
in [23], under some restrictions SEL can be endowed with the probabilistic
reachability operator, but reward operators for SEL have not been studied.
The steady-state operator of CSL cannot be handled by LNA because it is
accurate only for finite time.

4.1. Semantics

Given a CRN C = (Λ, R) with initial configuration x0 in a system of fixed
volumetric factor N , its stochastic behaviour is described by the CTMC
XN of Definition 1. We define a path of CTMC XN as a sequence ω =
x0t1x1t1x2... where xi is a state and ti ∈ R>0 is the time spent in the state xi.
A path is finite if there is a state xk that is absorbing. ω ⊗ t is the state of
the path at time t. Path(XN , x0) is the set of all (finite and infinite) paths of
the CTMC starting in x0. We work with the standard probability measure
Prob over paths Path(XN , x0) defined using cylinder sets [13].

We first define when a path ω satisfies (B, I) at time t:

ω, t |= (B, I) ↔ ∃[li, ui] ∈ I . li ≤ B(ω ⊗ t) ≤ ui.

Note that B(ω ⊗ t) is well defined because ω ⊗ t ∈ N|Λ|.
We now define PrX

N

B,I (t) = Prob{ω ∈ Path(XN , x0) |ω, t |= (B, I)}, then
if the time interval is a singleton the satisfaction relation for the probabilistic
operator is:

XN , x0 |= P∼p[B, I][t1,t1] ↔ PrX
N

B,I (t1) ∼ p

Instead, for t1 < t2 we have:

XN , x0 |= P∼p[B, I][t1,t2] ↔ 1

t2 − t1

∫ t2

t1

PrX
N

B,I (t) dt ∼ p

PrX
N

B,I (t) is the probability of the set of paths of XN such that the linear
combination of the species defined by B falls within I. It is well defined since
we have previously defined the probability measure Prob on Path(XN , x0).
To define the satisfaction relation of the probabilistic operator we simply take

13



the average value of PrX
N

B,I (t) during the interval [t1, t2]. For the remaining
operators the satisfaction relation is defined as:

XN , x0 |= supV∼v[B][t1,t2] ↔ sup(C[B(XN)], [t1, t2]) ∼ v

XN , x0 |= infV∼v[B][t1,t2] ↔ inf(C[B(XN)], [t1, t2]) ∼ v

XN , x0 |= supE∼v[B][t1,t2] ↔ sup(E[B(XN)], [t1, t2]) ∼ v

XN , x0 |= infE∼v[B][t1,t2] ↔ inf(E[B(XN)], [t1, t2]) ∼ v

XN , x0 |= η1 ∧ η2 ↔ XN , x0 |= η1 ∧XN , x0 |= η2

XN , x0 |= η1 ∨ η2 ↔ XN , x0 |= η1 ∨XN , x0 |= η2

where inf(·, [t1, t2]) and sup(·, [t1, t2]) respectively denote the infimum and
supremum within [t1, t2].

4.2. LNA-based Approximate Model Checking for CRNs

Stochastic model checking of CRNs is usually achieved by transient anal-
ysis of the CTMC XN [13], which involves solving the CME and thus suffers
from the state-space explosion problem. We propose an approximate model
checking algorithm based on LNA. The inputs are a SEL formula η, the
stochastic process XN induced by the CRN and initial state x0. The output
is true in case the formula is verified, and otherwise false.

The algorithm proceeds by induction on the structure of formula η, suc-
cessively computing whether each subformula is satisfied or not. We assume
that Eqn (6) and (7) are solved numerically where Σ is the finite set of sample
points on which their solution is defined and that t0, initial time, and tmax,
final time, are always sampling points.

4.2.1. Probabilistic operator

To evaluate P∼p[(B, I)][t1,t2] we construct the function Prob(B,I)(t) =
ΩY N ,B,I(ti) for t ∈ [ti, ti+1), ti, ti+1 ∈ Σ (alternatively, it can be constructed
as the interpolation of the values of ΩY N ,B,I over Σ points).

Lemma 2. Prob(B,I) is integrable on R≥0.

Proof. Prob(B,I) is a bounded function with at most |MI | discontinuities,
where |MI | ∈ N>0. Therefore, the set of discontinuities is a countable set,
and countable sets have measure 0. Hence, the conditions of the Lebesgue
criterion for integrability holds. This concludes the proof. �
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Theorem 2 guarantees the pointwise correctness of Prob(B,I) and its integra-
bility allows us to compute the following approximation, then compare to
threshold p to decide the truth value. If t2 6= t1 then 1

t2−t1

∫ t2
t1
PrX

N

B,I (t) dt ≈
1

t2−t1

∫ t2
t1
ProbB,I(t)dt else if t1 = t2 then PrX

N

B,I (t1) ≈ ProbB,I(t1).

4.2.2. Expectation and variance operators

To evaluate sup(C[B(XN)], [t1, t2]), inf(C[B(XN)], [t1, t2]), sup(E[B(XN)],
[t1, t2]) and inf(E[B(XN)], [t1, t2]) we use the LNA, namely, compute the ex-
pected value and variance of Eqn (10) and (9). Theorem 3 guarantees the
quality of the approximation. We can now compute the following approxi-
mations, then compare to the threshold v:

sup(C[B(XN)], [t1, t2]) ≈
max{C[BY N(tk)] | (tk ∈ Σ ∧ t1 ≤ tk ≤ t2) ∨ (tk ∈ L[t1,t2])}

inf(C[B(XN)], [t1, t2]) ≈
min{C[BY N(tk)] | (tk ∈ Σ ∧ t1 ≤ tk ≤ t2) ∨ (tk ∈ L[t1,t2])}

and similarly for the expected value. L[t1,t2] = {ti ∈ Σ | @tj ∈ Σ . |t1 − tj| <
|t1 − ti|} ensures that for any time interval there is at least one sampling
point, even if the interval is a singleton. Note that, for each sub-formula,
the algorithm involves the calculation of some quantity, so one can define a
quantitative semantics for SEL as in [41]. In our implementation, the syntax
for obtaining this numerical value is by replacing the bounds in the Q and
P operators with “=?” as shown in the case studies in Section 5.

LNA-based model checking can also be used for systems far from the
thermodynamic limit, at a cost of some loss of precision. LNA assumes
continuous state space, and it is not possible to justify this assumption for
very small populations. However, if the distributions of interest are not
multi-modal and the noise term is finite and approximated by a Gaussian
distribution, then LNA gives very good approximation even for quite small
systems. It is clear that model checking accuracy increases as N grows. We
emphasise that the model checking algorithm we have presented is also able
to handle CRNs whose stochastic semantics is an infinite CTMC, which occur
frequently in biological models.
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4.2.3. Complexity of LNA-based approximate model checking

The time complexity for model checking formula η against a CRN C =
(Λ, R) is linear in |η|. In the worst case, analysis of a single operator requires
the solution of O(|Λ|2) polynomial differential equations for a bounded time.
However, an efficient implementation can solve the O(|Λ|2) ODEs only once
for the interval [0, tmax], and then reuse this result for every operator, where
tmax is the greatest (finite) time of interest. Note that ODEs are solved in
terms of concentrations (a value between 0 and 1 by convention), ensuring
independence from the number of molecules of each species, although stiffness
can slow down the solution of the LNA.

5. Experimental Results

We implemented the methods in a framework based on Matlab and Java.
The experiments were run on an Intel Dual Core i7 machine with 8 GB of
RAM. To solve the differential equations, we use Matlab ode45, a variable
step Runge-Kutta algorithm. We employ LNA-based model checking for the
analysis of four biological reaction networks: a Phosphorelay Network [42], a
Gene Expression Model [43, 44], the FGF pathway [45] and the GW network
[46]. For every network, the CRN and parameters have been taken from
the referenced papers. We coded the same CRNs in PRISM [8] in order to
compare accuracy and time of execution with standard uniformisation of the
CME [13] and statistical model checking (SMC) techniques (confidence inter-
val method) as implemented in PRISM. For the FGF and GW case studies,
global analysis and SMC cannot be used, because the state space is too large
for direct analysis, and SMC requires many time-consuming simulations to
obtain good accuracy.

5.1. Phosphorelay Network

We consider a three-layer phosphorelay network whose structure is de-
rived from [42]. Phosphorelay networks are extended two-component sig-
nalling systems found in diverse bacteria, lower eukaryotes and plants. Each
layer of the network, (L1, L2, L3), can be found in phosphorylate form (L1p,
L2p, L3p). We consider the initial condition #L1p = #L2p = #L3p =
0, #L1 = #L2p = #L3p =Init, where Init∈ N. Then we analyse the ligand
B, whose initial condition is #B = 3 ∗ Init. We are interested in checking
the following SEL property:

P>0.7[(#L1p−#L3p), [0,+∞]][0,100] ∧P>0.98[(#L3p−#L1p), [0,+∞]][300,600]
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which is verified if, in the first interval, the probability that #L1p is greater
than #L3p is > 0.7 and if, between 300 and 600, with probability > 0.98,
#L3p is greater than #L1p. We evaluate this formula in three different initial
conditions, firstly Init = 32 and N = 5000, then Init= 64 and N = 10000,
and finally Init= 100 and N = 15625, so the same concentration but different
numbers of molecules. In all cases, the LNA-based model checking evaluates
the formula as true. To understand the quality of the approximation, we
check the following quantitative formula P=?[(#L3p − #L1p, [0,+∞])][T,T ]

for T ∈ [0, 600] (recall that in our implementation =? gives the quantity
calculated by model checking the operator). We compare the results with the
evaluation of the corresponding CSL formula using standard uniformisation
(Unif) with error 10−7 [13]. The following table shows the results. MaxErr is
the maximum error computed by LNA-based approach compared to standard
uniformisation and AvgErr is the average error; Time(·) stands for execution
time.

Init Time (LNA) Time (Unif) MaxErr AvgErr
20 0.22 sec 2 min 0.0675 0.0519
32 0.23 sec 5 min 0.059 0.02
64 0.26 sec > 2 hr 0.0448 0.0027
100 0.3 sec > 2 hr 0.03 0.0011

Note that as Init increases the error of our method decreases, while the ex-
ecution time is practically independent of the molecular count. LNA-based
algorithms are faster in all cases. Thus our approach can be used even for
quite small population systems, giving fast approximate stochastic charac-
terization.

5.2. Gene Expression

We consider a simple CRN that models the transcription of a gene into an
mRNA molecule, and the translation of the latter into a protein. The CRN,
rates and initial conditions are the same as in [44]. The stochastic seman-
tics of the reaction network is an infinite CTMC, and we use this model to
show that our method can handle infinite state-space processes. We consider
the quantitative property supE=?[#mRNA][T,T ], which gives the number of
molecules of mRNA in the system at time T . We compare our method
with SMC estimation of the same property by using 50000 simulations, for
T = {300, 600, 900, 1200}, and in the following tables we compare the re-
sults in terms of execution time (Time(·)) and estimated expected value of
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#mRNA (ExpV al(·)). LNA-based model checking is several orders of mag-
nitude faster without loss of accuracy.

T Time (LNA) Time (Simul) ExpVal (LNA) ExpVal (Simul)
300 0.52 sec 75 sec 100.17 100.14 ± 0.1
600 0.54 sec 198 sec 142.15 142.11 ± 0.1
900 0.54 sec 337 sec 159.73 159.74 ± 0.1
1200 0.56 sec 483 sec 167.1 167.1 ± 0.1

5.3. Fibroblast Growth Factor (FGF) pathway

Fibroblast Growth Factors (FGF) are a family of proteins which play
a key role in the process of cell signalling in a variety of contexts, like
wound healing and skeletal development. We consider the model of FGF
signalling pathway developed in [45], which is composed of more than 50
reactions and species. We consider the system with initially 105 molecules
for species with non-zero initial concentration. Analysis of the model re-
veals that the phosphorylated form of FRS2 can bind the protein Src, and
then this new complex, Src:FRS2, can relocate out. We want to check
if the expected value of #Src:FRS2 during the first 3000 seconds reaches
a maximum value greater than 40. We do that by checking the property
supE>40[#Src:FRS2][0,3000]. The formula evaluates to true, and in Figure
2 we analyze the expected value and standard deviation of #Src:FRS2.
We obtain these values directly from the logic considering the quantitative
interpretation of supE=?[#Src:FRS2][T,T ] and supV=?[#Src:FRS2][T,T ] for
T ∈ [0, 3000]. It is possible to see that, after an initial peak, relocation causes
exponential decay.

In the same figure we show a single stochastic simulation of the system
for the same initial conditions, confirming our evaluation. Moreover, the
approximation can be justified theoretically. #Src:FRS2 converges to zero
necessarily and this demonstrates the unimodality of the distribution of the
species; we note that the variance is finite, so Eqn (4) holds.

5.4. DNA strand displacement of the GW network

GW is a network related to the G2-M cell cycle switch [47]. Under par-
ticular initial conditions, it has been shown that GW can emulate the Ap-
proximate Majority algorithm [46]. Here, we consider the two-domain DNA
strand-displacement implementation of GW [3]. The corresponding CRN is
composed of 340 species and 240 reactions. For our analysis the species of
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Figure 2: Expected number and standard deviation of species of #Src:FRS2 in the FGF
pathway during the first 8000 seconds estimated by our method is compared with a stochas-
tic simulation of the same species.

interest are R and P , whose initial conditions are #R = 90 and #P = 10.
These species model the switch for the activating phosphatase Cdc25; initial
conditions of other species are taken from the referenced papers. We check
the property P>0.6[#R−#P, [65,+∞]][0,T ] for T = {1000, 2000, 3500, 5000},
in a system of size N = 45000. The results are reported in the following
table.

T Time Execution Quantitative Value Qualitative Value
1000 420 sec 0.4297 false
2000 780 sec 0.5313 false
3500 1380 sec 0.6535 true
5000 2120 sec 0.7349 true

6. Concluding Remarks

We presented a novel probabilistic logic (SEL) for analysing stochastic
behaviour of CRNs and proposed an approximate model checking algorithm
of the CME based on the LNA. We have implemented the algorithm and
demonstrated on four non-trivial examples that LNA-based model checking
enables analysis of CRNs with hundreds of species, and even infinite CTMCs,
at a cost of some loss of accuracy. It would be interesting to find bounds
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on the approximation error when the system is far from the thermodynamic
limit. However, the error is not only dependent on the value of N , but also
on the structure of the CRN, the rates, and the property. As recently shown
in [48], it is possible to formulate a stochastic hybrid approach, in which the
LNA is used only for a subset of species, namely, those for which the leap
conditions are satisfied. Other species are treated as a discrete-state Markov
process. This improves precision of the stochastic analysis of CRNs when
multimodality is present. One of the most attractive features of the LNA
is that it enables a stochastic analysis of a CRN by solving a set of ODEs
quadratic in the number of species. We aim to exploit this feature in order to
enable synthesis and symbolic analysis of CRNs. It would also be interesting
to extend SEL with reward operators as in, e.g., [49, 13], with which one can
express properties such as the expected number of molecules and variance of
a species when certain events happen.
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