Towards automatic verification of ladder logic
programs

Bohunir Zoubek Jean-Marc Roussel Marta Kwiatkowska
School of Computer Science LURPA School of Computer Science
The University of Birmingham Ecole Normale Superieure De Cachan The University of Birmingham
Birmingham, B15 2TT 61, Avenue du Fasident Wilson Birmingham, B15 2TT
United Kingdom 94235, Cachan Cedex, France United Kingdom
Email: bxz@cs.bham.ac.uk Email: roussel@Iurpa.ens-cachan.fr Email: mzk@cs.bham.ac.uk

Abstract— Control system programs are usually validated by ~control programs by offering the programmer the functionality
testing prior to their deployment. Unfortunately, testing is not of checking for desirable conditions, using notations readily
exhaustive and therefore it is possible that a program which , 4arstood in the control engineering domain, and hiding the

passed all the required tests still contains errors. In this paper we lexity of del truction inside the tool itself
apply techniques of automatic verification to a control program complexity of mocel construction Inside the tool iseil.

written in ladder logic. A model is constructed mechanically from
the ladder logic program and subjected to automatic verification _ _) i o
against requirements that include timing. This consists of an In this section we introduce the domain of application

exhaustive search of the model of the program, thus eliminating for our methodology, and explain the main concepts and
the drawback of testing. We believe that automatic verification formalisms used.

can substantially enhance current validation procedures for
control programs. A. Programmable Logic Controller

. INTRODUCTION Programmable Logic Controllers (hereafter PLCs) are used
Control systems are used in many applications of proce%% a hardware platform on which a contrql program s exe-
uted, and are connected to the process unit via an input/output

control all around the world. Their uses range from small ap- tem. PLCs are. in fact. industrial computer ificall
plications such as building alarm systems to larger applicatio Sem. S are, act, ustrial computers specitically
esigned to be used as control systems.

such as production factories and nuclear power plants. Al yPrograms for PLCs can be written in one or more languages

fault can cause injury or loss of life and environmental or . .
economical damage. Factory downtime in all cases only aas(gndardlzed _by IEC 61131-3.]_[and are executed in cycles

. with three main steps (Fidl). First, the inputs of the control
to the overall cost of the failure.

Programs for control systems are currently validated k%ystem are read and their values stored in memory. Then the

testing. A set of tests for each program is executed in order Bﬁrig dlsvs)ljicsu(t)efdolzjtsﬂtgs :‘ri :gcr)egto'?:;t Xsltjhees’laz?dst:”
establish the compliance or otherwise of the program with gLmp . P ; T P:
|, outputs are activated based on their values in the memory.

specification. The main disadvantage of such program test .
is that it is not exhaustive, which creates the possibility of aﬁe length of a PLC cycle is called the PLC scan.

program being successfully tested and still containing errors.
This risk can be reduced by verification of control programs. ¢

This paper demonstrates the application of automatic verifica-

Il. TERMINOLOGY AND FORMALISMS

tion techniques on a small control program written in ladder

logic against non-trivial specifications. §
The framework introduced in this paper is intended as an | Program execution | 2
add-on extension to a typical control programming toolbox. Q/

We focus on ladder logic, one of the standardized program-
ming languages for Programmable Logic Controllers. After
a ladder logic program has been developed with the help of |

the toolbox in the usual way, it is input by our software tool Fig. 1
which first performs a transformation of the program into a

model known as a timed automaton. The model is then entered)
into a pre-existing tool called model checker. The mod&- Ladder logic

checker accepts specifications and explores the model in ordelcadder logic, one of the standardized languages for PLCs,
to establish if each specification holds; if not, a diagnostis a graphical programming language with a representation
trace is produced. The central idea is to improve reliability gimilar to that of circuit diagrams. Programs written in ladder

| Outputs activation |

PLC PROGRAM EXECUTION CYCLE

logic look like ladders, with commands written into rungsmay move toB if ¢ > 5, it may stay inB if ¢ < 15 and it
and are executed rung by rung. Commands are representey stay inC as long as: < 5. Moreover, the clock is reset
by means of symbols of the electrical engineering domawhen the system takes the transitiBr—C.
and the complete set of instructions varies slightly from one
manufacturer to another. An example of a rung can be seen °<10 oot e<15
in Fig. 2. A
One way to think about ladder logic is that the left side c=0
of the ladder is subjected to a power source, and this power
is trying to reach the right side of it along each rung. The
pictured rung consists of two instructions (left to right):
examine if closedand output energize The first instruction

checks the value of thel PRODvariable, and if true it allows <5
the power through. The second instruction sets the value of Fig. 4
L1_UPto true, if it can be reached by the power, or to false TIMED AUTOMATON

otherwise. For our purposes we define two groups of ladder,

logic instructions:conditionsandactions The first instruction Such a timed automaton is shown in Fig. Note that

: . - : ._invariants are constraints over states, whereas guards are
in the above is a condition and the second one is an action.
constraints over transitions. There is one assignment used to

L1_rROD LLop reset the clocke during the transitionB—C. Transitions
G & without guards can be taken at any time.
3 3
psene D. Model checker
Fig. 2 A model checker is a software tool that can be used
A LADDER LOGIC RUNG to automatically establish whether the model satisfies its

Rung continuityarises if the power source is able to reachpecification or not. In the latter case it will also produce a
the right-hand side of the rung. Such a rung is said to lsace showing where the specification is breached. We use the
continuous real-time model checkedppaal B]. Uppaal accepts a timed
automaton model and the model specification as inputs, checks
i))) the compliance of the model to the specification and outputs

The timed automata formalisn2][is a modelling language the results including diagnostic information. The specifications
that allows us to describe the behaviour of systems by meapg given in Uppaal specification language with the help of two
of finite state automata diagrams extended with clocks aBpeﬁxeS: Al andE<>. A property prefixed by the former is
time constraints. For example, consider a model of a systefisfied if it holds on all paths of the model; the latter prefix
which consists of three states, B, C and whose possible jngjcates that the model can reach a state where the property

transitions aréA—B, B—C, C—A andC—B. We obtain ho|ds. Some examples of the property specifications in the
the finite state automaton shown in Fg&y. Uppaal language are:

o A[] (t2-t1) <100
@ Condition(t2-t1) <100 holds in all states, on all paths
of the system (invariantly). In this particular cask, and
t2 are clocks, and therefore the condition expresses the
time difference no greater than 100.
@ o E<> CH1l.synchro
The system can reach the st&td1.synchro (via some
path, after a finite number of steps).
The Uppaal models are slight variants of standard timed
. _automata, and in particular allow certain convenient modelling
Such a system can be extended with clocks and timg,qres which we now outline. Three additional types of states

constraints. Aclock of the system is a variable that is increasegig_ 5) are available for use. Thanitial state defines the

at the same rate as time. Clocks can be reset or assigned SBB%tion of an automaton at the beginning (when the time is
new (integer) value. Time constraints are based on predefingd o) 1o zero). Acommittedstate is one which has to be left

clocks and can be of two typesavariants define a time jnmediately.Urgent states are used to prevent a delay when a
interval for which the system can remain in a state guards ansition is already enabled and when more than one transition

enable transitions within a time interval. , , ([to more than one state) is enabled at the same time.
To illustrate the main concepts, we impose time constraints

based on clock: on the finite state automaton of Fig. The E. The Checker tool
automaton is to behave periodically in the interwat [0, 15) We have implemented the algorithms presented in this paper
in such a way that it may stay iA whenc € [0, 10), it in the Checker tool which is written in Java. It takes

C. Timed automata

Fig. 3
FINITE STATE AUTOMATON

initial state V. OUR APPROACH
Our work is motivated by the idea that a control system
committed state programmer should be able to automatically verify a program

prior to its deployment. We achieve this by mechanically trans-
lating control programs into timed automata models and then
by verifying these models using Uppaal. The main challenge in
this work is finding efficient ways of translating programs into
compact, manageable models. This is done through a number
of transformations, shown in Fi@. and described below.

© @0

urgent state

Fig. 5
ADDITIONAL TYPES OF STATES INUPPAAL TIMED AUTOMATA

Backflow

a ladder logic control program as its input and mechanically valve
builds a timed automaton model for it. Such a model is then
verified using Uppaal, possibly after further transformations
of the model have been performed for efficiency reasons. We
have employed the Checker tool on a pumping line unit case
study previously verified by manual theorem proving, using
a calculus developed for this purpose, #);[in contrast, our
method is fully automatic.

Output
valve

Symbols:

[1l. RELATED WORK Q .. pump <] .vane
This section briefly outlines the relevant work done by other Fig. 6
people in the field of control program validation. The use PUMPING LINES SCHEMA

of formal methods in PLC programming is introduced 8} [
and there are two other modelling languages, besides timed

automata 6], that have been used to model control programs: P1 | The upstream valve of a pump must be opened
PLC-automata{], [8] and Condition/Event System$][[10]. for 5 seconds prior to the pump startup.
Mobv/PLC M1l i hical tool that b d t P2 | The two pumping lines must not work together.
) oby [11] is a graphical too at can be used to P3 | The backflow and the output valves must be
build PLC-automata models of control programs. The tool closed if both pumps are not running.
also supports simulation and export of the model into formats P4 1 In case of a pump failure all associated
. . actuators will be turned off.
accepted by Uppaal or Kronodd). Similarly, Verdict [13]
is a graphical tool for Condition/Event Systems. Both tools TABLE |

require the knowledge of the modelling language, in contrast
to our approach where this knowledge is not needed.
The VHS project 14], a collaboration among several Eu-

CONTROL PROGRAM PROPERTIES IN NATURAL LANGUAGE

. . L flow Water distribution at low flow rate reques
ropean partners, concentrated mainly on the deS|gn correct- Fflow Water distribution at high flow rate request
ness [L5] of control systems such as a manufacturing plant. Line _swap | Change the line priority request
In [16] the Uppaal model checker was applied in order to Li fail Fault information from pump
verify the batch plant. SE,fall DIStrIbUtIOI’l'haS been stopped

L:_pump Start pump:
Li_up Open the upstream valve of punip
IV. CASE STUDY L:_down Open the downstream valve of punp
Out _valve Open the output valve
. . . . Bf _valve Open the backflow valve
We use a control program for a pumping line unit which
provides a water supply from a tank via two pumps (shown TABLE |l
in Fig. 6), originally introduced in 4], as our case study. LIST OF INPUTS AND OUTPUTS

The unit consists of the water tank, two pumps, the backflow
valve and the output valve. In addition to these componerts Control program and property
there are further two valves, the upstream valve and theW

downstream valve. associated with each pump. The unit.is e have implemented our algorithms for a subset of ladder

" pump. - Iogic instructions used by Allen-Bradley PLCs of the SLC5/03
expgcte_zd to operate in such away that safety requirements s?t%es. We have one PLC of this series on loan from Rockwell
not infringed. Safety properties for our case study are Sho‘%ﬁtomation Ltd together with RSLogix 500 programming
in tablel.

. . , L) toolbox. Properties are defined in the Uppaal specification
A control system interaction with the unit is provided bVanguage.

inputs and outputs. The list of inputs and outputs for our case
study is in tablell.

algorithm

Program
slice

v
Basic
algorithm
v

Intermediate
model

Consider a condition instructior = 1 positioned at
the beginning of a rung. It will be translated into a timed
automaton using two transitions: one will be taken when the
condition is satisfied (i.ec == 1) and the other one when itis
not (i.e.x! = 1). The rung execution will either lead to the next
instruction along the rung (if the condition is satisfied), or the
rung will be completely skipped. The model of this instruction
is shown in Fig.8. We say that the second transition is a
negativetransition. When translating a rung with more than
one condition instruction a number of negative transitions will
be created. The importance of this notion will emerge when
modelling action instructions as well as in transformation
recipes.

@ Initial state of the rung

. “r

@ xl=1

Transformation
recipes

Timed automata
model .
Fig. 8

Fig. 7 MODEL OF A CONDITION INSTRUCTION

@ Final state of the rung

Let us now consider an action instruction placed at the end
of the rung, which setg to 1 if the rung is continuous and to O
B. Abstraction algorithm and program slice otherwise. It will be translated as follows: one transition from

A common approach to verification is to build a model Oﬁhe previous state (i.e. the state when the previous transition

the complete control program first and subject it to verificatio?wn?_i) to th'?l f|rl1al sbtate of the rung WEh an asTllgnn@e_m:
of all properties required. This approach will result in a- There will also be an assignmegt:= 0 on all previous

complex model and almost certainly the state space explos[b‘?‘pativ_e transitions (these are cre_ated by modelling condition

problem would be encountered for many properties. mstructlons_su_ch as the one descrl_bed_the last paragraph). The
To deal with the state explosion problem we propose tﬁTéOdel of th_'s m_structlo_n is shown in Fig. _—

use of a program slicing algorithm. We fix the property Intermediate mstruguoqs (those not_at the begmmng nor end

to be verified, and determine which part of the prograI;P]farung) are dealt with similarly. Their corresponding models

affects it. This part, or “slice”, of the program only is ther]\/{vnl be positioned in place of.. in figures mentioned above.

transformed into the model. Such an approach works qui Qe resul?ing_UppaaI timed automa_lton of the rung from Eig.
well for programs that contain many modules, each controllid shoy;/tn (ljntFlg.ltO. Al states usef_l n th_fﬁe rtn((j)dlels are of the
a part of the system, as long as the property to be verifi mmitted type to ensure execution without delays.

pertains to a subset of modules. (©) Inial state of the rung

BUILDING A TIMED AUTOMATON MODEL

C. Basic algorithm and the intermediate model

The basic algorithm translates the program slice into a
timed automaton model. It also generates other necessary
components (timed automata) such as the PLC program exe-
cution and the input/output system. All these timed automata
communicate with each other via synchronization channels, () Final state of the rung
and their parallel composition yields the desired model of
behaviour. We now describe the process in more detail.

1) Program slice: The program slice is translated rung
by rung into a timed automaton model. This is where the 2) Inputs and outputs:Inputs have to be modelled as
notion of rung continuity, and the grouping of instructionsariables that change their values nondeterministically. This
into conditions and actions, play an important role. We wiljuarantees that every possible behaviour of the model will be
only outline the translation briefly, since a full description ishecked during verification. Each input is usually modelled by
beyond the scope of this paper. a small timed automaton such as the one shown in Flg.

Fig. 9
MODEL OF AN ACTION INSTRUCTION

This is a model of the input addreks0/3 . It uses a global resulting model can be further simplified, eg. by removing
variableg_l _1_0_3 that can change its value nondeterministiredundant transitions, in order to reduce the model size.
cally at any point in time, but its value is copied into the localransformation recipes are used to achieve this.

variablel _1_0_3 of the program model during the input scan In some cases the intermediate model needs to be enhanced
part of the PLC cycle. This local variable is then used durinfgrther to enable verification. For example, in order to verify
program execution. a timed property a timer must be added. This is achieved by
an appropriate transformation recipe. Another case would be
a branching based on the value of one variable. Again, there
is a transformation recipe that serves this purpose.

L1_PROD==1

@ start

t<scan
L1_PROD!=1

LI_UP:=0

waiting
t<=scan

t>=scan

=0 x!
Fig. 10
MODEL OF THE RUNG FROMFIG. 2
There is no need for such constructs in the case of outputs.
Outputs are modelled as variables used in the program model. Fig. 12

However, all properties (and hence all values of outputs) are
verified at the end of the program model execution in order
to comply with the output activation part of the PLC scan. VI. VERIFICATION

MoDEL OF THEPLC CYCLE

This section describes the automatic verification task per-
formed for the case study of sectidvi. We succeeded with
all the properties shown in table In this section we present
our findings and describe the technical difficulties encountered
during in the process and ways to overcome them.

gl 103:=1

A. Program
g11.03:=0 The original program (Roussel and Den#)[makes use
of bistable function blocks that are not supported by our
Fig. 11 PLC. Therefore these blocks have been translated into an
MODEL OF THE INPUT equivalent combination of instructions supported by our PLC

3) Program execution:The timed automaton in Figl2 (AIIe_n-BradIey). Bistable.function blocks are.of two types: set
is included in the intermediate model to achieve the cycl@ominantand reset dominant (our case). All inputs and outputs
program execution typical for PLCs (Fig). Transition from pf the blpgk are digital varlgbles (booleans). Th'e blocks used
statewaiting to stateexecuted requests synchronizationin the original program and its body are shown in Fig.and
via channel: which triggers the program execution in such §S ladder logic version from our program is shown in Fig.
way that the whole model of the program is executed at tj&e program size increases, as a result of the above translation,
same time as this transition. Hence, the program is execufdd© rungs. A complete listing of the control program that
periodically in intervals given by the constastan . This IS subjected to verification in this paper is given in Figs.
constant defines the length of a PLC scan, which was setad 17.

20 msec. throughout these experiments. B. Property 1

D. Transformation recipes and the timed automata model This timed property (tabld) states that a pump’s own
The structure of each rung can be represented by a graRStream valve must be open for 5 seconds prior to the pump

The basic algorithm builds models of all instructions angeing turned on. In general, timed properties are very difficult

connects them via transitions according to rung structures. TiReverify because of the state explosion problem, and

&
Rl——— - Q1
RS 0000
S — — Q1 >=1
<> S —
R1 Q1
0001
Fig. 13
BISTABLE FUNCTION BLOCK (RESET DOMINANT) AND ITS BODY
0002
S R1 Q1
; /] (
Q1
0003
Fig. 14

BISTABLE FUNCTION BLOCK (RESET DOMINANT) IN LADDER LOGIC

indeed verification of this property on the model of the
control program failed due to this. However, we were able
to verify the property by the following means (explained here o
for pump 1, but the same technique works for both pumps
because they are controlled by the corresponding parts of tt
program, although with different addresses).

1) Timed variable:First we select the timed variable which o
in the case of pump 1 i1 _UP. Property 1 describes the sit-
uation when the timed variable has valu¢pump 1 upstream
valve is opened by.1_UP being equal tal) so we introduce
an additional clockc _L1 _UP, as a part of the timed automaton
model of the program, that ticks whilel_ UP= 1 and is reset
whenlL1 _UP# 1. This is achieved by resetting the clock on
the first transition (program is searched from the top to the
bottom) with guard.1 _UP= 0 (or L1_UP+# 1) or, if such a
transition does not exist, on the first transition with assignmen
L1_UP:= 0. Then we redefine property 1 using this clock, i.e.
c_L1_UP must be greater than or equal idn order to start
pump 1.

In our case only the transition with assignmédt UP:= 0
can be found and the clock reset is added as shown inlbig.

0007

0008

L1_PROD==

0009

L1_PROD!=1

L1_UP:=0,

c_L1_UP:=0
0010

0011

Fig. 15
MODEL OF THE RUNG FROMFIG. 2 WITH TIMED VARIABLE

LINE_SWAP

L1_PRIO ACT_LI1

L1 B3:0 B3:0 B30
1 F f OsR } 3 F
4 9 2 0
1746-1B16
L1_PRIO ACT_L2
B3:0 B3:0
E——<
2 1
ACT_L1 ACT_L2 L1_PRIO
B3:0 B3:0 B3:0
e Eya
1 f E4
0 1 2
LI_PRIO
B3:0
—
2
L1_PRIO L2_PROD RS_LI_S
3:0 B3:0 B3:0
1 E 3£
2 4 5
L2_FAILURE
11
-
1
a
1746-1B16
H_FLOW L_FLOW RS_LI_RI
Il Il B3:0
I 3
0 1 6
1746-1B16 1746-1B16
LI_FAIL
Il
4"‘ ’77
2
1746-1B16
SP_FAIL
L1
5
1746-1B16
RS_LI_S RS_LI_RI LI_PROD
B3:0 B3:0 B3:0
1 E 3£
5 6 3
LI_PROD
B3:0
—
3
L1_PRIO RS L2_S
B3:0 B3:0
3
2 7
L1_FAILURE
L1
T
3 E
6
1746-1B16
H_FLOW L_FLOW RS_L2_RI
I:1 Il B3:0
I 3
0 1 8
1746-1B16 1746-1B16
L2_FAIL
Il
4"‘ ’77
3
1746-1B16
SP_FAIL
L1
4{ }7
5
1746-1B16
L1_PROD
B3:0
3
RS_L2_S RS_L2_R1 L2_PROD
B3:0 B3:0 B3:0
1 F 3
7 8 4
L2_PROD
B3:0
—
4
LI_PROD LI_UP
B30 02
'(L 3
’ 1746-0B16
L1_PROD TON_LI1
B3:0 TON ——
E Timer On Delay —CEN>—|
3 Timer T40
Time Base 1.0 —C(DN>—
Preset 5<
Accum 0<
TON_LI/DN L1_PUMP
T40 02
B
1 E
DN 2
1746-0B16
L1_DOWN
0:2
1746-0B16
L2_PROD L2_UP
B30 02
f >—
4 6
1746-0B16

Fig. 16

CONTROL PROGRAM- PART 1

oo | B T ., | seconds delay? Well, the program will essentially behave in
‘ ﬁgm 13(L cony— the same way but there will be no delays caused by the
Aceum o timer. The absence of timers will help to save a lot of state
ToN LaDN w2pue space and improve the feasibility of verification. To achieve
o b g the same effect on our program we replaced ékamine if
gz&s closedinstruction at memory addreSSONL1/DN with the
$ same instruction at memory addrdsks_ PRODin rung 10 and
HraeoRe removed rung 9 altogether. Taking the same action for rungs
o uﬁw OUTBVé\i 12 and 13, using appropriate addresses, the resulting model
- 7450616 and state space used by verification is much smaller. After
Ba’g applying the above mentioned abstraction the verification of
LL:UM.: Fow oF vALVE all three properties becomes feasible.
e 17;,;%516 1,:1?516 1745,3); D. Properties in Uppaal specification language
Lzmﬂ Our model is using the direct address of each variable rather
et than its alias. This means thatl_UP is in fact an integer
e o> variableO.2_0_3 in accordance with its PLC addre€s2/3
(meaning input 3 on digital output card in slot 2). The time
scale used is one tick (of a clock) equal to 1 milisecond, i.e.
Fig. 17 20 msec. = 20 and 5 sec. = 5000.

All properties have to be tested after the outputs activation
but before the inputs scan (Fid). This is important simply

2) Abstraction: It can be seen by inspecting the programdecause checking values of variables during the program
(Fig. 16) that this property is determined in rungs 8-LQ.UP, execution does not make any sense (since the control
which opens the upstream valve, is the output of rung 8 aggstem behaviour is based on the complete execution of
set tol while variableL1_PRODis equal tol. This variable the program). Hence, the model of the program contains
is also timed in rung 9 and activatéd PUMP which starts a statetesting ~ which is placed after the actual model
pump 1, in rung 10. This means that a model of the progrash the program. All properties are then checked only if
slice (rungs 8, 9, 10) is sufficient to represent the completiee model of the program is in this state. Access to local
behaviour of the program with regard to property 1. Althougtariables and states in Uppaal specification language is via
the upstream valve and the timer are triggeredLihyPROD ‘dot notation’ like in Java programming language. In order to
and its value is computed elsewhere in the program, the resudtify a property while procesB1 is in statetesting , the
is not compromised. Our reasoning is that the property dogsfinition P1.testing has to be part of its definition. The
not attempt to answer the question ‘whe is PROD= 1 and following are the properties in Uppaal specification language
thereforeL1_UP = 1’ but it actually states ‘if such a situationthat were verified (true) in this paper.
(L1 _PROD= 1) occurs then something elsel(_ UP = 1) will

CONTROL PROGRAM- PART 2

follow’. Property 1
] A[] not (Pl.testing and Pl.c _0.2.0.3<5000
C. Properties 2-4 and P1.0 2.02 == 1)
The verification of these properties demonstrates that thgoperty 2 _
have two things in common: none of them can be verified[] not (P9.testing and P9.0 203 ==

on the model of the program alone (verification is not feasib@d P9.0 2.02 == 1 and P9.0 201 ==1 and
because of the state explosion), and all of them can be verif@8.O 2 06 == 1 and P9.0 205 == 1 and

using the same level of abstraction. P9.0.2.04 ==1)
1) Abstraction:Unlike property 1, these properties (Tabje Property 3 _ _
are not timed. This proves a huge advantage because timlls (P9.testing and P9.l -1.05 == 1) imply

always increase the size of the state space by a considerdBRO -2.0.2 == 0 and P9.0 203 == 0 and
margin. Let us look at rungs 9 and 10 first (noting that the sarf®.0-2.0.1 == 0 and P9.0 2.0.5 == 0 and
applies to 12 and 13). These two rungs measure the time R#.0 206 == 0 and P9.O0 204 == 0 and
which L1_PROD= 1; and if the time reaches 5 seconds theR9.0.2.0.7 == 0 and P9.0 200 == 0)
L1_PUMPandL1_DOWNre both set to 1, meaning that pumgrroperty 4

1 is started and its downstream valve is opened. Whenetdl (P9.testing and P9.l -1.0.2 == 1) imply
L1_PROD= 0, or it is on for less than 5 seconds, both output9.0 2.0.2 == 0 and P9.0 2.0.3 == 0 and
will be set to 0. P9.0.20.1 == 0)

What if the outputs were activated iyl _PROD= 1 and
deactivated byL1_PROD= 0 only without imposing the 5

E. Model size and verification time

requirements, and expect verification results to be produced

This section contains more detailed look at the size ¥fithout human interaction. This paper constitutes work in

models (tabldll) and at the verification time (tabl¥). Model

progress towards this goal. We have experimented with various

M; is the model generated by our Checker tool when t@ebstractior) methods, yvith some performed by .hand before
complete ladder logic program was taken as the input. Moddi@plementing them within the tool, concentrating on the
M, and M5 were generated using algorithms explained imodel building and transformation recipes. We believe further

sectionsVI-B andVI-C respectively.

efficiency improvements are possible; this, as well as more

abstraction methods and evaluation through examples, is what

M1 My Ms
Processes 10 2 10
Global variables| 11 3 11
Global clocks 1 1 1
Local variables 34 8 28
Local clocks 2 2
States 63 12 60
Transitions 116 19 108

TABLE Il

SIZES OF TIMED AUTOMATA MODELS

Mi Mz Ms
Property 1 - 0:01 - [
Property 2| oo - 1:08
Property 3| oo - 1:32 2]
Property 4| oo - 1:16
TABLE IV [3]

PROPERTY VERIFICATION TIME(MIN:S) FOR EACH MODEL

[4]
The linux machine used for verification was Athlon 1.6 GHz

with 2GB of RAM. [5]

VIl. CONCLUSIONS

This paper presents an approach to automatic verificatiq@]
of control programs. We have defined algorithms that allow
a model of the control program to be automatically built
and then verified by the model checker Uppaal. We havg,
demonstrated the feasibility of our method by performing a
previously studied and manually verified ladder logic program
[4], arriving at the firstautomaticverification oftimed prop-
erties for this program. So far we have focused on a subset
of ladder logic instructions but the methodology applies moré]l
generally. Currently we support seven ladder logic instruction@,]
including an on-delay timer. Additional instructions are being
added when needed, as was the case withotteeshot rising
instruction for the case study described in this paper. [10]

The key difficulty of automatic verification is state space
explosion, made worse in the context of control programs due
to the need to represent timing. This calls for sophisticated fﬁ’I]
straction to be incorporated in the translation recipes. Indeed,
none of the properties of the case study were feasible for thél
detailed, non-reduced model. Although the capability of they
Uppaal model checker is likely to continue to improve, it is
fair to say that the potential of our method lies in the domali!
of small but non-trivial, critical components, whose reliability, 5;
is crucial to the safe running of the control system.

Automatic verification is sometimes referred to as “pus
button technology”, meaning that no interaction, except pu
ing a button, is needed from the person doing verification. In
an ideal world, one would simply input a control program and

16]

we plan to research next.

Another area for further development is interaction with
users, particularly concerning the requirements and back-
translation of results of the verification which should be
0 annotated in terms of the ladder logic, rather than the model.
The main reason for this is that we are not yet sure about the
choice of the requirements language; it should be powerful
yet easy for control system programmers to learn and use.

REFERENCES

The International Electrotechnical Committee, “IEC 61131-3, Pro-
grammable controllerd2rogramming languaggsMarch 1993.

R. Alur and D. L. Dill, “A Theory of Timed Automata,'Theoretical
Computer Sciengevol. 126, pp. 183—-235, 1994, availablehdtip://www.
cis.upenn.edu/"alur/pub.html

Uppaal model checker homepage

http://www.uppaal.com

Jean-Marc Roussel and Bruno Denis, “Safety Properties Verification of
Ladder Diagram ProgramsJournal Eurofgen des sy8tes automatis

vol. 36(7), pp. 905-917, 2002.

G. Frey and L. Litz, “Formal methods in PLC programming,” in
International Conference on Systems, Man, and Cybernetics, Nashville,
Tennessee, US®ctober 2000, available attp://www.eit.uni-kl.de/litz/
members/frey/PDF/V132.pdf

A. Mader and H. Wupper, “Timed Automaton Models for Simple
Programmable Logic Controllers,” ifroceedings of the 11th Euromicro
Conference on Real Time SystemHEEE Computer Society, 1999, pp.
114-122, also available attp://www.cs.kun.nl/"mader/papers.html
Henning Dierks, “PLC—Automata: A New Class of Implementable Real—
Time Automata,” inTransformation-Based Reactive Systems Develop-
ment (ARTS'97)ser. Lecture Notes in Computer Science, M. Bertran
and T. Rus, Eds., vol. 1231. Springer-Verlag, 1997, pp. 111-125,
also available athttp://semantik.informatik.uni-oldenburg.de/persons/
henning.dierks

——, “Specification and Verification of Polling Real-Time Systems,”
Ph.D. dissertation, University of Oldenburg, July 19, 1999.

R. Huuck, “Transformation of Timed Condition/Event Systems into
Timed Automata: An Approach to Automatic Verification,” Master’s
thesis, Chair of Software Technology, Christian—Albrecht—University of
Kiel, Germany, 1998.

B. Lukoschus, “Composition and Verification of Condition/Event Sys-
tems,” Chair of Software Technology, Institute of Computer Science and
Applied Mathematics, Christian Albrechts University of Kiel, Germany,
Tech. Rep., May 1999.

Moby/PLC tool homepage,
http://theoretica.informatik.uni-oldenburg.de/"moby

Kronos homepage

http://www-verimag.imag.fr/ TEMPORISE/kronos

VERDICT tool homepage
http://astwww.chemietechnik.uni-dortmund.de/ verdict/

VHS project homepage

http://www-verimag.imag.fr/VHS/main.html

A. Mader, H. Wupper, and N. Bauer, “Design of a PLC Program for
VHS Case Study 1,” University of Nijmegen, Tech. Rep., June 28, 1999,
also available ahttp://www.cs.kun.nl/"mader/papers.html

K. Kristoffersen, K. Larsen, P. Pettersson, and C. Weise, “Experimental
Batch Plant CS1 using Timed Automata and UPPAAL,” BRICS, Institute
of Computer Science, Aalborg University, Denmark, Tech. Rep., May
6, 1999.

http://www.cis.upenn.edu/~alur/pub.html
http://www.cis.upenn.edu/~alur/pub.html
http://www.uppaal.com
http://www.eit.uni-kl.de/litz/members/frey/PDF/V132.pdf
http://www.eit.uni-kl.de/litz/members/frey/PDF/V132.pdf
http://www.cs.kun.nl/~mader/papers.html
http://semantik.informatik.uni-oldenburg.de/persons/henning.dierks
http://semantik.informatik.uni-oldenburg.de/persons/henning.dierks
http://theoretica.informatik.uni-oldenburg.de/~moby
http://www-verimag.imag.fr/TEMPORISE/kronos
http://astwww.chemietechnik.uni-dortmund.de/~verdict/
http://www-verimag.imag.fr/VHS/main.html
http://www.cs.kun.nl/~mader/papers.html

	Introduction
	Terminology and formalisms
	Programmable Logic Controller
	Ladder logic
	Timed automata
	Model checker
	The Checker tool

	Related work
	Case study
	Our approach
	Control program and property
	Abstraction algorithm and program slice
	Basic algorithm and the intermediate model
	Program slice
	Inputs and outputs
	Program execution

	Transformation recipes and the timed automata model

	Verification
	Program
	Property 1
	Timed variable
	Abstraction

	Properties 2-4
	Abstraction

	Properties in Uppaal specification language
	Model size and verification time

	Conclusions
	References

