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ABSTRACT
This paper presents a novel swarm intelligence inspired
routing algorithm (EARA) for mobile ad hoc networks.
Based on the understanding of the evolutionary coopera-
tion in the biological swarm, which provides an alternative
solution resilient against changes in the dynamic environ-
ment, We use the principle of swarm intelligence for the
reinforcement of optimal routes with onlylocal communi-
cation (here, local communication is defined as neighbour-
to-neighbour one only). The data traffic is influenced at
each node, and the communicating nodes observe this influ-
ence to update their tables. We also include an evaluation,
and the simulation results show that this routing algorithm
scales well to a variety of network conditions.
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1 Introduction

Mobile ad hoc networks (MANETs) are infrastructure-
less, multi-hop, wireless mobile networks formed sponta-
neously. Communication in such a decentralised network
typically involves temporary multi-hop relays, with some
nodes acting as relay routers without any fixed infrastruc-
ture. This kind of network is very flexible and suitable for
applications such as temporary information sharing in con-
ferences, military actions and disaster rescues. However,
multi-hop routing, random movement of mobile nodes and
other features unique to MANETs lead to enormous con-
trol overhead for route discovery and maintenance. In some
scenarios, the routing maintenance overhead may consume
so much resource that it seriously compromises long-term
efficiency. Furthermore, compared with traditional net-
works, MANETs suffer from resource constraints in en-
ergy, computational capacities and bandwidth. All of these
make routing in MANETs a very challenging problem. The
critical question here is how to maintain the routing in-
formation efficiently and effectively to deal with the ever-
changing topology in a scalable manner with the minimum
resource to achieve the best performance of the systems.

To address the routing challenge in MANETs, many
approaches have been proposed in the literature. Based on
the routing mechanism for traditional networks, the proac-
tive approaches attempt to maintain routing information for

each node in the network at all times [1, 2, 3], whereas
the reactive approaches only find new routes when required
[4, 5, 6]. Other approaches make use of geographical loca-
tion information for routing [7, 8]. These previous works
primarily applied traditional approaches to routing in wired
networks to the more volatile network environment expe-
rienced in MANETs. While many optimisations to these
above algorithms exist, they still suffer from lack of ef-
ficiency and scalability with respect both to the network
size and to the node movement pattern, due to the exchange
of the global or the partial global topology information to
maintain the routing information.

Recently, a new family of algorithms emerged in-
spired by swarm intelligence (SI), which provides a novel
approach to distributed optimisation problems. The expres-
sion ”swarm intelligence” defines any attempt to design al-
gorithms inspired by the collective behaviour of social in-
sect colonies and other animal societies. SI provides a basis
with which it is possible to explore distributed optimisa-
tion problems without centralized control or the provision
of a global model. Initial studies have unveiled a great deal
of matching properties between the routing requirements
of ad hoc networks and certain features of SI, such as the
ability of ant colony to find a nearly optimal route through
indirect communication between the elements. There are
some notable algorithms that use ant-like mobile agents to
maintain routing and topology discovery for both wired and
wireless networks [9, 10, 11, 12]. These algorithms show
that the biologically inspired concepts can provide a signif-
icant performance gain over traditional approaches. How-
ever, they still suffer from scalability problems due to the
use of partial global information (record the global infor-
mation in ant agents) or insufficient use of local informa-
tion.

In this paper we explore the SI approach to address
the routing problem in ad hoc networks with the goal to re-
duce routing overhead. Based on the transfer of ant colony
social behaviour to the context of ad hoc networks, we
propose a self-organised Emergent Ad hoc Routing Algo-
rithm (EARA) that uses the concept ofpheromonetrails
to reinforce optimal/sub-optimal paths, using onlylocal
(neighbour-to-neighbour) communication without know-
ing the global topology, and the concept ofstigmergyto
reduce the amount of control traffic, especially in highly
dynamic networks. Local communication implies that all



the information a node can know is from its neighbours.
Thus, the resulting paths may be sub-optimal over a short-
time span, while the global routing optimisation evolves
eventually by the indirect communication of the stigmergy
paradigm. Considering the dynamic nature and the re-
source constraints confronted by MANETs, this evolu-
tional approach is sensible in two aspects. Firstly, for a
highly dynamic network, it is acceptable to trade off some
accuracy for resource efficiency, since accurate computa-
tion of routing information in real time is uneconomical.
Secondly, for a stable network, the global optimisation can
evolutionally emerge. Because this algorithm does not de-
pend on the periodic advertisement and global dissemina-
tion of connectivity information, the routing overhead is
substantially less than those in the protocols that necessi-
tate such advertisements. The results from simulation of
mobile ad hoc networks confirm that the performance of
this algorithm scales well over a variety of environmental
conditions, such as network size, nodal mobility and traffic
loads.

EARA uses symmetric links between neighbour
nodes. It does not attempt to follow paths between nodes
when one of the nodes cannot hear the other. The mecha-
nism to prevent the use of asymmetric links is described in
Section 3.3.

2 Foraging Strategies in Ants
One famous example of biological swarm social behaviour
is the ant colony foraging [13]. Many ant species have trail-
laying trail-following behaviour when foraging: individual
ants deposit a chemical substance calledpheromoneas they
move from a food source to their nest, and foragers fol-
low such pheromone trails. Subsequently, more ants are at-
tracted by these pheromone trails and in turn reinforce them
even more. As a result of this autocatalytic effect, the op-
timal solution will emerge rapidly. In this food searching
process a phenomenon calledstigmergyplays a key role
in developing and manipulating local information. It de-
scribes the indirect communication of individuals through
modifying the environment.

From self-organisation theory point of view, the be-
haviour of the social ant can be modelled based on four
elements: positive feedback, negative feedback, random-
ness and multiple interactions. This model of social ants
using self-organisation theories provides powerful tools to
transfer knowledge about the social insects to the design of
intelligent decentralised problem-solving systems, swarm-
intelligence systems.

3 The Emergent Ad Hoc Routing Algorithm
(EARA)

EARA is an on-demand multipath routing algorithm. In-
spired by the ant foraging intelligence, this algorithm uses
positive feedback originated from destination nodes to re-
inforce the existing pheromone on good paths. Ant-like
packets, analogous to the ant foragers, are used to locally
find new paths. Artificial pheromone is laid on the commu-

nication links between nodes and data packets are biased
towards strong pheromone but the next hop is chosen prob-
abilistically. To prevent old routing solutions from remain-
ing in the current network status, exponential pheromone
decay is adopted as the negative feedback.

Each node using this algorithm maintains aproba-
bilistic routing table. This routing table serves in a prob-
abilistic fashion. Each route entry for the destinationd is
associated with a list of neighbour nodesj. A probabil-
ity value Pi,j,d in the list expresses the goodness of node
j as the next hop to the destinationd. For each neighbour,
the shortest hop distance to the destination and the largest
sequence number seen so far are also recorded.

The routing table is updated as follows. First, in
addition to the routing table, each node also possesses
a pheromone table. This table tracks the amount of
pheromone on each neighbour link. The table may be
viewed as a matrix with rows corresponding to neighbour-
hood and columns to destinations. There are three thresh-
hold values controlling the bounds on pheromone in the
table. They are theupper pheromoneU that prevents ex-
treme differences in pheromone, thelower pheromoneL,
below which data traffic cannot be forwarded, and theini-
tial pheromoneτ0 that is assigned when a new route is
found.

Next, the routing probability valuePi,j,d is computed
by the composition of the pheromone values and the local
heuristic values as follows:

Pi,j,d =
[τi,j,d]α[ηi,j ]β∑

l∈Ni
[τi,l,d]α[ηi,l]β

, τi,j,d > L (1)

whereα andβ (α, β ≥ 0) are two tunable parameters that
control the relative weight of pheromone trailτi,j,d and
heuristic valueηi,j , Ni is the neighbourhoods as a next-
hop to some destinationd. With τi,j,d > L, data traffic can
only be forward following the valid route.

The heuristic valueηi,j is a measure of congestion
in a node. Incorporating the heuristic value in the routing
computation makes this algorithm possess the congestion
awareness property. Based on the probabilistic routing ta-
ble, data traffic will be distributed according to the proba-
bilities for each neighbour in the routing table. The routing
algorithm exhibits load balancing behaviour. Nodes with a
large number of packets in the buffer are avoided.

The EARA algorithm consists of several elements.
Multiple routes are found with theroute discoveryproce-
dure, good quality routes are reinforced and maintained
with positiveandnegativefeedback, and route failures are
handled with thelocal connectivity management.

3.1 The Route Discovery

On initialisation, a neighbourhood for each node is built us-
ing the single-hop HELLO messages. The HELLO packet
containssource IP addressandhop count(set to 0). This
packet can be replaced by the link or network layer mecha-
nism, such as CTS and RTS in IEEE 802.11 or ICMP Echo



Source

Destination

(b) Path Reinforcement 

Source

Destination

i

j

(c) Local Repair

Source

Destination

(a) Initial Pheromone Setup

Figure 1: Illustrating Working Mechanism of EARA

Request packet, if available. Whenever a traffic sources
needs a route to a destinationd, it broadcastsroute request
packets (RQ) across the network. The RQ packet contains
destination IP address, source IP address, andbroadcast
ID. A straightforward solution to route discovery would be
through flooding.

During the course of flooding RQ packets to the des-
tinationd, the intermediate nodej receiving a RQ packet
first sets up reverse paths to the source by recording the
source address and the previous hop node in themessage
cache. This cache records the incoming packet informa-
tion of destination address, source address, previous-hop
neighbour, the shortest hop distance from the source and
the number of incoming packets. If a valid route to the
destinationd is available, that is, there is at least one link
associated with the pheromone trail greater than the lower
pheromone boundL, the intermediate nodej generates a
route reply(RP). This packet containssource IP address,
destination IP address, sequence number, hop account, and
life time. The RP is routed back to the sources via the re-
verse paths. Otherwise, the RQ is rebroadcast.

Observing the fact that the flood of RQ packets across
the network would potentially constitute multiple paths to
the destinationd, we make effort to make use of this under-
lying information as much as possible. Rather than just es-
tablishing a single forward path, when the destination node
d receives RQs it will send a RP toall the neighbours from
which it sees a RQ. In addition, in order to maintain mul-
tiple loop-free paths at each intermediate nodej, nodej
must record all new forward paths that possess the latest
sequence number but hold a lower hop-count in its routing
table, and also send a RP to all the neighbours from which
it saw a RQ. During the course of the RP tracking back
to the sources, it assigns an initial pheromone valueτ0 to
the corresponding neighbour node, which indicates a valid
route to the destinationd. This procedure is illustrated in
Figure 1(a).

3.2 The Route Reinforcement

In the scheme we have described so far, the route discovery
procedure sets up the initial pheromone trails for the des-
tination noded. After the destination noded receives the
data traffic sent by the source nodes, it begins toreinforce

some good neighbour(s)n in order to “pull” more data traf-
fic through the good path(s) by sendingreinforcement sig-
nal packets (RS) whenever it detects new good paths. The
RS packet containsdestination IP address, sequence num-
ber and pheromone value∆τ . When noden receives a
RS, it knows it has an outgoing link toward the destination
d, which is currently deemed a good path. Subsequently,
noden updates the corresponding pheromone table entry
with the value∆τ and forwards a RS packet to (at least
one) selected neighbour locally based on its message cache,
e.g. the neighbour(s) that saw the least hops of the incom-
ing packets. The amount of the pheromone∆τ used to
positively reinforce the previous hop neighbour should be
calculated based on the empirically estimated metrics.

In our implementation, the pheromone value∆τπ

carried on the RS packetπ is computed as follows. If the
RS packetπ is sent by the destination to noden, then∆τπ

n,d

is calculated using the upper bound pheromone valueU ,

∆τπ
n,d = U · e−(α′∆hs+β′n̂) (2)

If the RS packetπ is sent by an intermediate nodej
towards nodei, the∆τπ

i,j,d is calculated using the current
largest pheromone value max(τj,k,d) in nodej with the next
hopk to the destinationd in the pheromone table,

∆τπ
i,j,d = max(τj,k,d) · e−(α′∆hs,j+β′n̂j,d) (3)

whereα′ andβ′ are two parameters that control the relative
weight of the relative source hop distance∆hs,j and the
relative packet number̂nj,d.

The relative source hop distance∆hs,j is calculated
as follows:

∆hs,j = hi
s,j − hmin

s,j (4)

wherehi
s,j is the shortest hop distance from the sources to

the current nodej through nodei, andhmin
s is the shortest

hop distance froms to j. This parameter is used to ensure
that paths with shorter hop distance from the source node
to the current node are reinforced with more pheromone.

The relative packet number̂nj,d is calculated as fol-
lows:

n̂j,d = 1− ni
j,d/nj,d (5)



whereni
j,d is the number of incoming packets from neigh-

bour i to the destinationd, andnj,d is the total number of
incoming packet towards the destinationd. This parameter
is used to indicate that the data forwarding capacity of a
link also affects the reinforcement. The more data arrives,
the stronger the reinforcement for the corresponding link.

On receiving the RS, nodei needs to positively in-
crease the pheromone of the link towards noded. Node
i also has to decide to reinforce (at least) one of its neigh-
bours by sending the RS message based on its own message
cache. Now, to nodei’s neighbours, this RS message ap-
pears to originate from the sending nodei, although this in-
formation intrinsically comes from the destination noded.
This is an example oflocal interaction. This process will
continue until reaching the source nodes. Consequently,
good quality routes emerge from this procedure as shown
in Figure 1(b). In order to enable the reinforcement scheme
above, it must be possible to distinguish individual neigh-
bours. All local unique neighbour identifiers may be used,
e.g. 802.11 MAC address.

So far, we have discussed the situations in which rein-
forcement is triggered by the destination noded. However,
as long as an intermediate node has pheromone value that
is greater than the lower boundL, it can also proactively
apply the same local reinforcement rule to its neighbours.
This is useful to enable the local repair of degraded links.
For instance, if an intermediate nodei detects a link failure
from one of its upstream linksli,j , it can apply the rein-
forcement rules to discover an alternative path as shown in
Figure 1(c). Instead of seeking global optimality, this local
interaction of nodes only results in sub-optimality.

3.2.1 Local Foraging Ants

In a dynamic network like MANET, the changes of the
network topology create chances for new good paths to
emerge. In order to make use of this phenomenon, this
algorithm launcheslocal foraging ants(LFA) with a time
intervalTant to locally search new routes whenever all the
pheromone trails of a node towards some destination drop
below the threshholdτ0. The LFA packet containssource
IP address(the node that sent LFA),hmin (the shortest
hop distance from the source to the destination),stackS
(recording intermediate node IP addresses),ant ttl (we de-
fine ant ttl as 5), andhop count. The LFA will take a
random walk from its original node. During the course of
its walk, the LFA pushes the address of the nodes that it
has travelled into its memory stackS. To avoid forming
of loop, LFA will not choose the node that is already inS.
Before reaching the maximum hop, if LFA can find a node
with pheromone trails greater thanτant and the hop dis-
tance to destination not greater than the one from its origi-
nal nest, it returns to its ’nest’ following its memory stack
S and updates the corresponding paths withτ0. Otherwise,
it simply dies.

3.2.2 Pheromone Table Update

The update of the pheromone table includes two aspects:
positive reinforcement and negative reinforcement. In the
scheme described above, whenever nodei receives the RS
from its neighbourj, if the sequence number in the RS is
greater than the one recorded in the pheromone table, node
i updates its corresponding pheromoneτi,j,d with the value
of ∆τπ

i,j,d carried on the RSπ:

τi,j,d := ∆τπ
i,j,d (6)

If the sequence number is equal to the current one, then:

τi,j,d :=

{
∆τπ

i,j,d, if τi,j,d < ∆τπ
i,j,d

τi,j,d, otherwise
(7)

If the sequence number in RS is less than the current one in
the pheromone table, then this RS is just discarded.

There is also a mechanism to time out the existing
paths, which plays a role of implicit negative reinforce-
ment. Within every time intervalTdec, if there is no data to-
wards a neighbour node its corresponding pheromone value
decays by a factorρ as follows:

τi,j,d := (1− ρ) · τi,j,d, ρ ∈ (0, 1] (8)

During the course of pheromone decay, if all the
pheromone for a particular node are equal to the lower
pheromone boundL, the corresponding row and/or col-
umn is removed from the pheromone table, which means
that no data packets have been received for some time. If
a particular destination is also a neighbour node, it cannot
be removed unless all the entries in that neighbour row are
also decayed. If a neighbour is determined to disappear
from the communication range, the corresponding row can
be simply removed from the pheromone table.

3.3 Local Connectivity Management

When link failures happen, the MAC layer has to go
through multiple transmissions to conclude that a link has
failed, which results in time gap between the occurence of
link failure and its detections. We use periodic beacons in
the routing layer to reduce this time gap. Nodes maintain
their local connectivities in two ways. Whenever a node
receives a packet from a neighbour, it updates its local con-
nectivity information to ensure that it includes this neigh-
bour. In the event that a node has not sent any packets to its
neighbours within a time intervalThel, it has to broadcast a
HELLO packet to its neighbours. Failure to receive packets
from the neighbourhood inThel indicates changes in the lo-
cal connectivity. If HELLO packets are not received from
the next hop along an active path, the node that uses that
next hop is sent notification of link failure.

In case of a route failure occuring at nodei, i can-
not forward a data packet to the next hop for the in-
tended destinationd. Node i sends a RS message that



sets ROUTERERR tag to inform upstream nodes of the
link failure. This RS signal assigns to the corresponding
links the lower boundL. Here, RS plays the role of an ex-
plicit negative feedback signal to negatively reinforce the
upstream nodes along the failure path. This negative feed-
back avoids causing buffer overflow due to caching on-
flight packets from upstream nodes.

Each node that encounters a route failure should try
to forward data that arrives before the route failure through
alternative paths that are associated with valid pheromone
trails. If there is no valid outgoing link at the moment, the
data should be held for some timeTerr and the node waits
for alternative routes emerging from the reinforcement pro-
cedure or new routes found by local foraging ants (LFA).
After Terr, if there is still no proper path emerging, then
this node can just drop the data. This is essential to guar-
antee good performance of this algorithm.

Moreover, the use of HELLO packets can also help
to ensure that only nodes with bidirectional connectivity
are deemed as neighbours. For this purpose, the HELLO
packet sent by a node has an option to list the nodes from
which it has heard HELLO packets, and nodes that re-
ceive the HELLO check to ensure that it uses only routes
to neighbours that have sent HELLO packets.

4 Evaluation Methodology
To evaluate the performance of the EARA protocol, we car-
ried out a series of simulations with the simulatorns-2.

4.1 The Simulation Configurations
We use the IEEE 802.11 Distributed Coordination Function
(DCF) as the MAC layer protocol. The radio model simu-
lates Lucent’s WaveLAN with a nominal bit rate of 2Mbps
and a nominal transmission range of 250 meters. The ra-
dio propagation model is the two-ray ground model. The
mobility model we use is theRandom Waypoint Model. In
our simulation, we define the minimum velocityvmin as 1
m/sec and the maximum onevmax as 20 m/sec. We use the
pause time of the node mobility as the independent variable
that reflects the degree of the node mobility.

We performed two sets of experiments. One set
of these experiments was performed using 50 nodes in
a rectangular field of 1500m×300m, and the other set
was performed using 150 nodes in a rectangular area
of 2000m×700m. All experiments use CBR (constant
bit rate) traffic with a sending rate of 4 512-byte pack-
ets/second. For each set, the network consists of 5, 10, 15
and 30 traffic flows. The results of this simulation reflect
the impact of different nodal mobility, network density and
traffic loads. Each scenario uses the same simulation pa-
rameters as listed in Table 1. The simulation time is 600

Table 1: Protocol Parameters
U 50 L 0 τ0 1 ρ 0.5
α0 1 β0 1 α 1 β 1

Terr 60s Tant 10s Tdec 50s Thel 5s

seconds and we took 20 runs of the simulations. The met-
rics we used to evaluate the performance of our algorithm
are the packet delivery ratio, the average end-to-end delay,
path optimality and the transmission optimality.

4.2 Results and Discussion

The results from the two sets of experiments are shown in
Figure 2 and Figure 3. In these graphs, the error bars shown
represent the confidence interval of 95% out of 20 runs.

Firstly, we discuss the robustness aspect of the rout-
ing algorithm. Figure 2(a) and Figure 3(a) show the packet
delivery ratio under different conditions. When both data
loads and nodal motion are low, EARA can deliver almost
all the packets. As nodal motion increases, the delivery ra-
tio drops. With the data load increasing, the system slightly
degradtes. The results of the two sets of experiments are
close, but the overall performance of the second degrades
by about 3%. From the results, we can see that EARA data
delivery ratio scales fairly well to both the nodal mobility
and network size. This is because, instead of buffering data
packets waiting for a new route to be found, EARA for-
wards the data packets through alternative routes whenever
route errors happen due to its multiple paths nature. This
mechanism ensures data delivery as much as possible.

Next, we consider the quality of service provided by
the protocols using the average delay as shown in Fig-
ure 2(b) and Figure 3(b). EARA shows low transmis-
sion delay in all cases. When either the nodal motion or
the network size increases, the average delay slightly in-
creases. More data traffic can also result in longer delay.
The transmission delay can be affected by several factors
such as nodal mobility, network size and data loads. EARA
presents a reasonable level of scalability with respect to
nodal mobility and network size. The reason for this scal-
able low transmission delay is that EARA periodically ex-
plores new potential paths, and hence does not suffer the
long transmission delay under the highly dynamic environ-
ments as traditional ad hoc routing protocols do.

In order to evaluate the effectiveness of the routing
algorithm, we explore the path optimality and transmis-
sion optimality. Figure 2(c) and Figure 3(c) show the av-
erage route length used in sending a data packet relative
to the optimal route length. This metric shows the degree
to which the algorithm finds and maintains optimal routes.
As shown here, for the moderate nodal motion, the opti-
mality is within a factor of 1.2. For very short pause times,
the maximum ratio is about 1.5 of the optimal one. When
either the network size or data load increases, the path opti-
mality slightly increases. From the results, the main factor
on path optimality is the nodal motion. At the highest nodal
motion, the length of used path can be almost two times of
the optimal one. This indicates that most paths evolved by
EARA are sub-optimal. Figure 2(d) and Figure 3(d) show
the total number of packet transmissions performed rela-
tive to the optimal number of transmissions. The ratio of 1
indicates a perfect algorithm without any routing overhead.
At a moderate nodal motion, the average optimality is a
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Figure 2: Simulation in an area of 1500m×300m with 50 mobile nodes

(a) (d)(c)(b)

Figure 3: Simulation in an area of 2000m×700m with 150 mobile nodes

ratio of 1.15. At the highest nodal motion, the overhead
can reach a value of 1.42 in the first set of experiments.
With the network size and the data loads increasing, the
algorithm overhead also increases. The average overhead
of the second set of experiments is about 8% higher than
that of the first one. From the results we can see that the
overhead difference of EARA between different scenarios
is much smaller than that of the traditional protocols. This
is mainly because EARA uses the concept of stigmergy to
implement local communication to maintain routing status,
which is independent of nodal motion. This feature is a sig-
nificant advantage of EARA over other routing protocols.

5 Conclusions and Future Work

In this paper we present a novel routing algorithm for
mobile multi-hop ad hoc networks. Through the concept
of stigmergy, optimal/sub-optimal routes emerge without
the system-wide dissemination of connectivity informa-
tion. Moreover, this algorithm is able to adapt to changes of
the network topology without invoking high routing over-
head. The results of experiments show that our algorithm
performs fairly well under various network situations.

Since this algorithm uses the hop distance as the met-
ric to determine routing, it encounters some performance
degradation under heavy data traffic due to contention in
the MAC layer and congestion in the transport layer. In our
furture investigations, we will explore the use of metrics
from other network layers to manipulate the pheromone
concentration on the edges, which can influence the per-
formance of this algorithm.
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