
Towards automatic verification of ladder logic
programs

Bohuḿır Zoubek
School of Computer Science

The University of Birmingham
Birmingham, B15 2TT

United Kingdom
Email: bxz@cs.bham.ac.uk

Jean-Marc Roussel
LURPA

Ecole Normale Superieure De Cachan
61, Avenue du Pŕesident Wilson
94235, Cachan Cedex, France

Email: roussel@lurpa.ens-cachan.fr

Marta Kwiatkowska
School of Computer Science

The University of Birmingham
Birmingham, B15 2TT

United Kingdom
Email: mzk@cs.bham.ac.uk

Abstract— Control system programs are usually validated by
testing prior to their deployment. Unfortunately, testing is not
exhaustive and therefore it is possible that a program which
passed all the required tests still contains errors. In this paper we
apply techniques of automatic verification to a control program
written in ladder logic. A model is constructed mechanically from
the ladder logic program and subjected to automatic verification
against requirements that include timing. This consists of an
exhaustive search of the model of the program, thus eliminating
the drawback of testing. We believe that automatic verification
can substantially enhance current validation procedures for
control programs.

I. I NTRODUCTION

Control systems are used in many applications of process
control all around the world. Their uses range from small ap-
plications such as building alarm systems to larger applications
such as production factories and nuclear power plants. Any
fault can cause injury or loss of life and environmental or
economical damage. Factory downtime in all cases only adds
to the overall cost of the failure.

Programs for control systems are currently validated by
testing. A set of tests for each program is executed in order to
establish the compliance or otherwise of the program with its
specification. The main disadvantage of such program testing
is that it is not exhaustive, which creates the possibility of a
program being successfully tested and still containing errors.
This risk can be reduced by verification of control programs.
This paper demonstrates the application of automatic verifica-
tion techniques on a small control program written in ladder
logic against non-trivial specifications.

The framework introduced in this paper is intended as an
add-on extension to a typical control programming toolbox.
We focus on ladder logic, one of the standardized program-
ming languages for Programmable Logic Controllers. After
a ladder logic program has been developed with the help of
the toolbox in the usual way, it is input by our software tool
which first performs a transformation of the program into a
model known as a timed automaton. The model is then entered
into a pre-existing tool called model checker. The model
checker accepts specifications and explores the model in order
to establish if each specification holds; if not, a diagnostic
trace is produced. The central idea is to improve reliability of

control programs by offering the programmer the functionality
of checking for desirable conditions, using notations readily
understood in the control engineering domain, and hiding the
complexity of model construction inside the tool itself.

II. T ERMINOLOGY AND FORMALISMS

In this section we introduce the domain of application
for our methodology, and explain the main concepts and
formalisms used.

A. Programmable Logic Controller

Programmable Logic Controllers (hereafter PLCs) are used
as a hardware platform on which a control program is exe-
cuted, and are connected to the process unit via an input/output
system. PLCs are, in fact, industrial computers specifically
designed to be used as control systems.

Programs for PLCs can be written in one or more languages
standardized by IEC 61131-3 [1] and are executed in cycles
with three main steps (Fig.1). First, the inputs of the control
system are read and their values stored in memory. Then the
program is executed using the stored input values, and all
computed values of outputs are also stored. As the last step,
all outputs are activated based on their values in the memory.
The length of a PLC cycle is called the PLC scan.

Inputs scan

Program execution

Outputs activation

P
LC

 s
ca

n

Fig. 1

PLC PROGRAM EXECUTION CYCLE

B. Ladder logic

Ladder logic, one of the standardized languages for PLCs,
is a graphical programming language with a representation
similar to that of circuit diagrams. Programs written in ladder

logic look like ladders, with commands written into rungs,
and are executed rung by rung. Commands are represented
by means of symbols of the electrical engineering domain
and the complete set of instructions varies slightly from one
manufacturer to another. An example of a rung can be seen
in Fig. 2.

One way to think about ladder logic is that the left side
of the ladder is subjected to a power source, and this power
is trying to reach the right side of it along each rung. The
pictured rung consists of two instructions (left to right):
examine if closedand output energize. The first instruction
checks the value of theL1 PRODvariable, and if true it allows
the power through. The second instruction sets the value of
L1 UP to true, if it can be reached by the power, or to false
otherwise. For our purposes we define two groups of ladder
logic instructions:conditionsandactions. The first instruction
in the above is a condition and the second one is an action.

Fig. 2

A LADDER LOGIC RUNG

Rung continuityarises if the power source is able to reach
the right-hand side of the rung. Such a rung is said to be
continuous.

C. Timed automata

The timed automata formalism [2] is a modelling language
that allows us to describe the behaviour of systems by means
of finite state automata diagrams extended with clocks and
time constraints. For example, consider a model of a system
which consists of three statesA, B, C and whose possible
transitions areA−→B, B−→C, C−→A andC−→B. We obtain
the finite state automaton shown in Fig.3.

A B

C

Fig. 3

FINITE STATE AUTOMATON

Such a system can be extended with clocks and time
constraints. Aclockof the system is a variable that is increased
at the same rate as time. Clocks can be reset or assigned some
new (integer) value. Time constraints are based on predefined
clocks and can be of two types.Invariants define a time
interval for which the system can remain in a state andguards
enable transitions within a time interval.

To illustrate the main concepts, we impose time constraints
based on clockc on the finite state automaton of Fig.3. The
automaton is to behave periodically in the intervalc ∈ [0, 15)
in such a way that it may stay inA when c ∈ [0, 10), it

may move toB if c ≥ 5, it may stay inB if c < 15 and it
may stay inC as long asc < 5. Moreover, the clockc is reset
when the system takes the transitionB−→C.

A B

C

c < 15c < 10
c >= 5

c := 0

c < 5

Fig. 4

TIMED AUTOMATON

Such a timed automaton is shown in Fig.4. Note that
invariants are constraints over states, whereas guards are
constraints over transitions. There is one assignment used to
reset the clockc during the transitionB−→C. Transitions
without guards can be taken at any time.

D. Model checker

A model checker is a software tool that can be used
to automatically establish whether the model satisfies its
specification or not. In the latter case it will also produce a
trace showing where the specification is breached. We use the
real-time model checkerUppaal [3]. Uppaal accepts a timed
automaton model and the model specification as inputs, checks
the compliance of the model to the specification and outputs
the results including diagnostic information. The specifications
are given in Uppaal specification language with the help of two
prefixes:A[] andE<>. A property prefixed by the former is
satisfied if it holds on all paths of the model; the latter prefix
indicates that the model can reach a state where the property
holds. Some examples of the property specifications in the
Uppaal language are:

• A[] (t2-t1) ≤100
Condition(t2-t1) ≤100 holds in all states, on all paths
of the system (invariantly). In this particular case,t1 and
t2 are clocks, and therefore the condition expresses the
time difference no greater than 100.

• E<> CH1.synchro
The system can reach the stateCH1.synchro (via some
path, after a finite number of steps).

The Uppaal models are slight variants of standard timed
automata, and in particular allow certain convenient modelling
features which we now outline. Three additional types of states
(fig. 5) are available for use. Theinitial state defines the
position of an automaton at the beginning (when the time is
equal to zero). Acommittedstate is one which has to be left
immediately.Urgent states are used to prevent a delay when a
transition is already enabled and when more than one transition
(to more than one state) is enabled at the same time.

E. The Checker tool

We have implemented the algorithms presented in this paper
in the Checker tool which is written in Java. It takes

C

U

initial state

committed state

urgent state

Fig. 5

ADDITIONAL TYPES OF STATES INUPPAAL TIMED AUTOMATA

a ladder logic control program as its input and mechanically
builds a timed automaton model for it. Such a model is then
verified using Uppaal, possibly after further transformations
of the model have been performed for efficiency reasons. We
have employed the Checker tool on a pumping line unit case
study previously verified by manual theorem proving, using
a calculus developed for this purpose, in [4]; in contrast, our
method is fully automatic.

III. R ELATED WORK

This section briefly outlines the relevant work done by other
people in the field of control program validation. The use
of formal methods in PLC programming is introduced in [5]
and there are two other modelling languages, besides timed
automata [6], that have been used to model control programs:
PLC-automata [7], [8] and Condition/Event Systems [9], [10].

Moby/PLC [11] is a graphical tool that can be used to
build PLC-automata models of control programs. The tool
also supports simulation and export of the model into formats
accepted by Uppaal or Kronos [12]. Similarly, Verdict [13]
is a graphical tool for Condition/Event Systems. Both tools
require the knowledge of the modelling language, in contrast
to our approach where this knowledge is not needed.

The VHS project [14], a collaboration among several Eu-
ropean partners, concentrated mainly on the design correct-
ness [15] of control systems such as a manufacturing plant.
In [16] the Uppaal model checker was applied in order to
verify the batch plant.

IV. CASE STUDY

We use a control program for a pumping line unit which
provides a water supply from a tank via two pumps (shown
in Fig. 6), originally introduced in [4], as our case study.

The unit consists of the water tank, two pumps, the backflow
valve and the output valve. In addition to these components
there are further two valves, the upstream valve and the
downstream valve, associated with each pump. The unit is
expected to operate in such a way that safety requirements are
not infringed. Safety properties for our case study are shown
in table I.

A control system interaction with the unit is provided by
inputs and outputs. The list of inputs and outputs for our case
study is in tableII .

V. OUR APPROACH

Our work is motivated by the idea that a control system
programmer should be able to automatically verify a program
prior to its deployment. We achieve this by mechanically trans-
lating control programs into timed automata models and then
by verifying these models using Uppaal. The main challenge in
this work is finding efficient ways of translating programs into
compact, manageable models. This is done through a number
of transformations, shown in Fig.7 and described below.

... valve

Tank

Backflow
valve

Line 2

Line 1

Output
valve

Symbols:

... pump

Fig. 6

PUMPING LINES SCHEMA

P1 The upstream valve of a pump must be opened
for 5 seconds prior to the pump startup.

P2 The two pumping lines must not work together.
P3 The backflow and the output valves must be

closed if both pumps are not running.
P4 In case of a pump failure all associated

actuators will be turned off.

TABLE I

CONTROL PROGRAM PROPERTIES IN NATURAL LANGUAGE

L flow Water distribution at low flow rate request
H flow Water distribution at high flow rate request

Line swap Change the line priority request
Li fail Fault information from pumpi
SP fail Distribution has been stopped
Li pump Start pumpi

Li up Open the upstream valve of pumpi
Li down Open the downstream valve of pumpi

Out valve Open the output valve
Bf valve Open the backflow valve

TABLE II

L IST OF INPUTS AND OUTPUTS

A. Control program and property

We have implemented our algorithms for a subset of ladder
logic instructions used by Allen-Bradley PLCs of the SLC5/03
series. We have one PLC of this series on loan from Rockwell
Automation Ltd together with RSLogix 500 programming
toolbox. Properties are defined in the Uppaal specification
language.

Abstraction
algorithm

Control program Property

Program
slice

Basic
algorithm

Intermediate
model

Transformation
recipes

Timed automata
model

Fig. 7

BUILDING A TIMED AUTOMATON MODEL

B. Abstraction algorithm and program slice

A common approach to verification is to build a model of
the complete control program first and subject it to verification
of all properties required. This approach will result in a
complex model and almost certainly the state space explosion
problem would be encountered for many properties.

To deal with the state explosion problem we propose the
use of a program slicing algorithm. We fix the property
to be verified, and determine which part of the program
affects it. This part, or “slice”, of the program only is then
transformed into the model. Such an approach works quite
well for programs that contain many modules, each controlling
a part of the system, as long as the property to be verified
pertains to a subset of modules.

C. Basic algorithm and the intermediate model

The basic algorithm translates the program slice into a
timed automaton model. It also generates other necessary
components (timed automata) such as the PLC program exe-
cution and the input/output system. All these timed automata
communicate with each other via synchronization channels,
and their parallel composition yields the desired model of
behaviour. We now describe the process in more detail.

1) Program slice: The program slice is translated rung
by rung into a timed automaton model. This is where the
notion of rung continuity, and the grouping of instructions
into conditions and actions, play an important role. We will
only outline the translation briefly, since a full description is
beyond the scope of this paper.

Consider a condition instructionx = 1 positioned at
the beginning of a rung. It will be translated into a timed
automaton using two transitions: one will be taken when the
condition is satisfied (i.e.x == 1) and the other one when it is
not (i.e.x! = 1). The rung execution will either lead to the next
instruction along the rung (if the condition is satisfied), or the
rung will be completely skipped. The model of this instruction
is shown in Fig.8. We say that the second transition is a
negativetransition. When translating a rung with more than
one condition instruction a number of negative transitions will
be created. The importance of this notion will emerge when
modelling action instructions as well as in transformation
recipes.

x != 1

. .
 .

Final state of the rung

Initial state of the rungC

C

C

x==1

Fig. 8

MODEL OF A CONDITION INSTRUCTION

Let us now consider an action instruction placed at the end
of the rung, which setsy to 1 if the rung is continuous and to 0
otherwise. It will be translated as follows: one transition from
the previous state (i.e. the state when the previous transition
ends) to the final state of the rung with an assignmenty :=
1. There will also be an assignmenty := 0 on all previous
negative transitions (these are created by modelling condition
instructions such as the one described the last paragraph). The
model of this instruction is shown in Fig.9.

Intermediate instructions (those not at the beginning nor end
of a rung) are dealt with similarly. Their corresponding models
will be positioned in place of. . . in figures mentioned above.
The resulting Uppaal timed automaton of the rung from Fig.2
is shown in Fig.10. All states used in these models are of the
committed type to ensure execution without delays.

y:=0

Final state of the rung

Initial state of the rung

y:=1

. .
 .

C

C

C

Fig. 9

MODEL OF AN ACTION INSTRUCTION

2) Inputs and outputs:Inputs have to be modelled as
variables that change their values nondeterministically. This
guarantees that every possible behaviour of the model will be
checked during verification. Each input is usually modelled by
a small timed automaton such as the one shown in Fig.11.

This is a model of the input addressI1:0/3 . It uses a global
variableg I 1 0 3 that can change its value nondeterministi-
cally at any point in time, but its value is copied into the local
variableI 1 0 3 of the program model during the input scan
part of the PLC cycle. This local variable is then used during
program execution.

L1_PROD==1

L1_UP:=1

L1_PROD!=1

L1_UP:=0

Fig. 10

MODEL OF THE RUNG FROMFIG. 2

There is no need for such constructs in the case of outputs.
Outputs are modelled as variables used in the program model.
However, all properties (and hence all values of outputs) are
verified at the end of the program model execution in order
to comply with the output activation part of the PLC scan.

g_I_1_0_3 := 1

g_I_1_0_3 := 0

Fig. 11

MODEL OF THE INPUT

3) Program execution:The timed automaton in Fig.12
is included in the intermediate model to achieve the cyclic
program execution typical for PLCs (Fig.1). Transition from
statewaiting to stateexecuted requests synchronization
via channelx which triggers the program execution in such a
way that the whole model of the program is executed at the
same time as this transition. Hence, the program is executed
periodically in intervals given by the constantscan . This
constant defines the length of a PLC scan, which was set to
20 msec. throughout these experiments.

D. Transformation recipes and the timed automata model

The structure of each rung can be represented by a graph.
The basic algorithm builds models of all instructions and
connects them via transitions according to rung structures. The

resulting model can be further simplified, eg. by removing
redundant transitions, in order to reduce the model size.
Transformation recipes are used to achieve this.

In some cases the intermediate model needs to be enhanced
further to enable verification. For example, in order to verify
a timed property a timer must be added. This is achieved by
an appropriate transformation recipe. Another case would be
a branching based on the value of one variable. Again, there
is a transformation recipe that serves this purpose.

executed

waiting
t<=scan

start

t:=0

t<scan

t>=scan

x!

Fig. 12

MODEL OF THEPLC CYCLE

VI. V ERIFICATION

This section describes the automatic verification task per-
formed for the case study of sectionIV. We succeeded with
all the properties shown in tableI. In this section we present
our findings and describe the technical difficulties encountered
during in the process and ways to overcome them.

A. Program

The original program (Roussel and Denis [4]) makes use
of bistable function blocks that are not supported by our
PLC. Therefore these blocks have been translated into an
equivalent combination of instructions supported by our PLC
(Allen-Bradley). Bistable function blocks are of two types: set
dominant and reset dominant (our case). All inputs and outputs
of the block are digital variables (booleans). The blocks used
in the original program and its body are shown in Fig.13 and
its ladder logic version from our program is shown in Fig.14.
The program size increases, as a result of the above translation,
by 6 rungs. A complete listing of the control program that
is subjected to verification in this paper is given in Figs.16
and17.

B. Property 1

This timed property (tableI) states that a pump’s own
upstream valve must be open for 5 seconds prior to the pump
being turned on. In general, timed properties are very difficult
to verify because of the state explosion problem, and

RS

R1

S Q1

Q1

S

R1 Q1

>=1

&

Fig. 13

BISTABLE FUNCTION BLOCK (RESET DOMINANT) AND ITS BODY

S

Q1

Q1R1

Fig. 14

BISTABLE FUNCTION BLOCK (RESET DOMINANT) IN LADDER LOGIC

indeed verification of this property on the model of the
control program failed due to this. However, we were able
to verify the property by the following means (explained here
for pump 1, but the same technique works for both pumps
because they are controlled by the corresponding parts of the
program, although with different addresses).

1) Timed variable:First we select the timed variable which
in the case of pump 1 isL1 UP. Property 1 describes the sit-
uation when the timed variable has value1 (pump 1 upstream
valve is opened byL1 UP being equal to1) so we introduce
an additional clockc L1 UP, as a part of the timed automaton
model of the program, that ticks whileL1 UP= 1 and is reset
when L1 UP 6= 1. This is achieved by resetting the clock on
the first transition (program is searched from the top to the
bottom) with guardL1 UP= 0 (or L1 UP 6= 1) or, if such a
transition does not exist, on the first transition with assignment
L1 UP := 0. Then we redefine property 1 using this clock, i.e.
c L1 UP must be greater than or equal to5 in order to start
pump 1.

In our case only the transition with assignmentL1 UP := 0
can be found and the clock reset is added as shown in Fig.15.

L1_UP:=1

L1_PROD!=1

L1_UP:=0,
c_L1_UP:=0

L1_PROD==1

Fig. 15

MODEL OF THE RUNG FROMFIG. 2 WITH TIMED VARIABLE

EXAMPLE_JEAN-MARC.RSS

LAD 2 - --- Total Rungs in File = 17

Page 0 Tuesday, November 05, 2002 - 16:00:19

0000
I:1

4
1746-IB16

LINE_SWAP

OSR
B3:0

9

B3:0

2

L1_PRIO

B3:0

0

ACT_L1

B3:0

2

L1_PRIO

B3:0

1

ACT_L2

0001
B3:0

0

ACT_L1

B3:0

2

L1_PRIO

B3:0

1

ACT_L2

B3:0

2

L1_PRIO

0002
B3:0

2

L1_PRIO
B3:0

4

L2_PROD

I:1

7
1746-IB16

L2_FAILURE

B3:0

5

RS_L1_S

0003
I:1

0
1746-IB16

H_FLOW
I:1

1
1746-IB16

L_FLOW

I:1

2
1746-IB16

L1_FAIL

I:1

5
1746-IB16

SP_FAIL

B3:0

6

RS_L1_R1

0004
B3:0

5

RS_L1_S

B3:0

3

L1_PROD

B3:0

6

RS_L1_R1

B3:0

3

L1_PROD

0005
B3:0

2

L1_PRIO

I:1

6
1746-IB16

L1_FAILURE

B3:0

7

RS_L2_S

EXAMPLE_JEAN-MARC.RSS

LAD 2 - --- Total Rungs in File = 17

Page 1 Tuesday, November 05, 2002 - 16:00:19

0006
I:1

0
1746-IB16

H_FLOW
I:1

1
1746-IB16

L_FLOW

I:1

3
1746-IB16

L2_FAIL

I:1

5
1746-IB16

SP_FAIL

B3:0

3

L1_PROD

B3:0

8

RS_L2_R1

0007
B3:0

7

RS_L2_S

B3:0

4

L2_PROD

B3:0

8

RS_L2_R1

B3:0

4

L2_PROD

0008
B3:0

3

L1_PROD

O:2

3
1746-OB16

L1_UP

0009
B3:0

3

L1_PROD

EN

DN

TON
Timer On Delay
Timer T4:0
Time Base 1.0
Preset 5<
Accum 0<

TON
TON_L1

0010
T4:0

DN

TON_L1/DN

O:2

2
1746-OB16

L1_PUMP

O:2

1
1746-OB16

L1_DOWN

0011
B3:0

4

L2_PROD

O:2

6
1746-OB16

L2_UP

Fig. 16

CONTROL PROGRAM- PART 1

EXAMPLE_JEAN-MARC.RSS

LAD 2 - --- Total Rungs in File = 17

Page 2 Tuesday, November 05, 2002 - 16:00:19

0012
B3:0

4

L2_PROD

EN

DN

TON
Timer On Delay
Timer T4:1
Time Base 1.0
Preset 5<
Accum 0<

TON
TON_L2

0013
T4:1

DN

TON_L2/DN

O:2

5
1746-OB16

L2_PUMP

O:2

4
1746-OB16

L2_DOWN

0014
B3:0

3

L1_PROD

B3:0

4

L2_PROD

O:2

7
1746-OB16

OUT_VALVE

0015
O:2

2
1746-OB16

L1_PUMP

O:2

5
1746-OB16

L2_PUMP

I:1

0
1746-IB16

H_FLOW

O:2

0
1746-OB16

BF_VALVE

0016 END

Fig. 17

CONTROL PROGRAM- PART 2

2) Abstraction: It can be seen by inspecting the program
(Fig. 16) that this property is determined in rungs 8-10.L1 UP,
which opens the upstream valve, is the output of rung 8 and
set to1 while variableL1 PRODis equal to1. This variable
is also timed in rung 9 and activatesL1 PUMP, which starts
pump 1, in rung 10. This means that a model of the program
slice (rungs 8, 9, 10) is sufficient to represent the complete
behaviour of the program with regard to property 1. Although
the upstream valve and the timer are triggered byL1 PROD
and its value is computed elsewhere in the program, the result
is not compromised. Our reasoning is that the property does
not attempt to answer the question ‘when isL1 PROD= 1 and
thereforeL1 UP= 1’ but it actually states ‘if such a situation
(L1 PROD= 1) occurs then something else (L1 UP= 1) will
follow’.

C. Properties 2-4

The verification of these properties demonstrates that they
have two things in common: none of them can be verified
on the model of the program alone (verification is not feasible
because of the state explosion), and all of them can be verified
using the same level of abstraction.

1) Abstraction:Unlike property 1, these properties (TableI)
are not timed. This proves a huge advantage because timers
always increase the size of the state space by a considerable
margin. Let us look at rungs 9 and 10 first (noting that the same
applies to 12 and 13). These two rungs measure the time for
which L1 PROD= 1; and if the time reaches 5 seconds then
L1 PUMPandL1 DOWNare both set to 1, meaning that pump
1 is started and its downstream valve is opened. Whenever
L1 PROD= 0, or it is on for less than 5 seconds, both outputs
will be set to 0.

What if the outputs were activated byL1 PROD= 1 and
deactivated byL1 PROD= 0 only without imposing the 5

seconds delay? Well, the program will essentially behave in
the same way but there will be no delays caused by the
timer. The absence of timers will help to save a lot of state
space and improve the feasibility of verification. To achieve
the same effect on our program we replaced theexamine if
closed instruction at memory addressTONL1/DN with the
same instruction at memory addressL1 PRODin rung 10 and
removed rung 9 altogether. Taking the same action for rungs
12 and 13, using appropriate addresses, the resulting model
and state space used by verification is much smaller. After
applying the above mentioned abstraction the verification of
all three properties becomes feasible.

D. Properties in Uppaal specification language

Our model is using the direct address of each variable rather
than its alias. This means thatL1 UP is in fact an integer
variableO 2 0 3 in accordance with its PLC addressO:2/3
(meaning input 3 on digital output card in slot 2). The time
scale used is one tick (of a clock) equal to 1 milisecond, i.e.
20 msec. = 20 and 5 sec. = 5000.

All properties have to be tested after the outputs activation
but before the inputs scan (Fig.1). This is important simply
because checking values of variables during the program
execution does not make any sense (since the control
system behaviour is based on the complete execution of
the program). Hence, the model of the program contains
a state testing which is placed after the actual model
of the program. All properties are then checked only if
the model of the program is in this state. Access to local
variables and states in Uppaal specification language is via
‘dot notation’ like in Java programming language. In order to
verify a property while processP1 is in statetesting , the
definition P1.testing has to be part of its definition. The
following are the properties in Uppaal specification language
that were verified (true) in this paper.

Property 1
A[] not (P1.testing and P1.c O 2 0 3<5000
and P1.O 2 0 2 == 1)
Property 2
A[] not (P9.testing and P9.O 2 0 3 == 1
and P9.O 2 0 2 == 1 and P9.O 2 0 1 ==1 and
P9.O 2 0 6 == 1 and P9.O 2 0 5 == 1 and
P9.O 2 0 4 ==1)
Property 3
A[] (P9.testing and P9.I 1 0 5 == 1) imply
(P9.O 2 0 2 == 0 and P9.O 2 0 3 == 0 and
P9.O 2 0 1 == 0 and P9.O 2 0 5 == 0 and
P9.O 2 0 6 == 0 and P9.O 2 0 4 == 0 and
P9.O 2 0 7 == 0 and P9.O 2 0 0 == 0)
Property 4
A[] (P9.testing and P9.I 1 0 2 == 1) imply
(P9.O 2 0 2 == 0 and P9.O 2 0 3 == 0 and
P9.O 2 0 1 == 0)

E. Model size and verification time

This section contains more detailed look at the size of
models (tableIII) and at the verification time (tableIV). Model
M1 is the model generated by our Checker tool when the
complete ladder logic program was taken as the input. Models
M2 andM3 were generated using algorithms explained in
sectionsVI-B andVI-C respectively.

M1 M2 M3

Processes 10 2 10
Global variables 11 3 11
Global clocks 1 1 1
Local variables 34 8 28
Local clocks 2 2 0
States 63 12 60
Transitions 116 19 108

TABLE III

SIZES OF TIMED AUTOMATA MODELS

M1 M2 M3

Property 1 - 0:01 -
Property 2 ∞ - 1:08
Property 3 ∞ - 1:32
Property 4 ∞ - 1:16

TABLE IV

PROPERTY VERIFICATION TIME (MIN :S) FOR EACH MODEL.

The linux machine used for verification was Athlon 1.6 GHz
with 2GB of RAM.

VII. C ONCLUSIONS

This paper presents an approach to automatic verification
of control programs. We have defined algorithms that allow
a model of the control program to be automatically built
and then verified by the model checker Uppaal. We have
demonstrated the feasibility of our method by performing a
previously studied and manually verified ladder logic program
[4], arriving at the firstautomaticverification of timed prop-
erties for this program. So far we have focused on a subset
of ladder logic instructions but the methodology applies more
generally. Currently we support seven ladder logic instructions
including an on-delay timer. Additional instructions are being
added when needed, as was the case with theone-shot rising
instruction for the case study described in this paper.

The key difficulty of automatic verification is state space
explosion, made worse in the context of control programs due
to the need to represent timing. This calls for sophisticated ab-
straction to be incorporated in the translation recipes. Indeed,
none of the properties of the case study were feasible for the
detailed, non-reduced model. Although the capability of the
Uppaal model checker is likely to continue to improve, it is
fair to say that the potential of our method lies in the domain
of small but non-trivial, critical components, whose reliability
is crucial to the safe running of the control system.

Automatic verification is sometimes referred to as “push
button technology”, meaning that no interaction, except push-
ing a button, is needed from the person doing verification. In
an ideal world, one would simply input a control program and

requirements, and expect verification results to be produced
without human interaction. This paper constitutes work in
progress towards this goal. We have experimented with various
abstraction methods, with some performed by hand before
implementing them within the tool, concentrating on the
model building and transformation recipes. We believe further
efficiency improvements are possible; this, as well as more
abstraction methods and evaluation through examples, is what
we plan to research next.

Another area for further development is interaction with
users, particularly concerning the requirements and back-
translation of results of the verification which should be
annotated in terms of the ladder logic, rather than the model.
The main reason for this is that we are not yet sure about the
choice of the requirements language; it should be powerful
yet easy for control system programmers to learn and use.

REFERENCES

[1] The International Electrotechnical Committee, “IEC 61131-3, Pro-
grammable controllers,Programming languages,” March 1993.

[2] R. Alur and D. L. Dill, “A Theory of Timed Automata,”Theoretical
Computer Science, vol. 126, pp. 183–235, 1994, available athttp://www.
cis.upenn.edu/˜alur/pub.html.

[3] Uppaal model checker homepage
http://www.uppaal.com.

[4] Jean-Marc Roussel and Bruno Denis, “Safety Properties Verification of
Ladder Diagram Programs,”Journal Euroṕeen des systèmes automatisés,
vol. 36(7), pp. 905–917, 2002.

[5] G. Frey and L. Litz, “Formal methods in PLC programming,” in
International Conference on Systems, Man, and Cybernetics, Nashville,
Tennessee, USA, October 2000, available athttp://www.eit.uni-kl.de/litz/
members/frey/PDF/V132.pdf.

[6] A. Mader and H. Wupper, “Timed Automaton Models for Simple
Programmable Logic Controllers,” inProceedings of the 11th Euromicro
Conference on Real Time Systems. IEEE Computer Society, 1999, pp.
114–122, also available athttp://www.cs.kun.nl/˜mader/papers.html.

[7] Henning Dierks, “PLC–Automata: A New Class of Implementable Real–
Time Automata,” inTransformation-Based Reactive Systems Develop-
ment (ARTS’97), ser. Lecture Notes in Computer Science, M. Bertran
and T. Rus, Eds., vol. 1231. Springer-Verlag, 1997, pp. 111–125,
also available athttp://semantik.informatik.uni-oldenburg.de/persons/
henning.dierks.

[8] ——, “Specification and Verification of Polling Real–Time Systems,”
Ph.D. dissertation, University of Oldenburg, July 19, 1999.

[9] R. Huuck, “Transformation of Timed Condition/Event Systems into
Timed Automata: An Approach to Automatic Verification,” Master’s
thesis, Chair of Software Technology, Christian–Albrecht–University of
Kiel, Germany, 1998.

[10] B. Lukoschus, “Composition and Verification of Condition/Event Sys-
tems,” Chair of Software Technology, Institute of Computer Science and
Applied Mathematics, Christian Albrechts University of Kiel, Germany,
Tech. Rep., May 1999.

[11] Moby/PLC tool homepage,
http://theoretica.informatik.uni-oldenburg.de/˜moby.

[12] Kronos homepage
http://www-verimag.imag.fr/TEMPORISE/kronos.

[13] VERDICT tool homepage
http://astwww.chemietechnik.uni-dortmund.de/˜verdict/.

[14] VHS project homepage
http://www-verimag.imag.fr/VHS/main.html.

[15] A. Mader, H. Wupper, and N. Bauer, “Design of a PLC Program for
VHS Case Study 1,” University of Nijmegen, Tech. Rep., June 28, 1999,
also available athttp://www.cs.kun.nl/˜mader/papers.html.

[16] K. Kristoffersen, K. Larsen, P. Pettersson, and C. Weise, “Experimental
Batch Plant CS1 using Timed Automata and UPPAAL,” BRICS, Institute
of Computer Science, Aalborg University, Denmark, Tech. Rep., May
6, 1999.

http://www.cis.upenn.edu/~alur/pub.html
http://www.cis.upenn.edu/~alur/pub.html
http://www.uppaal.com
http://www.eit.uni-kl.de/litz/members/frey/PDF/V132.pdf
http://www.eit.uni-kl.de/litz/members/frey/PDF/V132.pdf
http://www.cs.kun.nl/~mader/papers.html
http://semantik.informatik.uni-oldenburg.de/persons/henning.dierks
http://semantik.informatik.uni-oldenburg.de/persons/henning.dierks
http://theoretica.informatik.uni-oldenburg.de/~moby
http://www-verimag.imag.fr/TEMPORISE/kronos
http://astwww.chemietechnik.uni-dortmund.de/~verdict/
http://www-verimag.imag.fr/VHS/main.html
http://www.cs.kun.nl/~mader/papers.html

	Introduction
	Terminology and formalisms
	Programmable Logic Controller
	Ladder logic
	Timed automata
	Model checker
	The Checker tool

	Related work
	Case study
	Our approach
	Control program and property
	Abstraction algorithm and program slice
	Basic algorithm and the intermediate model
	Program slice
	Inputs and outputs
	Program execution

	Transformation recipes and the timed automata model

	Verification
	Program
	Property 1
	Timed variable
	Abstraction

	Properties 2-4
	Abstraction

	Properties in Uppaal specification language
	Model size and verification time

	Conclusions
	References

