
This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Efficient Synthesis of Robust Models for Stochastic Systems

Radu Calinescu1, Milan Češka2, Simos Gerasimou1, Marta Kwiatkowska3, and Nicola Paoletti4

1. Department of Computer Science, University of York, UK
2. Faculty of Information Technology, Brno University of Technology, Czech Republic

3. Department of Computer Science, University of Oxford, UK
4. Department of Computer Science, Stony Brook University, USA

Abstract

We describe a tool-supported method for the efficient synthesis of parametric continuous-time Markov chains (pCTMC)
that correspond to robust designs of a system under development. The pCTMCs generated by our RObust DEsign
Synthesis (RODES) method are resilient to changes in the system’s operational profile, satisfy strict reliability, perfor-
mance and other quality constraints, and are Pareto-optimal or nearly Pareto-optimal with respect to a set of quality
optimisation criteria. By integrating sensitivity analysis at designer-specified tolerance levels and Pareto optimality,
RODES produces designs that are potentially slightly suboptimal in return for less sensitivity—an acceptable trade-off
in engineering practice. We demonstrate the effectiveness of our method and the efficiency of its GPU-accelerated tool
support across multiple application domains by using RODES to design a producer-consumer system, a replicated file
system and a workstation cluster system.

Keywords: software performance and reliability engineering; probabilistic model synthesis; multi-objective
optimisation; robust design

1. Introduction

Robustness is a key characteristic of both natural [1]
and human-made [2] systems. Systems that cannot tol-
erate change are prone to frequent failures and require
regular maintenance. As such, engineering disciplines like
mechanical and electrical engineering treat robustness as
a first-class citizen by designing their systems based on es-
tablished tolerance standards (e.g. [3, 4]). By comparison,
software engineering is lagging far behind. Despite sig-
nificant advances in software performance and reliability
engineering [5, 6, 7, 8, 9, 10], the quality attributes of soft-
ware systems are typically analysed for point estimates of
stochastic system parameters such as component service
rates or failure probabilities. Even the techniques that
assess the sensitivity of quality attributes to parameter
changes (e.g. [11, 12, 13, 14, 15]) focus on the analysis of a
given design at a time instead of systematically designing
robustness into the system under development (SUD).

To address these limitations, we propose a tool-sup-
ported method for the efficient synthesis of parametric
continuous-time Markov chains (pCTMCs) that correspond
to robust SUD designs. Our RObust DEsign Synthesis
(RODES) method generates sets of pCTMCs that:

(i) are resilient to pre-specified tolerances in the SUD
parameters, i.e., to changes in the SUD’s operational
profile;

(ii) satisfy strict performance, reliability and other qual-
ity constraints;

(iii) are Pareto-optimal or nearly Pareto optimal with re-
spect to a set of quality optimisation criteria.

RODES comprises two steps. In the first step, the SUD
design space is modelled as a pCTMC with discrete and
continuous parameters corresponding to alternative sys-
tem architectures and to ranges of possible values for the
SUD parameters, respectively. In the second step, a multi-
objective optimisation technique is used to obtain a set of
low-sensitivity, Pareto-optimal or nearly Pareto-optimal
SUD designs by fixing the discrete parameters (thus se-
lecting specific architectures) and restricting the continu-
ous parameters to bounded intervals that reflect the pre-
specified tolerances. The designs that are slightly subop-
timal have the advantage of a lower sensitivity than the
optimal designs with similar quality attributes, achieving
a beneficial compromise between optimality and sensitiv-
ity. A sensitivity-aware Pareto dominance relation is in-
troduced in the paper to formally capture this trade-off.

Figure 1 shows the differences between a traditional
Pareto front, which corresponds to a fixed SUD opera-
tional profile, and a sensitivity-aware Pareto front gener-
ated by RODES, which corresponds to a SUD operational
profile that can change within pre-specified bounds. Ac-
cordingly, the designs from the RODES sensitivity-aware
Pareto front are bounded regions of quality-attribute val-
ues for the system. The size and shape of these regions
convey the sensitivity of the synthesised designs to pa-
rameter changes within the pre-specified tolerances. Small
quality-attribute regions correspond to particularly robust

Preprint submitted to Journal of Systems and Software May 21, 2018

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

quality attribute 1

q
u
a
li
ty

a
tt
ri
b
u
te

2

quality attribute 1

q
u
a
li
ty

a
tt
ri
b
u
te

2

d1

d2
d3

Pareto front

Pareto-optimal design

suboptimal design

sensitivity-awarePareto front

optimal design

slightly suboptimal,robust

d′1d′2

(a) Traditional Pareto front: design d1
is suboptimal because designs d2 and
d3 from the shaded area have better
(i.e., lower) quality attributes than d1

(b) Sensitivity-aware Pareto front: the
slightly suboptimal design d′1 belongs
to the front because it has a much
lower sensitivity than optimal design d′2

design included on the
sensitivity-awarePareto front

Figure 1: Traditional Pareto front (a) versus sensitivity-aware Pareto
front (b) for two quality attributes that require minimisation (e.g.,
response time and probability of failure).

designs that cope with variations in the system parame-
ters without exposing users to significant changes in qual-
ity attributes. These designs require reduced maintenance,
and can be implemented using high-variability components
that are cheaper to develop or obtain off-the-shelf than
low-variability components. Large quality-attribute re-
gions from a RODES Pareto front—while still the most
robust for the quality attribute trade-offs they correspond
to—are associated with designs that are sensitive to SUD
parameters variations. These designs may involve high
maintenance and/or development costs, so they should
only be used if justified by their other characteristics (e.g.
desirable quality attribute trade-offs).

To the best of our knowledge, RODES is the first solu-
tion that integrates multi-objective stochastic model syn-
thesis and sensitivity analysis into an end-to-end, tool-
supported design method. As we show in detail in Sec-
tion 7, the existing research addresses the challenges asso-
ciated with design synthesis (e.g. [16, 17]) and sensitivity
analysis (e.g. [11, 12, 13, 14, 15]) separately. The main
contributions of our paper are:

1. The extension of the notion of parameter tolerance
from other engineering disciplines for application to
software architecture.

2. The definitions of the parametric Markov chain syn-
thesis problem and of the sensitivity-aware Pareto
dominance relation for the synthesis of robust mod-
els for stochastic systems.

3. The RODES method for the generation of sensitivity-
aware Pareto fronts by integrating multi-objective
probabilistic model synthesis and precise pCTMC
parameter synthesis.

4. A GPU-accelerated tool that implements the RODES
method and is available preinstalled on an easy-to-
use VirtualBox instance from our project website
https://github.com/gerasimou/RODES/wiki.

5. A repository of case studies demonstrating the suc-
cessful application of RODES to a replicated file sys-

tem used by Google’s search engine, a cluster avail-
ability management system, and a producer-consumer
system.

These contributions significantly extend our conference
paper on robust model synthesis [18] and the prototype
probabilistic model synthesis tool [19] in several ways. First,
we provide a more detailed description of our solution, in-
cluding a running example and new experimental results.
Second, we greatly improve the scalability of RODES by
integrating the GPU-accelerated analysis of candidate de-
signs into our prototype tool [19]. Third, we extend the
experimental evaluation to demonstrate the impact of the
GPU acceleration. Finally, we present an additional case
study in which we apply RODES to a producer-consumer
system, and we use the systems and models from our ex-
periments to assemble a repository of case studies available
on our project website.

The remainder of the paper is organised as follows.
Section 2 introduces the RODES design-space modelling
language and the formalism to specify quality constraints
and optimisation criteria. Section 3 defines the sensitivity-
aware dominance relation and introduces the parametric
Markov chain synthesis problem. We then present our
method for synthesising robust designs in the form of a
sensitivity-aware Pareto set, and the GPU-accelerated tool
RODES implementing the method in Sections 4 and 5,
respectively. Finally, we evaluate our method within three
case studies in Section 6, discuss related work in Section 7,
and conclude the paper with a summary and future work
in Section 8.

2. Modelling and Specification Language for Prob-
abilistic Systems

This section formalises three key elements underpin-
ning the formulation of the robust design problem: 1) the
modelling of the design space of a SUD, 2) the specifi-
cation of quality attributes and requirements, and 3) the
sensitivity of a design.

2.1. Design space modelling

We use a parametric continuous-time Markov chain
(pCTMC) to define the design space of a SUD. To this end,
we extend the original pCTMC definition [20], where only
real-valued parameters determining the transition rates
of the Markov chain are considered, and assume that a
pCTMC also includes discrete parameters affecting its state
space. Our definition captures the need for both discrete
parameters encoding architectural structural information
(e.g. by selecting between alternative implementations of a
software component) and continuous parameters encoding
configurable aspects of the system (e.g. network latency
or throughput). As such, a candidate system design cor-
responds to a fixed discrete parameter valuation and to
continuous parameter values from a (small) region.

2

https://doi.org/10.1016/j.jss.2018.05.013
https://github.com/gerasimou/RODES/wiki

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Definition 1 (pCTMC). Let K be a finite set of real-
valued parameters such that the domain of each parameter
k∈K is a closed interval [k⊥, k>]⊂R, and D a finite set of
discrete parameters such that the domain of each parame-
ter d ∈ D is a set T d⊂Z. Let also P=×k∈K [k⊥, k>] and

Q=×d∈DT
d be the continuous and the discrete parameter

spaces induced by K and D, respectively. A pCTMC over
K and D is a tuple

C(P,Q) = (DS ,Dinit,DR, L), (1)

where, for any discrete parameter valuation q ∈ Q:

• DS(q) = S is a finite set of states, and Dinit(q) ∈ S is
the initial state;

• DR(q) : S × S → R[K] is a parametric rate matrix,
where R[K] denotes the set of polynomials over the reals
with variables in K;

• L(q) : S → 2AP is a labelling function mapping each
state s ∈ S to the set L(q)(s) ⊆ AP of atomic proposi-
tions that hold true in s.

A pCTMC C(P,Q) describes the uncountable set of
continuous-time Markov chains (CTMCs) {C(p, q) | p ∈
P∧q ∈ Q}, where each C(p, q) = (DS(q),Dinit(q), R(p, q),
L(q)) is the instantiated CTMC with transition matrix
R(p, q) obtained by replacing the real-valued parameters
in DR(q) with their valuation in p.

In our approach we operate with pCTMCs expressed
in a high-level modelling language extending the PRISM
language [21] which models a system as the parallel compo-
sition of a set of modules. The state of a module is encoded
by a set of finite-range local variables, and its state transi-
tions are defined by probabilistic guarded commands that
change these variables, and have the general form:

[action] guard → e1 : update1 + . . .+ en : updaten (2)

In this command, guard is a Boolean expression over all
model variables. If the guard evaluates to true, the arith-
metic expression ei, 1 ≤ i ≤ n, gives the rate with which
the updatei change of the module variables occurs. When
action is present, all modules comprising commands with
this action have to synchronise (i.e., to carry out one of
these commands simultaneously) and the resulting rate of
such synchronised commands is equal to the multiplication
of the individual command rates. Atomic propositions are
encoded with label expressions of the form:

label “id” = b (3)

where id is a string that identifies the atomic proposition
and b is a Boolean expression over the state variables.

We extend the PRISM language with the following con-
structs (adopted from [16]) for specifying the parameters
k ∈ K and d ∈ D from Definition 1:

evolve double k [min..max]
evolve int d [min..max]
evolve module ComponentName

(4)

where N>1 instances of the last construct (with the same
component name) define N alternative architectures for a
component, introducing the index (between 1 and N) of
the selected architecture as an implicit discrete parameter.

As per Definition 1, continuous parameters can only
appear in the transition rates (expressions e1, . . . , en above).
Explicit discrete variables (declared using evolve int) can
instead appear in any type-consistent expression.

The translation of models expressed in the extended
PRISM language into the corresponding pCTMC is fully
automatic and follows the probabilistic guarded command
semantics described above. The discrete state space Q re-
sults from all possible valuations of explicit discrete vari-
ables and implicit discrete variables (different implemen-
tations of a module). For a fixed valuation q ∈ Q, the
parametric PRISM model describes a fixed set of mod-
ules with a fixed set of finite-range variables, and thus the
state space DS(q) is given by the Cartesian product of the
value ranges for these variables. In contrast, q determines
also the parametric rate matrix DR(q) and atomic propo-
sitions L(q), as q can affect guards and updates of PRISM
commands, as well as label expressions.

Example 1 (Producer-consumer model). As a running
example, we consider a simple producer-consumer system
with a two-way buffering, illustrated in Figure 2. The
pCTMC PRISM model, extended with the evolvable con-
structs from Definition 4 is shown in Figure 3. The system
comprises a producer generating requests with rate p rate.
Each request is being transferred to a consumer either via
a slow buffer or via a fast buffer with probabilities 0.6 and
0.4, respectively (lines 14 and 15 in Figure 3). The fast
buffer transmits requests to the consumer faster than the
slow buffer, but it has smaller capacity and is less reliable,
as it loses packets with a 5% probability (line 20).

We consider two alternative designs of the producer-
consumer model that differ in the way that the two buffers
manage the pending requests. More specifically we consider

1. a no-redirection design in which once a request is
sent to either buffer, the packet is transmitted by that
buffer to the consumer (lines 9-22);

2. a redirection design that enables the slow buffer to
transmit requests to the fast buffer with a probability
proportional to its occupancy (lines 23-27). In par-
ticular, redirection is disabled when the slow buffer is
empty and has maximum rate when it is full and is
equal to s rate/10, where s rate is the request trans-
mission rate without redirection.

In addition to these two alternative designs, the model
has two continuous parameters, the packet transmission
rate for the slow buffer, r slow rate, and delta rate, i.e. the
transmission rate difference between fast and slow buffers.
Notably, the rate of packet loss by the fast buffer is pro-
portional to its transmission rate, meaning that the buffer
becomes less reliable as its rate increases.

3

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Figure 2: Two-way producer-consumer system.

We formally capture the above system model with its
continuous parameters and alternative designs by a pCTMC
CPC(P,Q), where P = [5, 30]× [0, 30] defines the domains
for the continuous parameters r slow rate, and delta rate,
respectively, and Q = {1, 2} defines the domain for the
discrete parameter corresponding to the two alternative de-
signs (i.e. modules).

Definition 2 (Candidate design). A candidate design of
the pCTMC C(P,Q) from (1) is a pCTMC

C(P ′, {q}) = (D′S ,D′init,D′R, L′) (5)

where P ′ =×k∈K [k′⊥, k′>] ⊆ P, q ∈ Q, D′S(q) = DS(q),
D′R(q) = DR(q), D′init(q) = Dinit(q) and L′(q) = L(q).
The tolerance of the candidate design with respect to the
real-valued parameter k ∈ K is defined as

γk =
k′> − k′⊥

2(k> − k⊥)
, (6)

in line with the fact that the design restricts the value do-
main of k to the interval

[
k − γk(k>−k⊥), k + γk(k>−k⊥)

]
,

k = k′⊥+k′>

2 .1 For convenience, we will use the shorthand
notation C(P ′, q) ≡ C(P ′, {q}) in the rest of the paper.

Example 2 (Candidate design). Consider the pCTMC
CPC(P,Q) from Example 1 and a single tolerance value
γ = 0.005 for both continuous parameters r slow rate and
delta rate. By (6), candidate designs have continuous pa-
rameter ranges of size 2γ(k> − k⊥) = 0.25 for r slow rate
and of size 0.3 for delta rate. Two examples of valid candi-
date designs for the second module (redirection), obtained
using our RODES synthesis method (see also results in
Figure 7), are pCTMCs d1 =CPC(P ′,2) and d2 =CPC(P ′′,2)
where P ′ = [15.02, 15.27]×[1.93, 2.23], P ′′ = [13.2, 13.45]×
[3.51, 3.81]. The pCTMCs d3 = CPC(P ′′′, 1) with P ′′′ =
[17.24, 17.49]× [2.78, 3.08] is instead a valid candidate de-
sign for the first module (no redirection).

1In other words, the tolerance of parameter k, γk, measures the
extent to which k can be perturbed from its reference (midpoint)
value.

1 ctmc

// buffer capacities
2 const int slow max = 31;
3 const int fast max = 21;

4 cons double p rate = 40; //request production rate
5 const double s rate = 30; //request transmission rate

// packet transmission rates
// trans. rate for the fast buffer is r slow rate+delta rate

6 evolve double r slow rate [5..30]; //slow buffer
7 evolve double delta rate [0..30]; //fast buffer

8 const double c rate = 40; //packet consumption rate

// no redirection
9 evolve module Buffer

// is request sent to fast/slow buffer?
10 fast : [0..1] init 0;
11 slow : [0..1] init 0;

// buffers
12 buffer s : [0..slow max] init 0;
13 buffer f : [0..fast max] init 0;

// has consumer received the packet?
13 consumer : [0..1] init 0;

//produce
14 [] (fast=0)→p rate*0.4 : (fast’=1);
15 [] (slow=0)→p rate*0.6 : (slow’=1);

//send
16 [] (slow=1) & (buffer s<slow max)→ s rate :

(slow’=0) & (buffer s’ = buffer s +1);
17 [] (fast=1) & (buffer f<fast max)→ s rate :

(fast’=0) & (buffer f’ = buffer f +1);

//receive
18 [] (consumer=0) & (buffer s > 0)→ r slow rate :

(consumer’=1) & (buffer s’ = buffer s - 1);
19 [] (consumer=0) & (buffer f > 0)→ (r slow rate+delta rate)*0.95 :

(consumer’=1) & (buffer f’ = buffer f - 1);
// fast buffer loses the packet

20 [lost] (consumer=0) & (buffer f > 0)→ (r slow rate+delta rate)*0.05 :
(buffer f’ = buffer f - 1);

//consume
21 [consume] (consumer=1)→ c rate : (consumer’=0);
22 endmodule

// redirection
23 evolve module Buffer

.

.

.
//send

24 [] (slow=1) & (buffer s<slow max)→ s rate *(1-buffer s/(10.0*slow max)) :
(slow’=0) & (buffer s’ = buffer s +1);

25 [] (slow=1) & (buffer s>0) & (buffer f<fast max)→
s rate *buffer s/(10.0*slow max) :

(slow’=0) & (buffer f’ = buffer f +1);
26 [] (fast=1) & (buffer f<fast max)→

s rate : (fast’=0) & (buffer f’ = buffer f +1);

.

.

.
27 endmodule

Figure 3: PRISM-RODES encoding of pCTMC model of a producer-
consumer system with two-way buffering and redirection. In the
second module only the commands that differ from the first module
are reported.

2.2. Quality attribute specification and requirements

We specify quality attributes over pCTMCs-defined de-
sign spaces using continuous stochastic logic (CSL) ex-
tended with reward operators [22]. Our focus is on timed
properties of pCTMCs expressed by the time-bounded frag-
ment of CSL with rewards comprising state formulae (Φ)
and path formulae (φ) with the syntax:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼r[φ] | R∼r[C≤t]
φ ::= X Φ | Φ U IΦ

, (7)

where a is an atomic proposition evaluated over states,
∼ ∈ {<,≤,≥, >} is a relational operator, r is a probability

4

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

(r ∈ [0, 1]) or reward (r ∈ R≥0) threshold2, t ∈ R≥0 is a
time bound, and I ⊆ R≥0 is a bounded time interval.
The ‘future’ operator, F , and ‘globally’ operator, G, are
derived from U in the standard way3. As briefly discussed
in Section 4.2, our approach can be extended to unbounded
CSL.

Traditionally, the CSL semantics is defined for CTMCs
using a satisfaction relation �. Intuitively, a state s �
P∼r[φ] iff the probability of the set of paths starting in
s and satisfying φ meets ∼ r. A path ω = s0t0s1t1 . . .
satisfies the formula Φ U I Ψ iff there exists a time t ∈ I
such that (ω@t � Ψ ∧ ∀t′ ∈ [0, t).ω@t′ � Φ), where ω@t
denotes the state in ω at time t. A state s � R∼r[C≤t] iff
the expected rewards over the path starting in s and cu-
mulated within t time units satisfies ∼ r, where the rates
with which reward is acquired in each state and the re-
ward acquired at each transition are defined by a reward
structure.

In line with our previous work [23], we introduce a sat-
isfaction function Λφ : P × Q→ [0, 1] that quantifies how
the satisfaction probability associated with a path CSL
formula φ relates to the parameters of a pCTMC C(P,Q),
where, for any (p, q) ∈ P × Q, Λφ(p, q) is the probability
that φ is satisfied by the set of paths from the initial state
Dinit(q) of the instantiated CTMC C(p, q). The satisfac-
tion function for reward CSL formulae is defined analo-
gously.

Quality requirements. We assume that the quality re-
quirements of a SUD with design space given by a pCTMC
C(P,Q) are defined in terms of:

1) A finite set of objective functions {fi}i∈I corresponding
to quality attributes of the system and defined in terms
of a set of CSL path formulas {φi}i∈I , such that for any
i ∈ I and (p, q) ∈ P ×Q,

fi(C(p, q)) = Λφi
(p, q); (8)

2) A finite set of Boolean constraints {cj}j∈J correspond-
ing to the set of CSL path formulas {ψj}j∈J and thresh-
olds {∼j rj}j∈J , such that for any j ∈ J and (p, q) ∈
P ×Q,

cj(C(p, q))⇔ Λψj (p, q)∼j rj . (9)

Note that quality requirements (8) and (9) are defined
over (non-parametric) CTMCs, but, in order to compare
candidate designs with respect to some objective function,
we need to interpret quality requirements over pCTMCs.
Indeed, due to the continuous parameter space, a single
candidate design induces an infinite number of objective
function values, from which the designer must choose a
representative value. For a candidate design C(P ′, q) and

2For simplicity, we use ∼ r to denote the threshold for both prob-
ability and reward quality attributes.

3P∼r[F IΦ] = P∼r[true UIΦ] and P∼r[GIΦ] = P∼1−r[F I¬Φ]

Table 1: Alternative definitions for objective functions {fi}i∈I over
candidate designs.

Type Notation Definition

lower bound f⊥i (C(P ′, q)) infp∈P′ Λφi(p, q)

upper bound f>i (C(P ′, q)) supp∈P′ Λφi(p, q)

mid-range f•i (C(P ′, q)) (f⊥i (C(P ′, q)) + f>i (C(P ′, q)))/2

objective fi, this is typically identified as one of the min-
imum, maximum and mid-range value of fi(C(p, q)) over
all p ∈ P ′, as illustrated in Table 1.

On the other hand, constraints have a unique inter-
pretation because they must be met for any parameter
value of a candidate design. Formally, for candidate de-
sign C(P ′, q) and constraint cj , we define

cj(C(P ′, q))⇔ ∀p ∈ P ′. cj(C(p, q)).

Without loss of generality, we will assume that all ob-
jective functions {fi}i∈I in Sections 3 and 4 should be
minimised and that all thresholds {∼j rj}j∈J are upper
bounds of the form of ≤ rj .

Example 3 (Quality requirements). Below we define qual-
ity requirements for the producer-consumer model of Ex-
ample 1. We consider two maximisation objectives and
one constraint:

f1: R{“consume”}=? [C<=25], a cumulative transition
reward describing the number of requests transferred
to the consumer within 25 time units (line 21 in Fig-
ure 3);

f2: P=? [G[20, 25]((buffer s ≥ slow max/2)&(buffer f ≥
fast max/2))], which calculates the probability that
the utilisation of both buffers is at least 50% of their
respective capacities;

c1: R{“lost”}≤10 [C<=25], a cumulative transition re-
ward that limits the number of packets lost within 25
time units (line 20 in Figure 3).

With these quality requirements, we seek to maximise the
system throughput (objective f1), expressed as the num-
ber of requests transferred to the consumer, and also to
maximize the probability that both buffers are sufficiently
utilised after an initial period (objective f2). Finally, con-
straint c1 imposes a reliability requirement by restricting
the number of packets lost to be less than 10 within 25
time units of operation.

2.3. Sensitivity of candidate designs

Quantifying the sensitivity of candidate designs is a crucial
step in our robust synthesis method. Intuitively, the sensi-
tivity of a design C(P ′, q) captures how the objective func-
tions {fi}i∈I change in response to variations in the con-
tinuous parameters k ∈ K. The variation of each objective
fi is measured by the length of the interval [f⊥i (C(P ′, q)),

5

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

f>i (C(P ′, q)], describing the range of admissible values for
fi and C(P ′, q) (cf. Table 1). The degree of variation
for multiple objectives is given by the product of inter-
val lengths, i.e., the volume of the corresponding quality-
attribute region. The sensitivity takes also into account
the size of the underlying parameter region, in order to
account for designs with different tolerance values. For in-
stance, a design with a large quality-attribute volume and
high tolerance (large parameter region volume) must be
considered more robust (less sensitive) than another de-
sign with comparable quality-attribute volume but lower
tolerance.

Definition 3 (Sensitivity). For a set of objective func-
tions {fi}i∈I and tolerances {γk}k∈K , the sensitivity of
a feasible design C(P ′, q) is defined as the volume of its
quality-attribute region over the volume of P ′:

sens (C(P ′, q))=

∏
i∈I
(
f>i (C(P ′, q))−f⊥i (C(P ′, q))

)∏
k∈K 2γk(k> − k⊥)

. (10)

Example 4 (Sensitivity). Consider the candidate designs
d1, d2, d3 with tolerance γ = 0.005 from Example 2, and the
objective functions f1 (number of “consumed” packets) and
f2 (probability of buffers being sufficiently used) introduced
in Example 3. Assume the following ranges for f1 and f2:

[f⊥1 (d1), f>1 (d1)] = [416.94, 439.65]

[f⊥2 (d1), f>2 (d1)] = [0.8977, 0.9809]

[f⊥1 (d2), f>1 (d2)] = [407.11, 423.10]

[f⊥2 (d2), f>2 (d2)] = [0.891, 0.9621]

[f⊥1 (d3), f>1 (d3)] = [384.81, 413.09]

[f⊥2 (d3), f>2 (d3)] = [0.7501, 0.8225].

Recall that the three designs have the same tolerance, thus
yielding the same parameter region volume∏

k∈K

2γk(k> − k⊥) = 0.25 · 0.3 = 0.075

The resulting sensitivities are:

sens(d1)=(439.65−416.94)(0.9809−0.8977)/0.075=25.19

sens(d2)=(423.10−407.11)(0.9621−0.891)/0.075=15.16

sens(d3)=(413.09−384.81)(0.8225−0.7501)/0.075=27.3

indicating that d2 is the most robust design (with the small-
est sensitivity value). The three designs can be visualised
in the quality-attribute space (i.e. the objective space), as
shown in Figure 4, providing a direct and intuitive way to
assess robustness.

3. Sensitivity-Aware Pareto Dominance Relation

In this section, we introduce a novel dominance relation
that adequately captures tradeoffs between the sensitivity

Figure 4: Candidate designs of Example 4 represented in the quality-
attribute space and coloured by sensitivity. Designs d1 and d2 were
synthesised using RODES (full results are reported in Figure 7 on a
different scale).

and optimality of candidate designs with respect to given
quality requirements, and that enables to formulate the
robust design problem as an optimisation problem.

Consider a system with design space C(P,Q), quality
requirements given by objective functions {fi}i∈I and con-
straints {cj}j∈J , and designer-specified tolerances {γk}k∈K
for the continuous parameters of the system. Also, let F
be the set of feasible designs for the system (i.e., of candi-
date designs that meet the tolerances {γk}k∈K and satisfy
the constraints {cj}j∈J):

F =
{
C(P ′, q)

∣∣ P ′ = Xk∈K
[
k′⊥, k′>

]
⊂ P ∧ q ∈ Q ∧

∀k ∈ K.k′>−k′⊥=2γk(k>−k⊥)∧∀j ∈ J.cj(C(P ′, q))
}
.

(11)

Definition 4. A sensitivity-aware Pareto dominance rela-
tion over a feasible design set F and a set of minimisation
objective functions {fi}i∈I is a relation ≺⊂ F × F such
that for any feasible designs d, d′ ∈ F

d ≺ d′ ⇐⇒(
∀i∈I.fi(d)≤fi(d′) ∧ ∃i∈I.(1+εi)fi(d)<fi(d

′)
)
∨(

∀i∈I.fi(d)≤fi(d′) ∧ ∃i∈I.fi(d) < fi(d
′) ∧

sens(d)≤sens(d′)
)
.
(12)

where the objective functions {fi}i∈I are calculated using
one of the alternative definitions from Table 1 and εi ≥ 0
are sensitivity-awareness parameters.

The parametric Markov chain synthesis problem con-
sists of finding the Pareto-optimal set PS of candidate de-
signs (5) (i.e. pCTMCs) with tolerances {γk}k∈K that sat-
isfy the constraints {cj}j∈J and are non-dominated with
respect to the objective functions {fi}i∈I and the sensitivity-
aware dominance relation ‘≺’:

PS=
{
C(P ′, q)∈F

∣∣ @C(P ′′, q′)∈F . C(P ′′, q′)≺C(P ′, q)} ,
(13)

6

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Before discussing the rationale for this definition, we show
that the sensitivity-aware Pareto dominance relation is a
strict order like the classical Pareto dominance.

Theorem 1. The sensitivity-aware Pareto dominance re-
lation is a strict order.

Proof. See Appendix A

The classical Pareto dominance definition can be ob-
tained by setting εi=0 for all i∈I in (12). When εi>0 for
some i∈ I, dominance with respect to quality attribute i
holds in our generalised definition in two scenarios:

1) when the quality attribute has a much lower value for
the dominating design, i.e. (1+εi)fi(d)<fi(d

′);

2) when in addition to a (slightly) lower quality attribute
value, i.e. fi(d) < fi(d

′), the sensitivity of the domi-
nating design is no worse than that of the dominated
design, i.e. sens(d) ≤ sens(d′).

These scenarios are better aligned with the needs of de-
signers than those obtained by using sensitivity as an addi-
tional optimisation criterion, which induces Pareto fronts
comprising many designs with low sensitivity but unsuit-
ably poor quality attributes. Similarly, each objective
function definition from Table 1 captures specific needs
of real-world systems. Thus, using the “upper bound”
definition (f>i) in (12) supports the synthesis of conser-
vative designs by comparing competing designs based on
the worst-case values of their quality attributes. This is
suitable when the worst-case performance, reliability, etc.
must be specified for a system, e.g. in its service-level
agreement. In contrast, the “lower bound” definition from
Table 1 (f⊥i) can be used when design selection must be
based on the best expected quality values of a system. Fi-
nally, the “mid-range” definition (f•i) may be useful—in
conjunction with the actual sensitivity (10)—to compare
and select designs based on their reference midpoint qual-
ity values.

Importantly, for εi > 0 our generalised definition in-
duces Pareto fronts comprising designs with non-optimal
(in the classical sense) objective function values, but with
low sensitivity. We call such designs sub-optimal robust.
Thus, εi can be finely tuned to sacrifice objective func-
tion optimality (slightly) for better robustness. Below we
formally characterize the set of robust sub-optimal designs
and provide an example of the sensitivity-aware dominance
relation.

Definition 5 (Sub-optimal robust design). Let PS be a
Pareto-optimal set defined as per (13). A design d′ ∈ PS
is called robust sub-optimal if ∃d ∈ PS s.t.:(

∀i∈I.fi(d)≤fi(d′) ∧ ∃i∈I.fi(d)<fi(d
′)
)

Example 5 (Sensitivity-aware Pareto dominance relation).
Consider the quality-attribute regions of Figure 4 induced
by designs d1, d2, d3 of the producer-consumer model intro-
duced in Examples 1-4, and the objective functions defined

as fi = f⊥i for i ∈ 1, 2. Visually, f⊥i corresponds to the
lower-left corners of the regions in Figure 4. Since we
maximize both objectives, for clarity, we report below the
dominance relation for maximisation:

d � d′ ⇐⇒(
∀i∈I.fi(d)≥fi(d′) ∧ ∃i∈I.fi(d)>(1+εi)fi(d

′)
)
∨(

∀i∈I.fi(d)≥fi(d′) ∧ ∃i∈I.fi(d) > fi(d
′)∧

sens(d)≤sens(d′)
)
.

The designs d1, d2, d3 have identical parameter tolerances
and thus, same parameter space volume V . We have that
d1 � d2 � d3 when ε1 = ε2 = 0 (classical dominance)
because for i = 1, 2, f⊥i (d1) > f⊥i (d2), f⊥i (d3). Further,
we have that d1 6≺ d2 when ε1 = ε2 = 0.05, implying that
d2 is robust sub-optimal, i.e., is retained in the sensitivity-
aware Pareto-optimal set, because f⊥1 (d1) 6> 1.05 · f>1 (d2),
f⊥2 (d1) 6> 1.05 · f⊥2 (d2), and sens(d1) 6≤ sens(d2). De-
sign d3 is not included in the front (d1, d2 � d3) because
f⊥i (d1), f⊥i (d2) > 1.05 · f⊥i (d3) for i = 1, 2.

4. Synthesis of Sensitivity-Aware Pareto Sets

In this section, we describe our method for comput-
ing sensitivity-aware Pareto sets. The method employs
genetic multi-objective optimisation algorithms for gener-
ating candidate designs and a precise parameter analysis
of pCTMCs for evaluating the candidate designs. We start
with a method overview, then we describe the two compo-
nents the method builds on.

4.1. Method Overview

Computing the Pareto-optimal design set (13) using
exhaustive analysis is very expensive and requires a sig-
nificant amount of computational resources as the design
space C(P,Q) is extremely large due to its real-valued pa-
rameters. Also, every candidate design C(P ′, q) consists of
an infinite set of CTMCs that cannot all be analysed to
establish its quality and sensitivity. To address these chal-
lenges, our pCTMC synthesis method combines search-
based software engineering (SBSE) techniques [24] with
techniques for effective pCTMCs analysis [23, 25], produc-
ing a close approximation of the Pareto-optimal design set.

Algorithm 1 presents the high-level steps of our pCTMC
synthesis method. The approximate Pareto-optimal de-
sign set PS returned by this algorithm starts empty (line 2)
and is assembled iteratively by the while loop in lines 3–16
until a termination criterion Terminate(C(P,Q), PS) is
satisfied. Each iteration of this while loop uses an SBSE
metaheuristic to get a new set of candidate designs (line 4)
and then updates the approximate Pareto-optimal design
set PS in the for loop from lines 5–15. This update in-
volves analysing each candidate design d = C(P ′, q) to
establish its associated objective function and constraint
values in line 6, where we use the shorthand notation
f>i,d ≡ f>i (C(P ′, q)), f⊥i,d ≡ f⊥i (C(P ′, q)) and cj,d ≡ ∀p ∈
P ′.cj(C(p, q)) for all i ∈ I, j ∈ J . If the design satisfies all

7

https://doi.org/10.1016/j.jss.2018.05.013

Example 6 (Candidate design encoding). This is the author’s version of an article that has
been published in the journal of Systems and Software. Changes
were made to this version by the publisher prior to publication.

The final version of record is available at
https://doi.org/10.1016/j.jss.2018.05.013

Algorithm 1 Parametric Markov chain synthesis

1: function Synthesis(C(P,Q), {fi}i∈I , {cj}j∈J , {γk}k∈K)
2: PS ← ∅
3: while ¬Terminate(C(P,Q), PS) do
4: CD←CandidateDesigns(C(P,Q), {γk}k∈K ,PS)
5: for all d ∈ CD do
6: ({f>i,d}i∈I , {f⊥i,d}i∈I , {cj,d}j∈J)←

AnalyseDesign(d, {fi}i∈I , {cj}j∈J)
7: if

∧
j∈J cj,d then

8: dominated = false
9: for all d′ ∈ PS do

10: if d′ ≺ d then dominated = true; break
11: if d ≺ d′ then PS = PS \ {d′}
12: end for
13: if ¬dominated then PS = PS ∪ {d}
14: end if
15: end for
16: end while
17: return PS
18: end function

constraints (line 7), the for loop in lines 9-12 finds out if
the new design d is dominated by, or dominates, any de-
signs already in PS. Existing designs dominated by d are
removed from PS (line 11), and d is added to the Pareto-
optimal design set if it is not dominated by any existing
designs (line 13).

The elements below must be concretised in the synthe-
sis algorithm, and are described in the next two sections:

1) The AnalyseDesign function for establishing the qual-
ity attributes and constraint compliance of a candidate
design;

2) The CandidateDesigns SBSE metaheuristic and the
associated Terminate criterion.

The time complexity of Algorithm 1 is linear with re-
spect to the overall number of optimisation objectives and
constraints and the time required to analyse one quality
attribute of a candidate design. The complexity is further
affected by the SBSE metaheuristic setting, namely by the
number of generations k (i.e. the number of iterations of
the while loop) and the size of the candidate design pop-
ulation N=|CD |. Increasing the total number of design
evaluations (i.e. k · N) typically improves the Pareto op-
timality of the generated design set, but also slows down
the synthesis process. We provide a detailed complexity
analysis of the synthesis process in Appendix B.

4.2. Computing Safe Property Bounds for pCTMCs

To establish the quality attributes and sensitivity of
candidate designs, AnalyseDesign uses precise parame-
ter synthesis techniques [23] to compute safe enclosures of
the satisfaction probability of CSL formulae over pCTMCs.
Given a pCTMC C(P ′, q) and a CSL path formula φ, these
techniques provide a safe under-approximation Λqmin and a
safe over-approximation Λqmax of the minimal and maximal

probability that C(P ′, q) satisfies φ:

Λqmin ≤ inf
p∈P′

Λφ(p, q) and Λqmax ≥ sup
p∈P′

Λφ(p, q).

This supports the safe approximation of the bounds {f⊥i ,
f>i }i∈I of the objective functions and of the constraints
{cj}j∈J . As shown in [23], the over-approximation quality
improves as the size of P ′ decreases. Therefore, the pre-
cision of the approximation can be effectively controlled
via parameter space decomposition, where P ′ is decom-
posed into subspaces P ′1, P ′2 . . .P ′n and Λqmin (Λqmax) is
taken as the minimum (maximum) of the bounds com-
puted for these n subspaces. Although this refinement
step improves the precision of bounds, it also increases the
complexity of AnalyseDesign n-fold [23].

The satisfaction function Λφ is typically non-monotonic
(and, for nested properties, non-continuous), so safe bounds
cannot be obtained by simply evaluating Λφ at the ex-
trema of parameter region P ′. Accordingly, our tech-
nique builds on a parametric backward transient analysis
that computes safe bounds for the parametric transient
probabilities in the discrete-time process derived from the
pCTMC. This discretisation is obtained through standard
uniformisation, and through using the Fox and Glynn algo-
rithm [22] to derive the required number of discrete steps
for a given time bound. Once the parametric discrete-time
process is obtained, the computation of the bounds re-
duces to a local and stepwise minimisation/maximisation
of state probabilities in a time non-homogenous Markov
process. Presenting the technique in detail as well as the
analysis of the approximation error is outside the scope of
our paper, but the interested reader can find a complete
description in [23].

Our approach can be easily extended to also support
time-unbounded properties by using the method of [26]
for parameter synthesis of discrete-time Markov models
and properties expressed by time-unbounded formulae of
probabilistic computation tree logic.

4.3. Metaheuristic for Parametric CTMC Synthesis
To ensure that CandidateDesigns selects suitable

candidate designs, Algorithm 1 is implemented as a mul-
tiobjective optimisation genetic algorithm (MOGA) such
as NSGA-II [27] or MOCell [28]. MOGAs are genetic
algorithms specifically tailored for the synthesis of close
Pareto-optimal set approximations that are spread uni-
formly across the search space. As with any genetic al-
gorithm [29], possible solutions—candidate designs in our
case—are encoded as tuples of genes, i.e. values for the
problem variables. In particular, any candidate design
C(P ′, q) that satisfies a fixed set of tolerances {γk}k∈K is
uniquely encoded by the gene tuple (p, q), where p ∈ P is
the centre point of the continuous parameter region P ′.
The structure of the gene tuple (p, q) for any pCTMC
C(P,Q) is automatically extracted through parsing the
evolvable constructs (4). This feature enables to conve-
niently encode the pCTMC parameters into a representa-
tion suitable for the MOGAs.

8

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Consider the candidate designs d1, d2, d3 with tolerance
value γ = 0.005 from Example 2. The gene tuple (p, q) of
a candidate design C(P ′, q) has the structure (r slow rate,
delta rate, module idx), where module idx ∈ {1, 2} is the
index of the Buffer module used by the candidate design.
Thus, the designs d1, d2, d3 have gene tuples given by (15.145, 2.08, 2),
(13.325, 3.66, 2) and (17.365, 2.93, 1), respectively.

The first execution of CandidateDesigns from Al-
gorithm 1 returns a randomly generated population (i.e.
set) of feasible designs (11). This population is then itera-
tively evolved by subsequent CandidateDesigns execu-
tions into populations of “fitter” designs through MOGA
selection, crossover and mutation. Selection chooses the
population for the next iteration and a mating pool of
designs for the current iteration by using the objective
functions {fi}i∈I , the sensitivity-aware dominance rela-
tion (12) and the distance in the parameter space P be-
tween designs to evaluate each design. Crossover randomly
selects two designs from the mating pool, and generates a
new design by combining their genes, and mutation yields
a new design by randomly modifying some of the genes of
a design from the pool.

The evolution of the design population terminates (i.e.
the predicate Terminate(C(P,Q), PS) returns true) af-
ter a fixed number of design evaluations or when a prede-
termined number of successive iterations generate popula-
tions with no significantly fitter designs.

The implementation of the selection, crossover and mu-
tation operations is specific to each MOGA. For instance,
[27] presents these features for the NSGA-II MOGA used
in our experimental evaluation from Section 6.

5. RODES: A Robust-Design Synthesis Tool

Our GPU-accelerated RODES tool synthesises sensi-
tivity-aware Pareto sets by implementing the process de-
scribed in Algorithm 1. In this section, we first present
the architecture of RODES, and then describe how we
achieved significant performance and scalability improve-
ments through the use of a two-level parallelisation for the
synthesis process.

5.1. RODES Architecture

As shown in Figure 5, the operation of RODES is man-
aged by a Robust-design synthesis engine. First, a Model
parser (built using the Antlr parser generator, www.antlr.
org) preprocesses the design-space pCTMC model. Next,
a Sensitivity-aware synthesiser uses the jMetal Java frame-
work for multi-objective optimisation with metaheuristics
(jmetal.github.io/jMetal) to evolve an initially ran-
dom population of candidate designs, generating a close
approximation of the sensitivity-aware Pareto front. This
involves using a Candidate design analyser, which invokes
the probabilistic model checker PRISM-PSY [25] to ob-
tain the ranges of values for the relevant quality attributes
of candidate designs through precise parameter synthesis.

The Pareto front and corresponding Pareto-optimal set of
designs are then plotted using MATLAB/Octave scripts,
as shown in Figure 7.

A key feature of RODES is its modular architecture.
The Sensitivity-aware synthesiser supports several meta-
heuristics algorithms, including variants of genetic algo-
rithms and swarm optimisers. Furthermore, the sensitivity-
aware Pareto dominance relation can be adapted to match
better the needs of the system under development (e.g.,
by comparing designs based on the worst, best or average
quality attribute values). Finally, different solvers could
be used for the probabilistic model checker component,
including the parameter synthesis solvers for discrete-time
Markov chains and time unbounded properties [26] imple-
mented in the tools PROPhESY [30] and STORM [31].

The open-source code of RODES is available on our
project website https://github.com/gerasimou/RODES.

5.2. Two-Level Parallelisation

Synthesising sensitivity-aware Pareto sets is a compu-
tationally expensive process. To mitigate the performance
issues that could arise due to the increased total number
of evaluations (k ·N) or the complexity of evaluating can-
didate designs (t), we employ a two-level parallelisation.

At the first level, we exploit the fact that the evalua-
tions of particular candidates within a single population
are independent and thus they can run in parallel (line
6 in Algorithm 1). A synchronisation is required only
after all candidates are evaluated to update the approx-
imate Pareto-optimal set PS and to generate new can-
didates. This granularity of parallelism allows us to effi-
ciently utilise both multi-core and multi-processor archi-
tectures. In particular, we can span in parallel a number of
tasks that is equal to the population size N and thus signif-
icantly alleviate the complexity corresponding to the total
number of design evaluations per MOGA generation. We
can further increase the parallelisation at this level given
that the evaluation of quality attributes for each design
is independent. Thus, we can span up to N · (|I| + |J |)
tasks to evaluate these attributes in parallel and reduce
the computation time. The current RODES implementa-
tion supports parallelisation at the population level but
not at the level of quality attributes, which we plan to add
in future tool releases.

The second level of parallelisation aims at accelerating
the evaluation of a single candidate over a single quality
attribute. The key factor affecting the time t required to
analyse a quality attribute of a candidate design is the
size of the candidate, namely, the number of non-zero el-
ements M in the rate matrix of the underlying pCTMC.
This number is proportional to the number of states in
the pCTMC, and reflects the complexity of the candidate
designs. To ensure that RODES supports robust design
synthesis for complex systems comprising up to tens thou-
sands of states, our second-level parallelisation improves
scalability with respect to the number of states. In par-

9

https://doi.org/10.1016/j.jss.2018.05.013
www.antlr.org
www.antlr.org
jmetal.github.io/jMetal
https://github.com/gerasimou/RODES

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Robust design
synthesis engine

CSL properties
(objectives, constraints)

Metaheuristic algorithm
configuration (e.g.,
population size, iterations)

Sensitivity-aware Pareto
configuration (e.g., tolerance,
dominance relation)

Parametric CTMC model
with evolvable constructs RODES

Pareto-optimal
design set

Sensitivity-aware
Pareto-front

pCTMC
Formula Φi

QoS
attribute attri

Sensitivity-aware
synthesiser QoS attributes

attr1,...,attrn

Candidate
design

Parse pCTMC model and extract
design space and internal pCTMC

Evolve population and find
sensitivity-aware Pareto front

Model
parser

Probabilistic
model checker

Candidate
design analyser

Model check pCTMC
against formula ΦiEstablish quality attributes

of candidate design

RODES
users

Figure 5: High-level RODES architecture.

ticular, we build on our previous work [25] to integrate a
GPU acceleration of the pCTMC analysis into RODES.

This parallelisation is much more involved, since the
computation for individual states is not independent. As
such, the pCTMC analysis is formulated in terms of matrix-
vector operations, making it suitable for effective data-
parallel processing. Accordingly, RODES implements a
state space parallelisation, where a single row of the para-
metric rate matrix (corresponding to the processing of a
single state) is mapped to a single computational element.
As the underlying pCTMCs typically have a balanced dis-
tribution of the state successors, this mapping yields a
balanced distribution of non-zero elements in the rows of
the matrix. The outcome is a good load balancing within
the computation elements, leading to significant acceler-
ation. In contrast to the parallelisation proposed in [25],
RODES is designed to leverage the computational power of
modern GPUs, which provide hundreds of computational
elements and can schedule thousands of active threads in
a different way. In particular, RODES can evaluate on a
single GPU several candidate designs (that can differ both
in their discrete and in their continuous parameters) in
parallel, provided that the underlying pCTMCs can fit in
the GPU memory. This enables an efficient and flexible
utilisation of the available computation power for complex
robust design synthesis problems (see performance evalu-
ation results in Section 6.4).

6. Evaluation

We evaluate the effectiveness of RODES using three
systems from different application domains. Also, we as-
sess the performance and scalability of RODES including
the impact of the two-level parallelisation. We conclude
our evaluation with a discussion of threats to validity.

6.1. Research Questions

The aim of our experimental evaluation was to answer
the following research questions.

RQ1 (Decision Support): Can RODES support de-
cision making by identifying effective tradeoffs be-
tween the QoS optimality and the sensitivity of al-
ternative designs? To support decision making, RODES
must provide useful insights into the robustness of alterna-
tive system designs. Therefore, we assessed the optimality-
sensitivity tradeoffs suggested by RODES for the software
systems used in our evaluation.

RQ2 (Performance): Does the two-level paralelli-
sation improve the efficiency of RODES? Since the
synthesis of robust models is a computationally expensive
process, we examined the change in performance thanks
to the two-level parallelisation architecture described in
Section 5.2.

RQ3 (Metaheuristic Effectiveness): How does our
RODES approach perform compared to random
search? Following the standard practice in search-based
software engineering [32], we assessed if the stochastic mod-
els synthesised by RODES “comfortably outperform” those
synthesised by a random search approach.

6.2. Analysed Software Systems

We performed a wide range of experiments to evalu-
ate our RODES approach and tool using three software
systems from different application domains:

• a producer-consumer (PC) software system described
in Examples 1-5;

• a replicated file system used by Google’s search en-
gine [33];

• a cluster availability management system [34].

We have already presented the PC system in Exam-
ples 1-5. In the following paragraphs, we introduce the
other systems, provide a description of their stochastic
models and present the objectives and constraints used

10

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

to synthesise robust Pareto optimal designs. Further in-
formation about these systems are available on our project
website at https://github.com/gerasimou/RODES/wiki.

Google File System (GFS). GFS partitions files into
chunks of equal size, and stores copies of each chunk on
multiple chunk servers. A master server monitors the loca-
tions of these copies and the chunk servers, replicating the
chunks as needed. During normal operation, GFS stores
CMAX copies of each chunk. However, as servers fail and
are repaired, the number c of copies for a chunk may vary
from 0 to CMAX.

Previous work modelled GFS as a CTMC with fixed
parameters and focused on the analysis of its ability to re-
cover from disturbances (e.g. c<CMAX) or disasters (e.g.
master server down) [33]. In our work, we adapt the
CTMC of the lifecycle of a GFS chunk from [33] by con-
sidering several continuous and discrete parameters that a
designer of the system has to decide. Figure 6 shows the re-
sulting model, encoded in the PRISM modelling language
extended with the evolve constructs from (4). As in [33],
we model separately the software and hardware failures
and repairs, for both the master server (lines 22–25) and
the chunk servers (lines 26–31), and assume that loss of
chunk copies due to chunk server failures leads to further
chunk replications, which is an order of magnitude slower
if c = 0 and a backup of the chunk must be used (line 32).

To evaluate RODES, we assume that GFS designers
must select the hardware failure and repair rates cHardFail
and cHardRepair of the chunk servers, and the maximum
number of chunks NC stored on a chunk server within the
ranges indicated in Figure 6. These parameters reflect
the fact that designers can choose from a range of physi-
cal servers, can select different levels of service offered by
a hardware repair workshop, and can decide a maximum
workload for chunk servers. We consider an initial system
state modelling a severe hardware disaster with all servers
down due to hardware failures and all chunk copies lost,
and we formulate a pCTMC synthesis problem for quality
requirements given by two maximising objective functions
and one constraint:

f1: P=? [¬SL1 U [10,60] SL1], where SL1 = M up ∧ c > 0 holds
in states where service level 1 (master up and at least
one chunk copy available) is provided;

f2: R{“active”}=? [C<=60], where a reward of 1 is as-
signed to the states with a number of running chunk
servers of at least 0.5M (i.e., half of the total number
of chunk servers);

c1: R{“replicates”}≤5 [C<=60], where a transition reward
of 1 is assigned to each chunk replication transition.

Objective f1 maximises the probability that the system
recovers service level 1 in the time interval [10, 60] hours.
Objective f2 maximises the expected time the system stays
in (optimal) states with at least 0.5M chunk servers up
in the first 60 hours of operation. Finally, constraint c1
restricts the number of expected chunk replications over

1 ctmc

// Failure rates
2 const double mSoftFail = 0.000475; // master software
3 const double mHardFail = 0.000025; // master hardware
6 const double cSoftFail = 0.475; // chunk server software
7 evolve double cHardFail [0.25..4.0]; // chunk server hardware

// Repair rates
4 const double mSoftRepair = 12; // master software
5 const double mHardRepair = 6; // master hardware
8 const double cSoftRepair = 12; // chunk server software
9 evolve double cHardRepair [0.5..4.0]; // chunk server hardware

10 const int N=100000; // total number of GFS chunks
11 const int M=20; // number of chunk servers
12 evolve int NC [5000..20000]; // max chunks per chunk server
13 const int CMAX=3; // optimal number of chunk copies

14 module GFS Chunk
15 M up : bool init false; // master is up
16 M sdown : bool init false; // master is down with SW problem
17 M hdown : bool init true; // master is down with HW problem
18 Cup : [0..M] init 0; // number of chunk servers up
19 Csdown : [0..M] init 0; // number of chunk servers down (SW problem)
20 Chdown : [0..M] init 20; // number of chunk servers down (HW problem)
21 c : [0..CMAX] init 0; // number of chunk copies available

// Master server failure and repair
22 [] M up→mSoftFail : (M up’=false)&(M sdown’=true);
23 [] M up→mHardFail : (M up’=false)&(M hdown’=true);
24 [] M sdown→mSoftRepair : (M up’=true)&(M sdown’=false);
25 [] M hdown→mHardRepair : (M up’=true)&(M hdown’=false);

// Chunk servers failure and repair
26 [] Cup>0 & c>0 & Csdown<M→ (c/Cup)*cSoftFail :

(Cup’=Cup-1)&(Csdown’=Csdown+1)&(c’=c-1);
27 [] Cup>0 & Cup>c & Csdown<M→ (1-(c/Cup))*cSoftFail :

(Cup’=Cup-1)&(Csdown’=Csdown+1);
28 [] Cup>0 & c>0 & Chdown<M→ (c/Cup)*cHardFail :

(Cup’=Cup-1)&(Chdown’=Chdown+1)&(c’=c-1);
29 [] Cup>0 & Cup>c & Chdown<M→ (1-(c/Cup))*cHardFail :

(Cup’=Cup-1)&(Chdown’=Chdown+1);
30 [] Cup<M & Csdown>0→Csdown*cSoftRepair :

(Csdown’=Csdown-1)&(Cup’=Cup+1);
31 [] Cup<M & Chdown>0→ cHardRepair :

(Chdown’=Chdown-1)&(Cup’=Cup+1);

32 [] M up & c<CMAX & Cup>c & Cup*NC>=(c+1)*N→
((c>0)?20:2):(c’=c+1);

33 endmodule

Figure 6: pCTMC model of the Google File System

60 hours of operations.

Workstation Cluster (WC). We extend the CTMC of
a cluster availability management system from [34]. This
CTMC models a system comprising two sub-clusters, each
with N workstations and a switch that connects the work-
stations to a central backbone. For each component, we
consider failure, inspection and repair rates (where re-
pairs are initiated only after an inspection detects failures),
and we assume that designers must decide these rates
for workstations—i.e., the real-valued parameters wsFail,
wsCheck and wsRepair for our pCTMC, respectively. Ad-
ditionally, we assume that designers must select the sub-
cluster size N , and must choose between an expensive re-
pair implementation (i.e., pCTMC module) with a 100%
success probability and a cheaper repair module with 50%
success probability—i.e., two discrete parameters for the
pCTMC. We made this model available on our repository
of case studies.

For an initial system state with 5 workstations active
in each sub-cluster and switches and backbone working,
we formulate a pCTMC synthesis problem for quality re-
quirements given by two maximising objective functions

11

https://doi.org/10.1016/j.jss.2018.05.013
https://github.com/gerasimou/RODES/wiki

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

vol=0.74sens=9.92

vol=0.78sens=0.42

vol=0.79sens=10.31

ε = 0.10
vol=0.51sens=6.79

vol=0.96sens=3.18

 f1: number of requests transferred to the consumer within 25 minutes

 f
2
:

 b
u

ff
e

rs
 u

ti
li

s
a

ti
o

n
 i

s
 a

t
le

a
s

t
5

0
%

 o
f

th
e

ir
 r

e
s

p
e

c
ti

v
e

 c
a

p
a

c
it

ie
s

0
5 10 15 20 25 30

vol=0.89sens=2.98 vol=1.09sens=3.63

vol=0.69sens=0.37

150 200 250 300 350 400 450

1

0.99

0.98

0.97
150 200 250 300 350 400 450

1

0.99

0.98

0.97

150 200 250 300 350 400 450

1.0

0.98

0.96

0.94

0.92

0.9

150 200 250 300 350 400 450

1,0

0.98

0.96

0.94

0.92

0.9

150 200 250 300 350 400 450

1

0.99

0.98

0.97

150 200 250 300 350 400 450

1.0

0.98

0.96

0.94

0.92

0.9

150 200 250 300 350 400 450

1.0

0.98

0.96

0.94

0.92

0.9

150 200 250 300 350 400 450

1.0

0.98

0.96

0.94

0.92

0.9

150 200 250 300 350 400 450

1.0

0.98

0.96

0.94

0.92

0.9

vol=0.74sens=0.40

suboptSols=0

suboptSols=0

suboptSols=0

suboptSols=6

suboptSols=5

suboptSols=2 suboptSols=0

suboptSols=5

suboptSols=8

Figure 7: Sensitivity-aware Pareto fronts for the producer-consumer model. Boxes represent quality-attribute regions, coloured by sensitivity
(yellow: sensitive, blue: robust). Red-bordered boxes indicate sub-optimal robust designs. Designs are compared based on the worst-case
quality attribute value (i.e. lower-left corner of each box). Statistics are: sens, average sensitivity of the front; suboptSols, number of suboptimal
solutions; vol, average volume of the front.

and one constraint:

f1: P=? [¬premium U [20, 100] premium], where premium
denotes a system service where at least 1.25N work-
stations are connected and operating;

f2: R{“operational”}=?[C
≤100], where a reward of 1 is as-

signed to states with a number of operating clusters
between 1.2N and 1.6N ;

c1: R{“repair”}≤80 [C≤100], where transition rewards are
associated with repair actions of the workstations, back-
bone and switches.

Objective f1 maximises the probability that the system
recovers the premium service in the time interval [20, 100]
hours. Objective f2 maximises the expected time the sys-
tem spends in cost-optimal states during the first 100 hours
of operation. Constraint c1 restricts the cost of repair ac-
tions during this time (the definition of the cost is provided
on our project website).

6.3. Evaluation methodology

We used the following configuration to evaluate RODES:
NSGA-II MOGA, 10000 evaluations, initial population of

20 individuals, and default values for single-point crossover
probability pc= 0.9 and single-point mutation probability
pm=1/ (|K|+ |D|), with |K|+ |D| the number of (contin-
uous and discrete) design-space parameters. We examine
the behaviour of the sensitivity-aware Pareto dominance
relation using different combinations of tolerance values
γ ∈ {0.005, 0.01, 0.025} and sensitivity-awareness coeffi-
cients εi ∈ {0.00, 0.05, 0.10}.

For each experiment, we report the sensitivity-aware
Pareto fronts (Figures 7, 9, 12 and 14). The Pareto-
optimal designs are depicted as boxes in the quality-attri-
bute space and coloured by sensitivity, using the same
representation as in Figures 1 and 4. We also show the
synthesised designs in the design space, given by the con-
tinuous and discrete parameters of the system. In this
case, designs are represented as boxes in the continuous
parameter space, representing the extent of the parameter
variation under the given tolerance. The third dimension
(vertical axis) in Figures 10 and 13 gives the value of the
discrete parameter.

12

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

ε = 0.10

0
5 10 15 20 3025

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16 delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16 delta_rate

r_
sl

ow
_r

at
e

0 1 2 3 4 5

10

 8

 6

12

14

16

delta_rate
r_

sl
ow

_r
at

e

0 1 2 3 4 5

10

 8

 6

12

14

16

Figure 8: Synthesised Pareto-optimal designs for the producer-consumer model and experiments from Figure. 7. Rectangles in x-y plane
correspond to the continuous parameter regions. The discrete parameter (module - ‘mod’) is omitted since RODES synthesised solutions
using only the redirection module (‘mod2’). Boxes are coloured by sensitivity.

6.4. Results and Discussion

RQ1 (Decision Support). We analysed the designs syn-
thesised by RODES in order to identify actionable insights
regarding the tradeoffs between the QoS attributes and
sensitivity of alternative architecture designs. For each
system, we present our findings independently.

Producer-consumer system (PC). First, we present the re-
sults for the producer consumer system introduced in Ex-
amples 1-5, obtained by running our RODES tool with
tolerances γ ∈{0.005, 0.01, 0.025} for both continuous pa-
rameters (r slow rate and delta rate). The resulting Pareto
fronts are shown in Figure 7, for objectives f1 (number of
requests transferred to the consumer within 25 minutes)
and f2 (probability of adequate buffer utilization) and
sensitivity-awareness parameters ε1 =ε2 =ε∈ {0, 0.05, 0.1}.
The corresponding synthesised designs are presented in
Figure 8.

These Pareto fronts provide a wealth of information
supporting the evaluation of the optimality and robust-
ness of alternative designs. In particular, the Pareto front
for ε = 0 and γ = 0.005 contains several large (yellow)
boxes that correspond to highly sensitive designs. Increas-
ing ε produces a number of robust sub-optimal designs
(red-bordered) with slightly sub-optimal quality attributes
but improved robustness. Such designs represent valuable

alternatives to the highly sensitive solutions obtained us-
ing the classical, sensitivity-agnostic, dominance relation.
This ability to identify poor (i.e. highly sensitive) designs
and then alternative robust designs with similar quality at-
tributes is a key and unique benefit of our design synthesis
method. Consider for instance the results for ε = 0.05 and
γ = 0.005. There are several sensitive designs at high f1
values (see Figure 7), which correspond to designs with
r slow rate above 15 and low values delta rate (below 2.5),
see Figure 8. Through our method, we found that there ex-
ist alternative sub-optimal designs with improved robust-
ness (highlighted green boxes), corresponding to higher
delta rate and lower r slow rate values, i.e, to designs with
a slower slow buffer and a faster fast buffer.

Furthermore, we observe that the overall sensitivity im-
proves as the tolerance γ increases, meaning that the un-
certainty (volume) of the quality attribute regions grows
proportionally smaller than the uncertainty of the corre-
sponding parameter regions, see (10). This explains why
we observe fewer sub-optimal robust designs for higher
tolerances (γ = 0.01, 0.025). Increasing parameter toler-
ances also affects the quality attribute profiles as it leads to
larger ranges for objective f1 (i.e., more sensitive) and to
smaller ranges for f2 (i.e., more robust). As a consequence,
RODES tends to favour Pareto-optimal solutions with bet-
ter f2 and worse f1 values as the tolerance increases. In
particular, for γ = 0.025 all designs with f⊥1 ≥ 300 are
excluded (corresponding to the most sensitive designs for

13

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

vol=0.046sens=1.16 suboptSols=0

320 330 340 350 360 370 380 390

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

suboptSols=0 vol=0.189sens=1.179

0.7

0.8

0.9

1.0

320 330 340 350 360 370 380 390

0
0.5 1 1.5 2 2.5

 f1: number of requests transferred to the consumer within 25 minutes

 f
2
:

 b
u

ff
e

rs
 u

ti
li
s

a
ti

o
n

 i
s

 a
t

le
a

s
t

5
0

%
 o

f
th

e
ir

 r
e

s
p

e
c

ti
v

e
 c

a
p

a
c

it
ie

s

vol=0.953sens=0.953

320 330 340 350 360 370 380 390

suboptSols=0

0.7

0.8

0.9

1.0
vol=0.045sens=1.132

320 330 340 350 360 370 380 390

suboptSols=1

vol=0.170sens=1.065

320 330 340 350 360 370 380 390

0.7

0.8

0.9

1.0
suboptSols=1

vol=0.972sens=0.972

320 330 340 350 360 370 380 390

0.7

0.8

0.9

1.0
suboptSols=1 vol=0.968sens=0.968

0.7

0.8

0.9

1.0

320 330 340 350 360 370 380 390

suboptSols=1

vol=0.179sens=1.116

0.7

0.8

0.9

1.0

320 330 340 350 360 370 380 390

suboptSols=1

0.7

0.8

0.9

1.0

ε = 0.10
vol=0.044sens=1.097

320 330 340 350 360 370 380 390

suboptSols=1

Figure 9: Sensitivity-aware Pareto fronts for the second variant of the producer-consumer model. Legend and colour code are as in Figure 7.
Designs are compared based on the worst-case quality attribute value (i.e. lower-left corner of each box).

γ = 0.005, 0.01), which yields regions with average volume
comparable to those for γ = 0.025.

The synthesised parameter regions (Figure 8) indicate
that redirection (second module – ‘mod2’) is always pre-
ferred to non-redirection. Also, the generated designs se-
lect values for the continuous parameters from the lower-
end of their respective range, with r slow rate ∈ [5.00, 15.650]
and delta rate ∈ [0.242, 4.489]. In other words, our al-
gorithm found Pareto-optimal designs where both buffers
have slow transmission rates (with the fast buffer being
slightly faster), while solutions where the fast buffer has
a sensibly higher transmission rate, but a proportional
packet loss rate, are excluded. In particular, configura-
tions with slow transmission rates have associated good
robustness, with very little ranges for objective f2.

We also observe an interesting relationship between
the Pareto-optimal fronts and the Pareto-optimal designs
for different values of the sensitivity-awareness parameter
ε∈ {0, 0.05, 0.1}. The average values for both objectives f1
and f2 experience only little variation as ε increases for a
fixed tolerance value. For instance, when γ = 0.01, on av-
erage f1 ∈ [369.37, 372.40] and f2 ∈ [0.974, 0.98], and when
γ = 0.05, f1 ∈ [284.94, 285.48] and f2 ∈ [0.995, 0.996].

Conversely, the average values for the continuous param-
eters r slow rate and delta rate experience more significant
variation and present an interesting negative relationship.
More specifically, for any γ value and as the ε parame-
ter becomes larger, r slow rate shows a decreasing trend
while delta rate shows an increasing trend. We used the
Pearson correlation test to analyse this observation and
received a strong negative correlation with the coefficient
R ∈ [−0.992,−0.988]4. This result indicates that as ε in-
creases, the sensitivity-aware Pareto-optimal set includes
designs in which the transmission rate difference between
the slow and fast buffers grows. Although unexpected, this
observation is very useful.

Producer-consumer variant. We further analyze a variant
of the producer-consumer model, illustrated in Figure 11.
In this version, we assume a different redirection strategy
(lines 10 and 11) that yields a 100% probability of redi-
rection when the slow buffer is full, while in the original
variant the maximum redirection probability is limited to

4This result should not be confused with the correlation between
the continuous parameters r slow rate and delta rate for fixed γ and
ε values which ranges from zero to weak, i.e., R ∈ [0, 0.3].

14

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

0
0.5 1 1.5 2 2.5

ε = 0.10

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

r_fast_rate p_rate

10

15 39.6
39.8

40

mod1

mod2

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

Figure 10: Synthesised Pareto-optimal designs for the second variant of the producer-consumer model and experiments from Figure 9.
Rectangles in x-y plane correspond to the continuous parameter regions Boxes are coloured by sensitivity.

0.1. We also consider different continuous parameters: the
request production rate (p rate) and the packet transmis-
sion rate for the fast buffer (r fast rate). The synthesized
Pareto fronts and designs are reported in Figures 9 and 10,
respectively.

We observe that the obtained Pareto-optimal set is
substantially different from the one obtained in the first
variant of the model (Figure 7). Solutions in this variant
are generally more robust, demonstrated by the fact that
at most one suboptimal solution is synthesised for each
configuration. A common trait is that favouring objec-
tive f2 leads to robust designs, while robustness is penal-
ized for high f1 values. Comparing the two PC variants,
whose pCTMC models are shown Figures 3 and 11, we
observe that most of the solutions of the second variant
are dominated by the Pareto front of the first variant for
γ ∈ {0.005, 0.01} and all ε values, which therefore provides
the best performance.

The synthesized parameter regions (Figure 10) confirm
the results of the first variant: redirection is always pre-
ferred (for all but one design), and the fast buffer rate
is not too far from that of the slow buffer (r fast rate =
13.03). Similarly, all synthesized values for parameter
p rate are very close to the fixed value (40) used for the
same parameter in the first variant of the model. In the

1 ctmc

// buffer capacities
2 const int slow max = 31;
3 const int fast max = 21;

4 evolve double p rate [20..40]; //request production rate
5 const double s rate = 30; //request transmission rate

// packet transmission rates
6 const double r slow rate = 10; //slow buffer
7 evolve double r fast rate [10..30]; //fast buffer

8 const double c rate = 40; //packet consumption rate

.

.

.

// redirection
9 evolve module Buffer

.

.

.
//send

10 [] (slow=1) & (buffer s<slow max)→ s rate *(1-buffer s/slow max) :
(slow’=0) & (buffer s’ = buffer s +1);

11 [] (slow=1) & (buffer s>0) & (buffer f<fast max)→ s rate *buffer s/slow max :
(slow’=0) & (buffer f’ = buffer f +1);

12 [] (fast=1) & (buffer f<fast max)→ s rate :
(fast’=0) & (buffer f’ = buffer f +1);

.

.

.
13 endmodule

Figure 11: Variant of the producer-consumer model introduced in
Section 2

Pareto front, we can observe an outlier yielding the high-
est system throughput (f1). This design is obtained when

15

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

vol=0.05sens=40.08

vol=0.64sens=20.74

vol=0.5sens=37.65

ε = 0.10
vol=0.04sens=33.91

vol=0.11sens=23.43

 f1: probability of recovering SL1 within time [10,60]

 f
2
:

 t
im

e
 a

t
le

a
s

t
h

a
lf

 o
f

th
e

 s
e

rv
e

rs
 a

re
 u

p
0

50 100 150

vol=0.13sens=26.66 vol=0.10sens=20.70

vol=0.6sens=19.58 vol=0.563sens=18.38

0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5
0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

0.7 0.75 0.8 0.85 0.9 0.95 10.7 0.75 0.8 0.85 0.9 0.95 1

20

15

10

5

suboptSols=0

suboptSols=0

suboptSols=0 suboptSols=5

suboptSols=4

suboptSols=3 suboptSols=7

suboptSols=7

suboptSols=6

Figure 12: Sensitivity-aware Pareto fronts for the GFS model. Legend and colour code are as in Figure 7. Designs are compared based on
the worst-case quality attribute value (i.e. lower-left corner of each box).

redirection is disabled (see Figure 10). Notably, no other
designs with no redirection are present in the Pareto front
which provides evidence that redirection is essential to
achieve a well-balanced utilisation of the buffers.

Google file system (GFS). Given the pCTMC model, the
two maximisation objectives and one constraint of the GFS
system, we used RODES to generate Pareto-optimal de-
sign sets with tolerances γ ∈ {0.005, 0.01, 0.025} for both
continuous parameters (cHardFail and cHardRepair) of our
pCTMC. Figure 12 shows the Pareto fronts obtained us-
ing the “lower bound” definition from Table 1 for the ob-
jective functions f1 and f2 over candidate designs, and
parameters ε1 = ε2 = ε ∈ {0, 0.05, 0.1} for the sensitivity-
aware Pareto dominance relation (12). The design-space
representation is given in Figure 13. We observe that the
Pareto front for ε = 0 and γ = 0.005 contains several
large (yellow) boxes that correspond to highly sensitive
designs. For ε ∈ {0.05, 0.1} and γ = 0.005, these poor de-
signs are “replaced” by robust designs – surrounded by red
borders – with very similar quality attributes but slightly
sub-optimal. The same pattern occurs for γ = 0.01 and
(to a lesser extent because of the overall lower sensitivity)
for γ = 0.025. For instance, consider the sensitive design

obtained for ε = 0.1 and γ = 0.005 characterized by low
hardware fail and repair rates and high number of chunks
(yellow bar on Figure 13). Our method found that a more
robust solution is possible (highlighted green region), with
lower NC and higher cHardFail and cHardRepair.

We also observe that favouring objective f1 over f2
generally yields more robust designs (i.e., smaller quality-
attribute regions towards the right end of the Pareto fronts)
for all combinations of ε and γ.

The design-space view of Figure 13 evidences a trade-
off between cHardFail and cHardRepair, i.e., optimal de-
signs tend to have either high failure rates and high repair
rates, or low failure and repair rates. Results for γ = 0.025
reveal that there is actually an ideal ratio between the two
parameters as the corresponding optimal design appear to
keep a relatively constant proportion between cHardFail
and cHardRepair. This result was unexpected, yet very
useful, since it indicates that designs not satisfying this
trade-off yield excessively fast or slow recovery times, and
thus are far from the optimal f1 values.

Further, we observe that the maximum number of chunks
per server, NC, has a major influence on the design ro-
bustness, with high NC values leading to highly sensitive

16

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

ε = 0.10

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0
50 100 150

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

0

5000

NC

2
3 1

2
3

41

cHWF cHWR

Figure 13: Synthesised Pareto-optimal designs for the GFS model and experiments from Figure 12. Rectangles in x-y plane correspond to
the continuous parameter regions.

designs. These designs should be avoided in favour of the
alternative designs with low NC values depicted in Fig-
ure 13 (for ε > 0).

Workstation Cluster (WC). Figure 14 depicts the Pareto
fronts obtained for all γ, ε combinations of the WC pCTMC
model. These Pareto fronts show again how the large
quality-attribute regions (corresponding to high-sensitivity
designs) obtained for ε=0 are “replaced” by much smaller
quality-attribute regions on the Pareto fronts obtained for
both ε > 0 values. For instance, the fronts produced for
γ = 0.005 and ε ∈ {0.05, 0.10}, include sub-optimal ro-
bust designs in the objective space [0.6, 0.8]× [40, 50] that
do not exist for ε = 0. Further, the Pareto front for
γ = 0.005, ε = 0.10 includes a sub-optimal robust design
in the objective space [0.3, 0.5] × [45, 70] to support the
Pareto-optimal but volatile (i.e., highly sensitive) designs
within that space. Similar observations can be made for
other γ values.

With respect to the system dynamics, our sensitivity-
aware synthesis method reveals that the most robust solu-
tions correspond to the objective-function “extrema” from
the Pareto front, i.e., to quality-attribute regions in which
either f1 is very high and f2 is very low, or vice versa.
In particular, solutions in the middle of quality-attribute
regions are highly sensitive as indicated by the yellow-
green boxes for γ = 0.005 and ε ∈ {0.00, 0.05, 0.10}. The
equivalent solutions are absent from the Pareto fronts for
γ = 0.01 indicating that they are replaced by more robust
solutions whose quality attributes are close to the low-
and high-end of their respective ranges. Thus, if design-
ers seek robust solutions they need to select designs that
favour one of the quality attributes, since solutions with

balanced trade-off between the quality attributes lead to
either sensitive or sub-optimal robust designs.

We also identified an interesting property of the syn-
thesized designs. Although they cover the entire design
space for the real-valued parameters wsFail, wsCheck and
wsRepair, the synthesized designs select very few values
for the sub-cluster size N . In particular, in more than
95% of the experiments N ∈ {10, 15} and in the remain-
ing N ∈ {9, 12}. We analysed further this observation and
ran another experiment by setting the possible range for
sub-cluster size N ∈ {11, .., 14}. Table 2 compares the av-
erage sensitivity between these two experiments for all γ, ε
combinations. Our results validate that the ‘ideal’ values
of the parameter N for the synthesised robust designs are
10 or 15. This finding demonstrates an unexpected and
interesting relationship between the size of the cluster and
robustness, impossible to derive through existing analysis
methods.

RQ2 (Performance). Since the synthesis process is com-
putationally demanding (see Appendix B), we evaluated
the performance of RODES to analyse multiple candidate
designs in parallel using the two-level parallelisation archi-
tecture described in Section 5.2. By employing the two-
level parallelisation, we are able to partially alleviate the
CPU overheads incurred not only due to the complexity
of evaluating a candidate design but also due to the high
number of evaluations. All experiments were run on a Cen-
tOS Linux 6.5 64bit server with two 2.6GHz Intel Xeon
E5-2670 processors and 64GB memory. For the experi-
ments involving GPU parallelisation, we used two nodes
using either an nVidia K40 GPGPU card or an nVidia K80

17

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

ε = 0 ε = 0.05

γ
 =

 0
.0

0
5

γ
 =

 0
.0

1
γ

 =
 0

.0
2

5

vol=1.13sens=2.3E+6

vol=4.34sens=7.1E+4

vol=0.71sens=1.4E+6

ε = 0.10
vol=0.99sens=2E+6

vol=1.35sens=3.5E+5

 f1: probability at least 1.25N workstations are connected and operating in interval [20,100]h

vol=1.11sens=3.4E+5 vol=1.11sens=2.8E+5

vol=4.21sens=6.9E+4 vol=3.95sens=6.5E+4

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

0
1 2 3 4 5 6 7 8 9 x106

 f
2
:

e
x

p
e

c
te

d
 t

im
e

 i
n

 c
o

s
t-

o
p

ti
m

a
l

s
ta

te
s

 d
u

ri
n

g
 t

h
e

 f
ir

s
t

1
0

0
 h

o
u

rs

suboptSols=0

suboptSols=0

suboptSols=0 suboptSols=2 suboptSols=2

suboptSols=1

suboptSols=3

suboptSols=4

suboptSols=4

Figure 14: Sensitivity-aware Pareto fronts for the workstation cluster model. Legend and colour code are as in Figure 7. Designs are compared
based on the worst-case quality attribute value (i.e. lower-left corner of each box).

Table 2: Average design sensitivity for two variants of the workstation cluster synthesis problem, given by different ranges for parameter N .
Sensitivity-aware designs (i.e. where ε>0) for N ∈ {10..15} have lower sensitivity than for N ∈ {11..14}.

Average sensitivity

γ=0.005, γ=0.005, γ=0.005, γ=0.01, γ=0.01, γ=0.01, γ=0.025, γ=0.025, γ=0.025,

N ε=0.00 ε=0.05 ε=0.10 ε=0.00 ε=0.05 ε=0.10 ε=0.00 ε=0.05 ε=0.10

{10..15} 1.6E6 7.86E5 6.58E5 2.1E5 2.49E5 2.19E5 6.45E4 6.68E4 7.56E4

{11..14} 1.33E6 1.3E6 1.22E6 5.2E5 5.28E5 4.77E5 2E5 1.93E5 1.87E5

GPGPU card.
The key results of our performance evaluation are de-

scribed in Tables 3 and 4. The tables show the design syn-
thesis run-times for k=500 and N=20 (i.e. for kN=10000
design evaluations), for our three case studies. Run-time
statistics are computed over more than 30 independent
runs, obtained using all combinations of ε∈ {0, 0.05, 0.1}
and γ ∈{0.005, 0.01, 0.025}. Note that 10000 evaluations,
for which we obtained high quality sensitivity-aware Pareto
fronts, are still negligible with respect to the size of the de-
sign space that an exhaustive search would need to explore
(theoretically the design space is uncountable). To demon-
strate this difference, we list the number of candidate de-

signs required to “cover” the design space for a given tol-
erance value γ (this number is indeed much smaller than
the total number of candidate designs). For PC model
(γ = 0.005) it is around 20000 designs, but for WC and
GFS (γ = 0.01) it is more than 3 millions designs.

Results in Table 3 confirm that performance of the syn-
thesis process is affected mainly by the size of the underly-
ing pCTMC and by the average number of the discretisa-
tion steps required to evaluate particular quantitative at-
tributes (around 4000 steps are required for WC and PC,
160000 for GFS v1, and 46000 for GFS v2). Note that this
number depends on the highest time bound appearing in
the properties and on the highest rate appearing in the

18

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

Table 3: Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for one-level CPU parallelisation. #states (#trans.):
number of states (transitions) of the underlying pCTMC. |K|: number of continuous parameters.

CPU (#cores)

Model #states #trans. 1 2 5 10

WC (|K| = 3) 3440-8960 18656-49424 394±25 217±29 118±14 68±8

PC (|K| = 2) 5632 21968-24572 251±46 131±33 50±2 31±5

GFS v1 (|K| = 2) 1323-2406 7825-15545 390±27 267±49 125±19 71±10

GFS v2 (|K| = 2) 21606 145335-148245 19011±400 8207±361 4562±36 2399±9

Table 4: Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for two-level CPU+GPU parallelisation.

CPU (#cores) CPU (#cores)/GPU (#devices)

Model 1 2 5 1/1 2/1 5/1 2/2 5/2

GFS v2 19011±400 8207±361 4562±36 2264±33 1736±8 1625±16 1082±3 1043±22

transition matrix. This observation also explains the sig-
nificant slowdown of the synthesis process when switching
from v1 to v2 of GFS.

First, we evaluate the performance of CPU-only par-
alellisation at different numbers of cores. The results clearly
confirm the scalability with respect to the number of cores.
We can also observe that a better scalability is obtained
for more complicated synthesis problems (i.e. 5.5-times
speed for 10 cores on GFS v1 versus 7.9-times speed up
for 10 core on GFS v2).

Second, we evaluate the performance of the two-level
parallelisation. Table 4 compares the run-times for differ-
ent number of CPU cores and GPU devices. In this config-
uration, we obtain a significant reduction of runtimes, e.g.
for GFS v2 we obtain 8.4-times speedup with one GPU
and one CPU core, and 7.6-times speedup with two GPUs
and two CPU cores. The slightly worse speedup observed
in the latter case is due to the increased CPU-GPU com-
munication overhead when more devices are employed.

Finally, we see that evaluating more that one candidate
solutions (generated using several CPU cores) on a single
GPU further improves the performance until the GPU is
fully utilised (i.e. the maximal number of active threads
that can be dispatched is reached and thus some paral-
lel evaluations has to be serialised). The performance is
also affected by the memory access pattern that depends
on the concrete candidate solutions evaluated in parallel.
In particular, the performance degrades when the memory
access locality is decreased. Note that the maximal num-
ber of candidate solutions that can be evaluated in parallel
on a single GPU is also limited by the GPU memory that
has to accommodate the underlying pCTMC.
RQ3 (Metaheuristic Effectiveness). To answer this
research question, we analysed the goodness of the Pareto-
optimal designs of the GFS model obtained with our NSGA-
II-based RODES against a variant that uses random search
(RS). For each variant and combination of ε∈{0,0.05,0.10}
and γ∈{0.005, 0.01} we carried out 30 independent runs,
in line with standard SBSE practice [32]. As building
the actual Pareto front for large design spaces is challeng-

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2
ε:
γ:

0
0.005 0.005

0.05
0.005
0.10 0

0.01 0.01
0.05

0.01
0.10

0.5Iεnorm+0.5sensnorm 0.5IIGDnorm+0.5sensnorm

RODES RS

ε:
γ:

0
0.005 0.005

0.05
0.005
0.10 0

0.01 0.01
0.05

0.01
0.10

Figure 15: RODES vs. random search (RS) comparison for combina-
tions of γ∈ {0.005, 0.01} and ε∈ {0, 0.05, 0.10}, over 30 independent
GFS runs. For both metrics – Iε indicator and sensitivity (left) and
IIGD indicator and sensitivity (right) – smaller is better.

ing and computationally expensive (GFS has |P ×Q| >
24E10 assuming a three-decimal precision for continuous
parameters), we again followed the standard practice and
combined the sensitivity-aware Pareto fronts from all 60
RODES and RS runs for each ε, γ combination into a ref-
erence Pareto front [35]. We then compared the Pareto
fronts achieved by each variant against this reference front
by using the metrics

M1 =wIεnorm + (1−w)sensnorm

and
M2 =wIIGDnorm

+ (1−w)sensnorm

which use a weight w ∈ [0, 1] to combine normalised ver-
sions of the established (but sensitivity-agnostic) Pareto-
front quality metrics Iε and IIGD [35] with the normalised
design sensitivity. The unary additive epsilon (Iε) gives
the minimum additive term by which the objectives of
a particular design from a Pareto front must be altered
to dominate the respective objectives from the reference
front. The inverted generational distance (IIGD) measures
the shortest Euclidean distance from each design in the
Pareto front to the closest design in the reference front.
These indicators show convergence and diversity to the
reference front (smaller is better).

Figure 15 compares RODES and RS across our ε, γ
combinations using metrics M1 and M2 with w=0.5. The

19

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

RODES median is consistently lower than that of RS for
all ε, γ combinations with the exception of ε= 0, γ = 0.01
(which ignores design sensitivity) for M2. For a given γ,
RODES results improve as ε increases, unlike the corre-
sponding RS results. Thus, the difference between RODES
and RS increases with larger ε for both metrics. This shows
that RODES drives the search using sensitivity (10), and
thus it can identify more robust designs. We confirmed
these visual inspection findings using the non-parametric
Mann-Whitney test with 95% confidence level (α= 0.05).
We obtained statistical significance (p-value<0.05) for all
ε, γ combinations except for ε= 0, γ= 0.005, with p-value
in the range [1.71E-06, 0.0026] and [1.086E-10, 0.00061]
for M1 and M2, respectively.

Considering these results, we have sufficient empirical
evidence that RODES synthesises significantly more ro-
bust designs than RS. These results are also in line with
our previous work which demonstrated through extensive
evaluation that probabilistic model synthesis using MO-
GAs achieves significantly better results that RS [16]. Hence,
the problem of synthesising sensitivity-aware Pareto op-
timal sets (13) is challenging, as expected for any well-
defined SBSE problem.

6.5. Threats to Validity.

Construct validity threats may arise due to assump-
tions made when modelling the three systems. To mit-
igate these threats, we used models and quality require-
ments based on established case studies from the litera-
ture [36, 34].

Internal validity threats may correspond to bias in es-
tablishing cause-effect relationships in our experiments.
We limit them by examining instantiations of the sensitivity-
aware Pareto dominance relation (12) for multiple values
of the sensitivity-awareness εi and tolerance level γk. To
alleviate further the risk of biased results due to the MO-
GAs being stuck at local optimum and not synthesising a
global optimum Pareto front, we performed multiple in-
dependent runs. Although this scenario never occurred
in our experiments, when detected, it can be solved by
re-initialising the sub-population outside the Pareto front.
Also, Algorithm 1 ensures that the Pareto front monotoni-
cally improves at each iteration. Finally, we enable replica-
tion by making all experimental results publicly available
on the project webpage.

External validity threats might exist if the search for
robust designs for other systems cannot be expressed as
a pCTMC synthesis problem using objective functions (8)
and constraints (9). We limit these threats by specify-
ing pCTMCs in an extended variant of the widely used
modelling language of PRISM [21], with objective func-
tions and constraints specified in the established tempo-
ral logic CSL. PRISM parametric Markov models are in-
creasingly used to model software architectures, e.g. in the
emerging field of self-adaptive software [37, 38, 39, 40].
Another threat might occur if our method generated a

Pareto front that approached the actual Pareto front insuf-
ficiently, producing only low quality designs or designs that
did not satisfy the required quality constraints. We miti-
gated this threat by using established Pareto-front perfor-
mance indices to confirm the quality of the Pareto fronts
from our case studies. Nevertheless, additional experi-
ments are needed to establish the applicability and feasibil-
ity of the method in domains with characteristics different
from those used in our evaluation.

7. Related Work

RODES builds on the significant body of software per-
formance and reliability engineering research that employs
formal models to analyse the quality attributes of alterna-
tive software designs, e.g. [5, 6, 7, 8, 9, 10]. Approaches
based on formal models such as queueing networks [41],
Petri nets [42], stochastic models [43, 44] and timed au-
tomata [45, 46], and tools for their simulation (e.g. Pal-
ladio [7]) and verification (e.g. PRISM [21] and UPPAAL
[45]) have long been used for this analysis. However, un-
like RODES, these approaches can only analyse alterna-
tive models through a tedious iterative process carried out
manually by experts.

Performance antipatterns can be used to speed up this
process by avoiding the analysis of poor designs [47, 48,
49], but approaches that automate the search for correct or
optimal designs have only been proposed recently. Three
types of such approaches are related to RODES. Given
a Markov model that violates a quality requirement, the
first approach—called probabilistic model repair [50, 51]—
automatically adjusts its transition probabilities to pro-
duce a “repaired” model that meets the requirement. The
second approach is called precise parameter synthesis [23],
and works by identifying transition rates that enable conti-
nuous-time Markov models to satisfy a quality requirement
or to optimise a quality attribute of the system under
development. Finally, our previous work on probabilis-
tic model synthesis [16] applies multiobjective optimisa-
tion and genetic algorithms to a design template that cap-
tures alternative system designs, and generates the Pareto-
optimal set of Markov models associated with the qual-
ity optimisation criteria of the system. While these ap-
proaches represent a significant advance over the previ-
ously manual methods of alternative design analysis, they
do not take into account the robustness of their repaired or
synthesised models. Likewise, the approach from [17] em-
ploys evolutionary algorithms to search the configuration
space of Palladio Component Models, but the synthesis
process does not reflect the sensitivity of the candidate
models.

Syntax-guided synthesis has been used to find proba-
bilistic programs that best match the available data [52],
including synthesis from “sketches”, i.e. partial programs
with incomplete details [53]. In [54], counter-example guided
inductive synthesis (CEGIS) has been introduced as an

20

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

SMT-based synthesiser for sketches and, due to the enor-
mous improvement of SMT solvers in the last decade,
CEGIS is currently able to find deterministic programs for
a variety of challenging problems [53, 55]. Very recently,
the concept of meta-sketches introducing the “optimal syn-
thesis problem” has been proposed [56] and adapted for
synthesis of stochastic reaction networks [57]. These solu-
tions are complementary to RODES, as they explore other
aspects of design alternatives, and do not take robustness
into account.

Methods that rigorously evaluate how the transition
probabilities affect the satisfiability of temporal proper-
ties (expressed as probabilistic temporal logic formulae)
have been studied in the context of parameter synthe-
sis. The methods either construct symbolic expressions
describing the satisfaction probability as a function of the
model parameters [30, 58], or compute—for given inter-
vals of parameter values—safe bounds on the satisfaction
probability [26]. In contrast to this work, our robust de-
sign synthesis directly integrates sensitivity analysis into
the automated design process.

Another research area related to RODES is sensitivity
analysis, which analyses the impact of parameter changes
on the performance, reliability, cost and other quality at-
tributes of the system under development, e.g. [11, 12, 13].
However, sensitivity analysis typically operates by sam-
pling the parameter space and evaluating the system qual-
ity attributes for the sampled values. As such, the result is
not guaranteed to reflect the whole range of quality-attri-
bute values for the parameter region of interest. RODES
does not have this drawback, as it operates with close
over-approximations of the quality-attribute regions for
the synthesised robust designs. The perturbation theory
for Markov processes has been applied to analysing the
sensitivity of software operational profiles [14]. However,
this approach quantifies the effect of variations in model
transition probabilities without synthesising the analysed
solutions. Furthermore, RODES supports a wide range of
continuous and discrete parameters that cannot be used
with the approach from [14]. Stochastic analysis of archi-
tectural models was used for early predictions of system
component reliability and sensitivity with respect to differ-
ent operational profiles [59]. Unlike RODES, the research
from [59] focuses on exploiting different architectural mod-
els and associated analysis techniques, and is therefore
complementary to the work presented in our paper.

The smoothed model checking technique from [60] com-
putes an analytical approximation of the satisfaction prob-
ability of a formula over a parametric CTMC. While not
providing the same guarantees as the safe over-approximation
method from RODES, the technique was experimentally
shown to be highly accurate, so it can be used to estimate
the sensitivity of a probabilistic temporal logic property
to variations in the CTMC parameters.

Finally, the problem of parameter synthesis of stochas-
tic reaction networks with respect to multi-objective spec-
ification has been recently considered in [61]. The au-

thors employ statistical methods to estimate how kinetic
parameters affect the satisfaction probability and average
robustness of Signal Temporal Logic properties. In con-
trast to our approach, a candidate solution from [61] has
all parameters fixed and the robustness captures how far
the candidate is from violating the particular properties.

8. Conclusion

Robustness is a key and yet insufficiently explored char-
acteristic of software designs, as it can mitigate the un-
avoidable discrepancies between real systems and their
models. We presented RODES, a tool-supported method
for the automated synthesis of Pareto-optimal probabilis-
tic models corresponding to robust software designs.

RODES integrates for the first time search-based syn-
thesis and parameter analysis for parametric Markov chains.
Our RODES tool automates the application of the method,
and provides multi-core as well as GPU-based parallelisa-
tion that significantly speeds up the design synthesis pro-
cess. We performed an extensive experimental evaluation
of RODES on three case studies from different application
domains. These experiments showed that the sensitivity-
aware Pareto-optimal design sets synthesised by RODES
enable the selection of robust designs with a wide range
of quality-attribute values and provide insights into the
system dynamics. The experiments also demonstrate that
the parallelisation ensures scalability with respect to the
complexity of the systems under development.

In our future work, we will assess the effectiveness
of Pareto-dominance relations defined over intervals, and
we will augment RODES with alternative multiobjective
optimisation techniques such as particle swarm optimi-
sation [62]. In addition, we are planning to extend the
RODES modelling language (and the underpinning search
method) with support for syntax-based synthesis [63] of
robust designs from partial pCTMC specifications, includ-
ing sketches of chemical reaction networks [57].

References

[1] H. Kitano, Biological robustness, Nature Reviews Genetics 5
(2004) 826–837.

[2] M. S. Phadke, Quality engineering using robust design, Prentice
Hall PTR, 1995.

[3] International Organization for Standardization, ISO 286–
1:2010, Geometrical product specifications (GPS) – ISO code
system for tolerances on linear sizes (2010).
URL https://www.iso.org/standard/45975.html

[4] International Organization for Standardization, ISO general
purpose metric screw threads – Tolerances (2013).
URL https://www.iso.org/obp/ui/#iso:std:57778:en

[5] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-
based performance prediction in software development: A sur-
vey, IEEE Trans. Softw. Eng. 30 (5) (2004) 295–310.

[6] A. B. Bondy, Foundations of Software and System Performance
Engineering, Addison Wesley, 2014.

[7] S. Becker, H. Koziolek, R. Reussner, The Palladio compo-
nent model for model-driven performance prediction, J. Syst.
& Softw. 82 (1).

21

https://doi.org/10.1016/j.jss.2018.05.013
https://www.iso.org/standard/45975.html
https://www.iso.org/standard/45975.html
https://www.iso.org/standard/45975.html
https://www.iso.org/standard/45975.html
https://www.iso.org/obp/ui/#iso:std:57778:en
https://www.iso.org/obp/ui/#iso:std:57778:en
https://www.iso.org/obp/ui/#iso:std:57778:en

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

[8] L. Fiondella, A. Puliafito, Principles of Performance and Reli-
ability Modeling and Evaluation, Springer Series in Reliability
Engineering, 2016.

[9] W. J. Stewart, Probability, Markov chains, queues, and simula-
tion: the mathematical basis of performance modeling, Prince-
ton University Press, 2009.

[10] M. Woodside, D. Petriu, J. Merseguer, D. Petriu, M. Alhaj,
Transformation challenges: from software models to perfor-
mance models, J. Softw. & Syst. Modeling 13 (4) (2014) 1529–
1552.

[11] S. S. Gokhale, K. S. Trivedi, Reliability prediction and sensitiv-
ity analysis based on software architecture, in: ISSRE’03, 2002,
pp. 64–75.

[12] J.-H. Lo, C.-Y. Huang, I.-Y. Chen, et al., Reliability assessment
and sensitivity analysis of software reliability growth modeling
based on software module structure, Journal of Syst. and Soft-
ware 76 (1) (2005) 3 – 13.

[13] C.-Y. Huang, M. R. Lyu, Optimal testing resource allocation,
and sensitivity analysis in software development, Transactions
on Reliability 54 (4) (2005) 592–603.

[14] S. Kamavaram, K. Goseva-Popstojanova, Sensitivity of software
usage to changes in the operational profile, in: NASA Soft. Eng.
Workshop, 2003.

[15] A. Filieri, G. Tamburrelli, C. Ghezzi, Supporting self-
adaptation via quantitative verification and sensitivity analysis
at run time, IEEE Trans. Softw. Eng. 42 (1) (2016) 75–99.

[16] S. Gerasimou, G. Tamburrelli, R. Calinescu, Search-based syn-
thesis of probabilistic models for QoS software engineering, in:
ASE’15, 2015, pp. 319–330.

[17] A. Martens, H. Koziolek, S. Becker, R. Reussner, Automatically
improve software architecture models for performance, reliabil-
ity, and cost using evolutionary algorithms, in: WOSP/SIPEW,
2010, pp. 105–116.

[18] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska,
N. Paoletti, Designing robust software systems through para-
metric Markov chain synthesis, in: ICSA, IEEE, 2017, pp. 131–
140.

[19] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska,
N. Paoletti, RODES: A robust-design synthesis tool for proba-
bilistic systems, in: QEST, 2017, pp. 304–308.

[20] T. Han, J. Katoen, A. Mereacre, Approximate parameter syn-
thesis for probabilistic time-bounded reachability, in: RTSS,
2008, pp. 173–182.

[21] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verifica-
tion of Probabilistic Real-time Systems, in: CAV’11, 2011, pp.
585–591.

[22] M. Kwiatkowska, G. Norman, D. Parker, Stochastic Model
Checking, in: SFM’07, 2007, pp. 220–270.

[23] M. Češka, F. Dannenberg, N. Paoletti, et al., Precise parameter
synthesis for stochastic biochemical systems, Acta Informatica
54 (2017) 589–623.

[24] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software
engineering: Trends, techniques and applications, ACM Comp.
Surveys 45 (1) (2012) 11:1–11:61.

[25] M. Češka, P. Pilař, N. Paoletti, L. Brim, M. Kwiatkowska,
PRISM-PSY: Precise GPU-accelerated parameter synthesis for
stochastic systems, in: TACAS’16, Springer, 2016, pp. 367–384.

[26] T. Quatmann, C. Dehnert, N. Jansen, et al., Parameter synthe-
sis for Markov models: Faster than ever, in: ATVA’16, 2016,
pp. 50–67.

[27] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol.
Comp. 6 (2) (2002) 182–197.

[28] A. J. Nebro, J. J. Durillo, F. Luna, et al., MOCell: A cellular
genetic algorithm for multiobjective optimization, Journal of
Intelligent Systems 24 (7) (2009) 726–746.

[29] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[30] C. Dehnert, S. Junges, N. Jansen, et al., PROPhESY: A prob-
abilistic parameter synthesis tool, in: CAV’15, Springer, 2015,
pp. 214–231.

[31] C. Dehnert, S. Junges, J.-P. Katoen, M. Volk, A STORM is
coming: A modern probabilistic model checker, in: CAV’17,
Springer, 2017, pp. 592–600.

[32] M. Harman, P. McMinn, J. de Souza, S. Yoo, Search based
software engineering: Techniques, taxonomy, tutorial, in: Emp.
Softw. Eng. and Verif., 2012, pp. 1–59.

[33] C. Baier, E. M. Hahn, B. Haverkort, et al., Model checking for
performability, Mathematical Structures in Comp. Sc. 23 (4)
(2013) 751–795.

[34] B. R. Haverkort, H. Hermanns, J.-P. Katoen, On the use of
model checking techniques for dependability evaluation, in:
SRDS’00, IEEE, 2000, pp. 228–237.

[35] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, V. da Fonseca,
Performance assessment of multiobjective optimizers: an analy-
sis and review, IEEE Trans. Evol. Comp. 7 (2) (2003) 117–132.

[36] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System,
in: SOSP’03, 2003, pp. 29–43.

[37] R. Calinescu, M. Kwiatkowska, CADS*: Computer-aided de-
velopment of self-* systems, in: FASE, 2009, pp. 421–424.

[38] R. Calinescu, S. Gerasimou, A. Banks, Self-adaptive software
with decentralised control loops, in: FASE, 2015, pp. 235–251.

[39] J. C. Moreno, A. Lopes, D. Garlan, B. Schmerl, Impact models
for architecture-based self-adaptive systems, in: FACS, 2015,
pp. 89–107.

[40] S. Gerasimou, R. Calinescu, A. Banks, Efficient runtime quanti-
tative verification using caching, lookahead, and nearly-optimal
reconfiguration, in: SEAMS, 2014, pp. 115–124.

[41] S. Balsamo, V. D. N. Personè, P. Inverardi, A review on queue-
ing network models with finite capacity queues for software
architectures performance prediction, Performance Evaluation
51 (2) (2003) 269–288.

[42] C. Lindemann, Performance modelling with deterministic and
stochastic petri nets, Performance Evaluation Review 26 (2)
(1998) 3.

[43] R. Calinescu, C. Ghezzi, K. Johnson, et al., Formal verification
with confidence intervals to establish quality of service proper-
ties of software systems, IEEE Trans. Rel. 65 (1) (2016) 107–
125.

[44] V. S. Sharma, K. S. Trivedi, Quantifying software performance,
reliability and security: An architecture-based approach, Jour-
nal of Systems and Software 80 (4) (2007) 493 – 509.

[45] A. Hessel, K. G. Larsen, M. Mikucionis, et al., Testing real-
time systems using UPPAAL, in: Formal methods and testing,
Springer, 2008, pp. 77–117.

[46] K. G. Larsen, Verification and performance analysis of embed-
ded and cyber-physical systems using uppaal, in: MODEL-
SWARD’14, 2014, pp. IS–11–IS–11.

[47] D. Arcelli, V. Cortellessa, C. Trubiani, Antipattern-based
model refactoring for software performance improvement, in:
QoSA’12, 2012, pp. 33–42.

[48] C. U. Smith, L. G. Williams, Software performance antipat-
terns., in: Workshop on Software and Performance, Vol. 17,
2000, pp. 127–136.

[49] V. Cortellessa, A. Martens, R. Reussner, C. Trubiani, A pro-
cess to effectively identify ‘guilty’ performance antipatterns, in:
FASE’10, 2010, pp. 368–382.

[50] E. Bartocci, R. Grosu, P. Katsaros, et al., Model repair for
probabilistic systems, in: TACAS’11, 2011, pp. 326–340.

[51] T. Chen, E. M. Hahn, T. Han, et al., Model repair for Markov
decision processes, in: TASE’13, 2013, pp. 85–92.

[52] A. V. Nori, S. Ozair, S. K. Rajamani, D. Vijaykeerthy, Efficient
synthesis of probabilistic programs, in: PLDI’14, 2015, pp. 208–
217.

[53] A. Solar-Lezama, R. Rabbah, R. Bod́ık, K. Ebcioğlu, Program-
ming by sketching for bit-streaming programs, in: Proc. of
PLDI’05, ACM, 2005, pp. 281–294.

[54] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, V. Saraswat,
Combinatorial sketching for finite programs, in: Proc. of ASP-
LOS’06, ACM, 2006, pp. 404–415.

[55] A. Solar-Lezama, C. G. Jones, R. Bodik, Sketching concurrent
data structures, in: Proc. of PLDI’08, ACM, 2008, pp. 136–148.

22

https://doi.org/10.1016/j.jss.2018.05.013

This is the author’s version of an article that has been published
in the journal of Systems and Software. Changes were made to

this version by the publisher prior to publication. The final
version of record is available at

https://doi.org/10.1016/j.jss.2018.05.013

[56] J. Bornholt, E. Torlak, D. Grossman, L. Ceze, Optimizing syn-
thesis with metasketches, in: Proc. of POPL’16, ACM, 2016,
pp. 775–788.

[57] L. Cardelli, M. Češka, M. Fränzle, M. Kwiatkowska, L. Laurenti,
N. Paoletti, M. Whitby, Syntax-guided optimal synthesis for
chemical reaction networks, in: CAV’17, Springer, 2017, pp.
375–395.

[58] E. M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability
for parametric Markov models, STTT 13 (1) (2011) 3–19.

[59] L. Cheung, R. Roshandel, N. Medvidovic, L. Golubchik, Early
prediction of software component reliability, in: ICSE, ACM,
2008, pp. 111–120.

[60] L. Bortolussi, D. Milios, G. Sanguinetti, Smoothed model check-
ing for uncertain continuous-time markov chains, Inf. Comput.
247 (2016) 235–253.

[61] L. Bortolussi, A. Policriti, S. Silvetti, Logic-based multi-
objective design of chemical reaction networks, in: HSB’16,
Springer, 2016, pp. 164–178.

[62] M. Reyes-Sierra, C. C. Coello, Multi-objective particle swarm
optimizers: A survey of the state-of-the-art, International jour-
nal of computational intelligence research 2 (3) (2006) 287–308.

[63] R. Alur, R. Bodik, G. Juniwal, et al., Syntax-guided synthesis,
in: FMCAD’13, 2013, pp. 1–8.

Appendix A. Proof of Theorem 1

We show that the sensitivity-aware Pareto dominance
relation defined in Defition 4 is a strict order.

Proof. We need to show that relation ≺ from (12) is ir-
reflexive and transitive. For any d ∈ F , d ≺ d would
require that fi(d) < (1 + εi)fi(d) or fi(d) < fi(d) for some
i ∈ I, which is impossible. Thus, ≺ is irreflexive. To show
that ≺ is transitive, consider three designs d, d′, d′′ ∈ F
such that d ≺ d′ and d′ ≺ d′′. According to (12), we
have ∀i ∈ I.fi(d) ≤ fi(d

′) and ∀i ∈ I.fi(d′) ≤ fi(d
′′), so

∀i ∈ I.fi(d) ≤ fi(d
′′) due to the transitivity of ≤. Fur-

thermore, at least one half of the disjunction from defini-
tion (12) must hold for each of d′ ≺ d′′ and d′ ≺ d′′. We
have three cases. Assume first that the left half holds for
d ≺ d′, i.e. that (1 + εi1)fi1(d) < fi1(d′) for some i1 ∈ I;
as fi1(d′) ≤ fi1(d′′), we also have (1 + εi1)fi1(d) < fi1(d′′),
so d ≺ d′′ in this case. Assume now that left half of dis-
junction (12) holds for d′ ≺ d′′, i.e., that (1 + εi1)fi1(d′) <
fi1(d′′) for some i1 ∈ I; as fi1(d) ≤ fi1(d′), we again
have (1 + εi1)fi1(d) < fi1(d′′) and d ≺ d′′. Finally, con-
sider that only the right half of disjunction (12) holds for
both d ≺ d′ and d ≺ d′. In this last case, sens(d) ≤
sens(d′) ≤ sens(d′′) and there is an i1 ∈ I such that
fi1(d) < fi1(d′) ≤ fi1(d′′), so also d ≺ d′′, and therefore ≺
is transitive.

Appendix B. Complexity Analysis

The time complexity of Algorithm 1 representing the
synthesis process is

O
(
k ·N · (|I|+ |J |) · t+ k · |I| ·N2

)
,

where k is the number of iterations of the (MOGA) while
loop (i.e. the number of generations); N = |CD | is the size

of the candidate design population; |I|+ |J | is the overall
number of objective functions and constraints; and t is the
time required to analyse a quality attribute of a candidate
design. The term k ·N · (|I|+ |J |) · t quantifies the overall
complexity of evaluating candidate designs, while k ·|I|·N2

corresponds to comparing designs and building the front
in lines 7–14 of Algorithm 1.

The factor t depends on the size of the underlying state
space and on the number of discrete-time steps required
to evaluate the particular quality attributes. As shown
in [23], t = O(tCSL·tpCSL). The factor tCSL = |φ|·M ·q·tmax

is the worst-case time complexity of time-bounded CSL
model checking [22], where |φ| is the length of the input
CSL formula φ, tmax is the highest time bound occurring in
it, M is the number of non-zero elements in the rate matrix
and q is the highest rate in the matrix. The factor tpCSL is
due to the parametric analysis of the design and depends
on the form of polynomials appearing in the parametric
rate matrix D′R. Models of software systems typically in-
clude only linear polynomials, for which tpCSL = O(n),
where n is the number of continuous parameters.

23

https://doi.org/10.1016/j.jss.2018.05.013

	Introduction
	Modelling and Specification Language for Probabilistic Systems
	Design space modelling
	Quality attribute specification and requirements
	Sensitivity of candidate designs

	Sensitivity-Aware Pareto Dominance Relation
	Synthesis of Sensitivity-Aware Pareto Sets
	Method Overview
	Computing Safe Property Bounds for pCTMCs
	Metaheuristic for Parametric CTMC Synthesis

	RODES: A Robust-Design Synthesis Tool
	RODES Architecture
	Two-Level Parallelisation

	Evaluation
	Research Questions
	Analysed Software Systems
	Evaluation methodology
	Results and Discussion
	Threats to Validity.

	Related Work
	Conclusion
	Proof of Theorem 1
	Complexity Analysis

