
Synthesis and verification of self-aware systems

Radu Calinescu, Marco Autili, Javier Cámara, Antinisca Di Marco,
Simos Gerasimou, Paola Inverardi, Alexander Perucci, Nils Jansen,
Joost-Pieter Katoen, Marta Kwiatkowska, Ole J Mengshoel, Romina Spalazzese
and Massimo Tivoli

Abstract Self-aware computing systems are envisaged to exploit the knowledge of
their own software architecture, hardware infrastructure and environment in order to
follow high-level goals through proactively adapting as their environment evolves.
This chapter describes two classes of key enabling techniques for self-adaptive sys-
tems: automated synthesis and formal verification. The ability to dynamically syn-
thesise component connectors and compositions underpins the proactive adaptation
of the architecture of self-aware systems. Deciding when adaptation is needed and
selecting valid new architectures or parameters for self-aware systems often requires
formal verification. We present the state of the art in the use of the two techniques
for the development of self-aware computing systems, and summarise the main re-
search challenges associated with their adoption in practice.

Radu Calinescu
University of York, UK, e-mail: radu.calinescu@york.ac.uk
Marco Autili
University of L’Aquila, Italy, e-mail: marco.autili@univaq.it
Javier Cámara
Carnegie Mellon University, US, e-mail: jcmoreno@cs.cmu.edu
Antinisca Di Marco
University of L’Aquila, Italy, e-mail: antinisca.dimarco@univaq.it
Simos Gerasimou
University of York, UK, e-mail: simos@cs.york.ac.uk
Paola Inverardi
University of L’Aquila, Italy, e-mail: paola.inverardi@univaq.it
Alexander Perucci
University of L’Aquila, Italy, e-mail: alexander.perucci@graduate.univaq.it
Nils Jansen
University of Texas at Austin, US, e-mail: njansen@utexas.edu
Joost-Pieter Katoen
RWTH Aachen University, Germany, e-mail: katoen@cs.rwth-aachen.de
Marta Kwiatkowska
University of Oxford, UK, e-mail: marta.kwiatkowska@cs.ox.ac.uk
Ole J Mengshoel
Carnegie Mellon University, US e-mail: ole.mengshoel@sv.cmu.edu
Romina Spalazzese
Malmö University, Sweden, e-mail: romina.spalazzese@mah.se
Massimo Tivoli
University of L’Aquila, Italy, e-mail: massimo.tivoli@univaq.it

1



2 R. Calinescu et al

1 Introduction

Self-aware computing systems address a rapidly growing need for automation in
the management of large, complex computer applications. Made possible by recent
advances in the numbers and types of sensors embedded in computing systems,
and in the ability to dynamically change system parameters and architectures, self-
aware systems are envisaged to be self-reflective, self-predictive and self-adaptive.
As such, self-aware systems need to learn models that encode knowledge about
themselves and their environment, and to reason using these models in ways that
allow them to self-adjust in response to evolving environments and goals [46].

This chapter presents two classes of key enabling techniques for self-aware sys-
tems. First, Sections 2 and 3 describe techniques for the automated synthesis of
self-aware service compositions and self-adaptive connectors, respectively. These
synthesis techniques support the runtime modification of software architectures that
underpins the adaptation of an increasing number of self-aware computing systems.

Second, Sections 4–6 present formal verification techniques that support model-
based reasoning within self-aware systems. Quantitative verification at runtime, the
technique summarised in Section 4, supports the runtime detection of quality-of-
service (QoS) requirement violations in self-aware systems and the selection of new
configurations that reinstate system compliance with these requirements. Section 5
introduces a technique called parametric verification, which is particularly suited
for use in a runtime context, to establish the QoS properties of self-aware comput-
ing systems. Finally, Section 6 discusses runtime verification based on probabilistic
graphical models such as Bayesian networks.

The two classes of techniques—verification and synthesis—are brought together
in Section 7. This section describes how modelling a system and its environment
as a stochastic multiplayer game supports the analysis of their interplay, and can be
used to drive runtime strategy synthesis for self-aware computing systems.

2 From design-time to runtime synthesis of self-aware
choreographies of software services

The automated synthesis of the distributed coordination logic that is required to
compose software services achieves correctness by construction of the composed
system with respect to specified business goals. State-of-the-art approaches (see [35]
and references there in) are static and are poorly suited to the synthesis of service
compositions that are able to dynamically evolve in response to changes, e.g., goal
changes, QoS degradation and security policies changes. Focussing on goal changes,
this section overviews a novel approach where, together with self-awareness, the in-
tegration of design-time and runtime synthesis enables the dynamic evolution of
service compositions so as to adapt to possible goal changes. Automatic support
is required at design time to synthesize the initial overall logic to exogenously co-
ordinate (in a fully distributed way) the involved services. At runtime, automatic



Synthesis and verification of self-aware systems 3

support is then required to achieve self-adaptation, through self-awareness, when re-
synthesizing on the fly the portion of the coordination logic affected by the change.
For a reasonably complete treatment of alternative approaches in the state of the art,
we refer to related work described in [7, 5].

2.1 Setting the context

The Future Internet [30] promotes a distributed-computing environment that will
be increasingly inhabited by a virtually infinite number of software services. Soft-
ware systems will be more and more built by composing together software services
distributed over the Internet.

Today’s service composition mechanisms are based mostly on service orches-
tration, a centralized approach to the composition of multiple services into a larger
application. Orchestration works well in static environments with predefined ser-
vices and minimal environment changes. These assumptions are inadequate in the
Future Internet vision, in which many diverse service providers and consumers keep
changing and cannot be coordinated through a centralized approach. In contrast, ser-
vice choreography is a form of decentralized composition that models the external
interaction of the participant services by specifying peer-to-peer message exchanges
from a global perspective [7, 5].

The need for service choreography was recognized in BPMN2 (Business Process
Model and Notation Version 2.01), the de facto standard for specifying choreogra-
phies, which introduced choreography-modeling constructs. BPMN2 Choreography
Diagrams model peer-to-peer communication by defining a multiparty protocol that,
when put in place by the cooperating parties, allows reaching the overall choreogra-
phy objectives in a fully distributed way. In this sense, service choreographies differ
significantly from service orchestrations, in which one stakeholder centrally deter-
mines how to reach an objective through cooperation with other services. Future
software systems will not be realized by orchestration only; they will also require
choreographies. Indeed, services will be increasingly active entities that, commu-
nicating peer-to-peer, proactively make decisions and autonomously perform tasks
according to their own imminent needs and the emergent global collaboration.

2.2 The need for self-adaptation

When third-party participants are involved, usually black-box services to be reused,
a key enabler for the actual realization of choreographies is the ability to automat-
ically compose services, and to dynamically perform exogenous coordination of
their interaction. However, in a distributed setting, obtaining the coordination logic
required to realize a choreography is nontrivial and error prone. Accordingly, auto-
matic support for realizing choreographies is needed.

1 www.omg.org/spec/BPMN/2.0



4 R. Calinescu et al

Choreography-based software systems may be in operation for a long time, and it
is impractical (if not infeasible) to replace or retry the whole choreography process
whenever a change occurs. Instead, choreographies will continuously self-adapt to
new and modified goals, e.g., to meet new business requirements, as well as chang-
ing execution environment, e.g., to support new technologies. Indeed, in general,
many facets can be considered when dealing with software systems that are capable
to evolve by adapting their behavior at runtime. The study presented in [2] identifies
the multiple facets of (self-)adaptation and classifies them into four groups. These
modeling dimensions and their classification help engineers to precisely character-
ize the types of change that a given system can deal with, and how the system can
evolve to face them.

To address the above challenges, this section describes a method for the auto-
matic synthesis of self-adaptable choreographies [5]. The synthesis processor used
by this method takes as input a BPMN2 choreography diagram together with a set
of services discovered as possible candidates to play the choreography roles, and
automatically generates a set of coordination software entities. When interposed
among the services according to a predefined architectural style, these software en-
tities proxify the participant services to coordinate their interaction, when needed.
Specifically, coordination entities (called Coordination Delegates - CDs) enforce
the collaboration specified by the choreography diagram through distributed proto-
col coordination [7].

The synthesis steps performed by the synthesis processor are described in Sec-
tion 2.3. The synthesis processor has been fully-implemented within the context
of the EU FP7 CHOReOS project as a set of REST services whose open source
code is available at www.choreos.eu. Moreover, a set of Eclipse plugins that
allow for interacting with the REST services according to a predefined development
process model is available at choreos.disim.univaq.it, and in [3] a tool
demo is described on a real CHOReOS case study in the marketing and sales do-
main. In Section 2.4, we report on recent enhancements of the CHOReOS synthesis
processor that are being developed within the context of the EU H2020 CHOReVO-
LUTION project (www.chorevolution.eu), a CHOReOS follow-up project.
The main aim of these enhancements is to cope with the automated synthesis of
adaptive/evolvable choreographies. An explanatory example showing the enhanced
synthesis processor at work is given in Section 2.5.

Following key principles of autonomic computing and related architecture con-
cepts [38], it is widely recognized [26] that, in order to effectively design adap-
tive systems, feedback loops enabling adaptiveness must become first-class entities.
Furthermore, the system engineering process must be rethought in order to break
the traditional division among development phases by moving some activities from
design-time to deployment- and runtime, hence asking for the exploitation of mod-
els at run time [26].

Being inspired by this valuable work in the literature, our enhanced CDs are
first-class coordination entities. CDs represent external controllers that realize mul-
tiple interacting feedback loops enabling choreography self-adaptation at the level
of both the supervised participants (local adaptation) and the emergent collabora-



Synthesis and verification of self-aware systems 5

tion among them (global adaptation). In this sense, the choreography-based systems
we target are self-aware systems where individual autonomic elements, i.e., CDs
manage their internal status and behavior and their relationships with the other au-
tonomic elements in accordance with the choreography specification.

2.3 Method for the synthesis of self-adaptable choreographies

The method presented in this section advances our previous work in [5, 6, 7] by
enhancing the synthesis method to also deal with the dynamic evolution of the co-
ordination logic implied by the choreography in response to goal changes.

The synthesis processor takes as input a BPMN2 choreography diagram together
with a set of services discovered as possible candidates for the choreography roles,
and automatically generates a set of coordination entities (i.e., CDs). Figure 1 pic-
torially describes the main steps of the synthesis processor.

Fig. 1 From choreography design to execution and evolution, through automatic synthesis

Step 1. Software producers cooperate with, e.g, domain experts and business man-
agers to: (i) set the business goal (for example, assist travellers from arrival, to stay-
ing, to departure); (ii) identify the tasks and participants required to achieve the
goal (for example, reserving a taxi from the local taxi company, purchasing digital
tickets at the train station, and performing transactions through services based on
near-field communication in a shop), and (iii) specify how participants must collab-
orate through a BPMN2 choreography diagram.
Step 2. The synthesis processor takes as input the BPMN2 choreography diagram.
Step 3. The synthesis processor queries the registry to discover services suitable
for playing the choreography’s roles. The registry contains services published by
providers (for example, transportation companies and airport retailers) that have
identified business opportunities in the domain of interest. As service interfaces de-



6 R. Calinescu et al

scription, the synthesis processor assumes WSDL2. To describe service interaction
behavior, the synthesis processor assumes an automata-based specification, i.e., a
Labeled Transition System – LTS, or a BPEL3 specification.
Step 4. Starting from the choreography diagram and the set of services, the synthesis
processor generates the set of CDs through model transformation. The processor
also generate the so called ChorSpec, a specification of service dependencies to
be used by the Enactment Engine (EE) component for deploying and enacting the
choreography.
Step 5. The generated CDs, together with the description of the services and their
dependencies, serve as input to the EE for deployment and enactment. The descrip-
tion of the EE is outside the scope of this chapter.
Step 6. Following the dependencies, CDs are then interposed among the participant
services needing coordination.

When interposed among the services according to a predefined architectural style
(an instance of which is shown in Figure 2), CDs proxify the participant services to
coordinate their interaction, when needed.

Fig. 2 Instance of the predefined architectural style

CDs guarantee the collaboration specified by the choreography specification
through distributed protocol coordination [7]. CDs perform pure coordination of
the service interactions (i.e., standard communication in the diagram) to ensure that
the resulting collaboration realizes the specified choreography. For this purpose,
the coordination logic is extracted from the BPMN2 choreography diagram and is
distributed among a set of Coordination Models (CMs) that codify coordination
information. Then, at run time, the CDs manage their CMs and exchange this coor-
dination information (i.e., additional communication) to prevent possible undesired
interactions [4, 7], and dynamically self-adapt to possible changes in the specified
choreography diagram.

2 www.w3.org/TR/wsdl
3 https://www.oasis-open.org/committees/wsbpel



Synthesis and verification of self-aware systems 7

2.4 Dealing with choreography self-adaptation

For choreography-based systems, the choreography diagram represents the concrete
specification of the system goal. The source of goal changes is the choreography
modeler (i.e., software producers, domain experts, and business managers in Fig-
ure 1) who modifies the current specification of the choreography at run time, e.g.,
by adding/removing choreography tasks to meet new customer needs.

Following the philosophy of models at run time [26], CDs realize multiple inter-
acting feedback loops while managing their own CMs as follows.

CDs implement a MAPE loop [38], i.e., an abstraction of a feedback loop where
the dynamic behavior of the managed system is controlled using an autonomic man-
ager. Thus, by following the architectural blueprint for autonomic computing, CDs
implement four phases: Monitor (M), Analyzer (A), Planner (P) and Executor (E).
Moreover, in order to enable choreography self-adaptation without incurring in dis-
ruptive interruptions, the CDs’ MAPE loop makes use of the notion of choreography
quiescent state. For a formal definition of the seminal general notion of quiescent
state we refer to [47]. In our context, a choreography is in a quiescent state with
respect to given goal changes if the CDs affected by the change are in a quiescent
state. Roughly speaking, a CD is in a quiescent state if: (i) the portion of its CM,
which is affected by the change, does not involve the current execution state, and
(ii) it has completed all service-CD and CD-CD interactions required to perform a
task and it has not yet started interactions required for a new task.

After the choreography modelers change the current choreography specification
(see goal changes in Figure 1), the synthesis processor re-synthesizes (only) the
CMs that are affected by the change, and redistributes them to the interested CDs.
Moreover, the processor may also synthesize a new ChorSpec due to CDs addi-
tion, removal, or substitution of their CMs. The CDs MAPE loop is then realized as
follows:

1. Monitors – each interested monitor pre-processes the new CM and ChorSpec,
gathers differences with the previous ones, and informs the analyzer.

2. Analyzers – by reasoning on the gathered differences, each interested analyzer
establishes the nature of the change, i.e., CD addition or removal, or CM substi-
tution.

3. Planners – each interested planner selects suitable actions to enable choreogra-
phy evolution according to the supported adaptation rules, related mechanisms,
and the results of the analyzer. Before executing the required adaptations, a
choreography quiescent state has to be reached, and kept all throughout the adap-
tation process. For this purpose, interested planners communicate with each other
to check if their CDs are all in a quiescent state. If it is the case, the planner acti-
vates the executor by providing it with the adaptation plan, e.g., the substitution
of the CM and, according to a new ChorSpec, the substitution of one of the
two controlled services. Otherwise, the planner waits for the quiescent state to be
reached (if possible). Note that the way CD planners are realized is in line with



8 R. Calinescu et al

the distributed nature of the overall MAPE loop, which we realize by means of
multiple interacting feedback loops.

4. Executors – after each interested executor is activated by its planner, the executor
is in charge of keeping the quiescent state of its CD for the time needed to realize
the received adaptation plan. For this purpose, the executor first informs the in-
stance of the distributed coordination algorithm run by its CD (see Section 2.3) to
buffer possible incoming service requests. Secondly, the executor interacts with
the EE to reconfigure the current architectural, e.g., by deploying/undeploying
services and (re-)establishing the new dependencies. Finally, pending service re-
quests are handled once the adaptation process terminates and after the affected
portion of the choreography is re-enacted.

2.5 Case study

We applied our method in a case study from the military domain concerning an
instance of an Emergency Deployment System (EDS) inspired by the scenario
in [2, 50], which is representative of a large number of modern distributed software
applications. We implemented a simulation of this system and used it to validate the
approach described in the previous sections. Briefly, starting from a BPMN2 Chore-
ography Diagram specification and following the steps shown in Figure 1, the case
study shows that our method is able to automatically synthesize the needed CDs and
let them dynamically evolve in response of goal changes without re-synthesizing the
whole choreography. A detailed description of the case study, including a report on
our findings from this work, detailed results, and related implementation, are avail-
able at choreos.disim.univaq.it/downloads.

3 Synthesis of Self-adaptive Connectors meeting Behavioral and
Quality Requirements

Today’s networked environment is increasingly characterized by a wide variety of
heterogeneous Networked Systems (NSs), including for instance tablets and smart-
phones, that dynamically decide to achieve goals through interoperation with other
systems. Some independently developed heterogeneous applications running on
NSs could interact since they use similar interaction protocols implementing com-
patible functionalities. However, they can exhibit mismatches in their interaction
protocols (e.g., different ordering of messages and/or input/ouptut data, or different
formats and granularity of input/output data) preventing them to interact seamlessly.
Moreover, applications should obey quality requirements and this may undermine
their ability to seamlessly interoperate. Achieving interoperability requires solving
such mismatches and meeting the quality requirements. This asks for the adaptation
of the applications through the use of connectors (or mediators), that are the only
locus where we can act to make the NSs adaptable.



Synthesis and verification of self-aware systems 9

Within the self-adaptation area [26], many works can be found in literature tack-
ling several issues by exploiting different techniques. In this section, we concentrate
on run-time application interoperability by means of synthesized self-adaptive con-
nectors taking into account both functional and quality concerns. Out of scope of
this section are: program synthesis, feedback generation in programming, code gen-
eration, or frameworks that automatically manipulate specific files.

In the following, we report on the literature about the synthesis of connectors
that take into account behavioral and quality constraints (Section 3.1), and how such
techniques can be used to synthesize self-adaptive connectors (Section 3.2).

3.1 QB-Synthesis: Quality and Behavioral Connector Synthesis

The research community has devoted significant effort to the synthesis of connectors
since when the seminal paper [66], proposed an adaptor theory to characterize and
solve the interoperability problem of augmented interfaces of applications.

Relating to the automated synthesis of behavioral connectors/mediators, within
the Web Service area a huge effort have been recently devoted to the description and
the automated generation of adaptors, e.g., [54] that is very related to our work.

Works [39, 40] describe an approach for the automated synthesis of functional
(i.e., behavioral) connectors to reconcile application protocol diversities from a
behavioral viewpoint. The approach considers NSs as black boxes which expose
within their interface: the application interaction behavior protocol and an ontolog-
ical description of exchanged messages and data. By reasoning on the ontology, the
approach automatically synthesizes a connector between the considered application
protocols allowing interoperability.

Concerning combined approaches taking into account both behavioral and qual-
ity issues, we can mention papers, [63], and [65]. The first proposes a theoretical
framework to identify composite services satisfying both functional and non func-
tional properties. [63] presents an approach to formally specify connector wrappers
as protocol transformations, modularizing them, and reasoning about their proper-
ties, with the aim to resolve component mismatches. A wrapper is new code inter-
posed between component interfaces and communication mechanisms and its in-
tended effect is to moderate the behavior of the component in a way that is transpar-
ent to the component or the interaction mechanism. The paper [65] proposes an ap-
proach to automatically derive adaptors in order to assemble correct by construction
real-time systems from COTS. The approach takes into account interaction proto-
cols, timing information, and QoS constraints to prevent deadlocks and unbounded
buffers. A synthesized adaptor is then a component that mediates the interaction
between the components it supervises, in order to harmonize their communication.

Even though the above described approaches take into account both behavioral
and quality issues, they do not take into account self-adaptation, that is considered
a challenge for modern systems [26].

To the best of our knowledge, three works contributed to the automated synthe-
sis of self-adaptive connectors meeting both functional and quality requirements,



10 R. Calinescu et al

[54] more at middleware level and [28] and [53] at application level. This latter,
presents an automated connector synthesis approach for the interoperability at ap-
plication layer, taking into account both behavioral and quality interoperability at
both pre-deployment time and runtime. Functional interoperability refers to applica-
tions’ behavior and aims at allowing systems to communicate and correctly coordi-
nate. Non functional interoperability is about the required non functional properties
(i.e., performance and dependability attributes) that must be guaranteed during sys-
tems interoperation. The focus of such work is on issues arising from the execution
environment that can be related to the initial uncertainties about the environment
and its unpredictable evolution. Such issues can cause violations of the non func-
tional properties. The synthesized connector is self-adaptive: in a first place, it is
synthesized to be able to tolerate environment variations and changes within cer-
tain ranges. When the environment diverges from the considered assumptions, an
adaptation cycle needs to be run according to a provided approach at the cost of
re-analysis and synthesis.

3.2 QB-Synthesis of Self-adaptive Connector

In this section we describe a general approach of self-adaptive connectors synthesis
(see Figure 3). It is a three steps approach that assumes as input the NS Applications,
and the QoS properties and requirements of the connected system. A case study that
used this approach is described in [28], where the general approach has been tailored
on performance properties and applied to a system coming from the e-commerce
domain used in CONNECT EU project 4. For sake of space we here present only
the general approach and we refer to [28] for details on its application.

As first step, the approach synthesizes (Functional Synthesis) a Functional con-
nector (satisfying the functional requirements) that allows the input applications to
interoperate on the behavioral side. In this step, by choosing among different set-
tings, one could used different state of the art approaches to synthesizes connectors,
e.g. [40]. Then, the approach carries out the QoS Analysis on the connected system
(i.e., applications and connector) to ensure that it meets the QoS requirement dur-
ing interaction. In the literature, one can find many analysis approaches that can be
used in this step, such as [24, 9]. This step involves analyzing different connected
system’s configuration alternatives obtained by applying some adaptation strategies.
These strategies might include connector behavior slicing, tuning the upper bound
on the number of cycle iterations, and choosing the most convenient deployment
configuration (these strategies are better described later in this section). Next, the
Analysis Results are used to instrument the functional connector so that each possi-
ble mediation path is decorated with quantitative information (Decorated connector)
and is executed only if the current QoS requirement is satisfied. The set of enabled
paths associated with a QoS requirement is called mediator configuration.

4 https://www.connect-forever.eu/



Synthesis and verification of self-aware systems 11

Func%onal	  CONNECTOR	  

Analysis	  Results	  +	  
Decorated	  CONNECTOR	  

Self-‐Adap%ve	  CONNECTOR	  

Func%onal	  Synthesis	  

QoS	  Analysis	  

Func%onal	  
concerns	  

QoS	  
concerns	  

Applica%ons	  

Reasoning	  

Appl1	   Appl2	  
Conn1	  

Run$me	  

QoS	  requirement	  	  
change	  

2.	  

3.	  
4.	  

Adapta%on	  Engine	  

Conn2	  

Conn1	  

Analysis	  Results	  

(NEW)	  QoS	  
concerns	  

1.	   CONNECTed	  System	  	  
running	  

Reasoning	  

Adapta%on	  
computa%on	  

Fig. 3 Connector synthesis overview

The Analysis Results are thus exploited for two different reasons: the first is
to decide (Reasoning) what is the current connector configuration to deploy (Self-
Adaptive connector). The second reason is to select at runtime a new mediator con-
figuration after a QoS requirement change thus obtaining a new adapted connector.
The runtime adaptation is illustrated in the right part of Figure 3 and is described
in the following. The approach synthesizes a self-adaptive connector between the
applications and the (1.) the connected system is running. If the QoS requirements
change for an application (2.), the adaptation process (3.) is triggered. The connec-
tor, as done in [11], is instrumented with monitoring probes that capture the event
and triggers our Adaptation Engine. The latter takes as input the decorated con-
nector, the analysis results and the new QoS requirement. By reasoning on them,
the adaptation engine selects another connector configuration (4.) to be properly
deployed and run at the end of the ongoing system transaction.

An example of the realisation of this process, targeting performance concerns, is
proposed in Figure 4 [28]. The process combines: (i) the mediator synthesis taking
into account the behavioral concerns (upper part of the figure), and (ii) the QoS
analysis-based reasoning acting on the intermediary mediator to meet the connected
system’s performance requirements (bottom part of Figure 4).

The considered approach for the automated synthesis of mediators overcom-
ing interoperability problems between heterogeneous applications, originally intro-
duced in [39, 40], takes as input systems with compatible affordances, i.e., com-
patible high level capabilities in the same domain and comprises three steps: iden-
tification of the common language, behavioral matching, and mediator synthesis.
The Identification of the Common Language, or Abstraction (¶ in Figure 4), among
the actions and data of the various applications takes as input the as applications
protocol and the subset of the domain ontology they refer to, and identifies the ap-
plications common language by classifying their respective (sub-)ontologies into the
application domain ontology through an ontology reasoner revealing the correspon-
dences. The common language makes applications behavior comparable to reason
on them. The Behavioral Matching or Matching (· in Figure 4) checks the applica-



12 R. Calinescu et al

α	  =	  <x,	  Ix,Ox>	  	  
β	  =	  <y,	  Iy,Oy>	  
	  

Descrip(ve	  	  
Proper(es	  
	  

<Req,	  A,	  IA,OA>	  

Networked	  System	  (NS1)	  

	  
δ	  =	  <k,	  Ik,Ok>	  	  
λ	  =	  <w,	  Iw,Ow>	  	  
ρ	  =	  <z,	  Iz,Oz>	  	  	  

Descrip(ve	  
Proper(es	  

<Prov,	  B,	  IB,OB>	  

Networked	  System	  (NS2)	  
Affordance	  

Interface	  

Behaviour	  

Affordance	  

Interface	  

Behaviour	  

Non-‐FuncOonal	  ProperOes	  
Non-‐FuncOonal	  ProperOes	  

AbstracOon	  1

Matching	  2

Synthesis	  3

Mediator	  

Prescrip(ve	  Proper(es	  

	  
Transla(ng	  into	  	  
QoS	  specifica(on	  

	  

	  
Transla(ng	  into	  	  

Measure	  specifica(on	  
	  

	  
Analysing	  and	  Reasoning	  

	  Mediator1	  

4 4

5

b	  
a	  

Fu
nc
(o

na
l	  	  

co
nc
er
ns

	  
Q
oS
	  

	  c
on

ce
rn
s	  

Fig. 4 Overview of the connector synthesis

tions behavioral compatibility, i.e., that the two applications can synchronize at least
on one trace reaching one of their respective final states by properly reconciling pos-
sible mismatches through a mediator. An extensive description of the identified and
managed mismatches is given in [62]. Finally, the Synthesis (¸ in Figure 4) automat-
ically produces a (intermediary) mediator that addresses the identified mismatches
thus enabling the functional interoperation of the two applications.

The QoS analysis-based reasoning takes into consideration QoS concerns during
the synthesis. This is done by acting on the intermediary mediator produced before.
This reasoning is composed by two steps detailed in the following: Generation of a
QoS Model and QoS analysis-based reasoning. The Generation of a QoS Model is
composed by two activities: the first one, Figure 4 ¹a, takes as input the LTS-based
specification of the NSs and of the synthesized mediator, and the descriptive prop-
erties to generate the QoS Model. To execute QoS analysis, a measure specification
that defines the QoS indices of interest is required. The second activity, Figure 4
¹b, translates the prescriptive property defining the QoS requirements on the final
system, into the required measure specification. In the QoS analysis-based reason-
ing, from the QoS specification and the measure specification, the QoS analysis is
executed. If the composed system satisfies the specified requirements then the me-
diator is not modified, otherwise it undergoes a reasoning step that tries to obtain a
mediator showing better QoS (see Figure 4 º). In [28], the performance analysis-
based reasoning leverages the Æmilia ADL [10]. As mentioned before, to improve
the composed system QoS we can act on the mediator to slice alternative behaviors,
limit the number of execution of cycles, and find out the best deployment. At the end
of this step two scenarios are possible: i) we obtain a mediator that allows the com-
posed system to meet the QoS requirements; ii) all the refined mediators obtained
by applying the identified strategies do not allow the composed system to meet the



Synthesis and verification of self-aware systems 13

QoS requirements. In this case the approach does not produce a mediator and asks
to relax the QoS requirement in order to provide a suitable system.

Adaptation Strategies. The proposed approach tries to act on the mediator to
satisfy the quality requirement. In [28], three possible strategies are identified and
can be applied singly or in combination: i) connector behaviors slicing that can be
applied if at least one of the NSs protocols has alternative paths to achieve commu-
nication. In this case the connector behavior is sliced and it mediates only a subset
of the NSs communication paths; ii) tuning the upperbound on the number of cy-
cle iterations. If the protocols contain cycles, several bounds are considered in the
analysis and only the ones that allow the satisfaction of the QoS requirements are
considered in the final synthesized connector. Finally iii) choosing the most con-
venient deployment configuration among three possibilities: all remote where the
mediator and the applications are deployed on separate machines, and local to NS1
or local to NS2 where the mediator is deployed on the same machine where either
one application or the other is running, NS1 or NS2 respectively. It is worth notic-
ing that the synthesis process generates the most general connector that satisfies the
functional and non-functional requirements. Most general means that, with respect
to the functional mediation, the connector protocol prevents the execution only of
the paths that do not satisfy non-functional requirements.

Due to context evolutions, and in particular to runtime changes on the QoS re-
quirements, it might also happen that at runtime the connected system does not
satisfy the new requirements. To address this issue, the proposed approach performs
a runtime adaptation of the connector based on the three strategies identified above
thus obtaining a new connector.
Adaptation Reasoning. Based on the applicable strategies, the reasoning identifies
a number of different mediator configurations (# mediator configurations = # pos-
sible slicing * # different upper bounds on cycles * # different deployment). For
instance, the combination of the strategies in a case study in [28] gave us 54 final
configurations to consider and hence 54 corresponding experiments to conduct.

The initial QoS requirement, from the analysis results performed before during
the synthesis, can be satisfied by several configurations. Among them, it is selected
the best configuration based on one policy or more, e.g., in [28] it is selected the
admissible configuration that maximizes the user interactions (no mediator slicing
and highest upper bound on the number of the number of cycles in the protocol).

This runtime change of QoS requirement triggers an adaptation, since the new
requirement is not satisfied by the previous mediator configuration. The adaptation
is realized by selecting, among all the admissible mediators configurations, the one
that better suits the new requirement taking into account the policy (e.g., maximize
the user interactions).

3.3 Open Issues

Nowadays it is possible to enable interoperability between heterogeneous proto-
cols leveraging automatically synthesized self-adaptive mediators that let them in-



14 R. Calinescu et al

teract seamlessly. In this setting, many works in literature proposed a solution to
automated mediator synthesis that addresses the functional facet of the problem.
Additionally, few approaches have been recently proposed to also deal with non-
functional aspects and with adaptations of the connector due, for instance, to run-
time QoS requirement changes.

However, the behavioral connector synthesis and the quality analysis approaches
suffer from the usual limitations of model-based (stochastic) analysis and synthesis
(e.g., state explosion). Hence, more efficient methods are needed to make behavioral
synthesis and quality analysis widely applicable. Toward this direction, a study on
how to optimize the designed approaches should be made. This would improve the
runtime applicability and scalability of the overall approach for the synthesis of
self-adaptive connector that considers both behavioral and quality concerns.

4 Quantitative verification at runtime

The integration of formal verification techniques into the reconfiguration of self-
aware systems aims to guarantee that these systems continue to meet their require-
ments as they change over time. The formal verification paradigm overviewed in this
section extends the applicability of quantitative verification to self-aware systems.

Quantitative verification [48] is a mathematically based technique for analysing
the correctness, reliability, performance and other QoS properties of systems char-
acterised by stochastic behaviour. The technique carries out its analysis on finite
state-transition models comprising states that correspond to different system config-
urations, and edges associated with the transitions that are possible between these
states. Depending on the analysed QoS properties, the edges are annotated with tran-
sition probabilities or transition rates; additionally, the model states and transitions
may be labelled with rewards. The types of models with probability-annotated tran-
sitions include discrete-time Markov chains (DTMCs) and Markov decision pro-
cesses (MDPs), while the edges of continuous-time Markov chains (CTMCs) are
annotated with transition rates.

Given one of these models and a QoS property specified formally in a variant
of temporal logic extended with probabilities and rewards, the technique analyses
the model exhaustively to evaluate the property. Examples of properties that can
be established using the technique include the probability that a system component
operates correctly, the expected reliability of a composite service, and the expected
energy consumed by an embedded system. Quantitative verification is typically per-
formed automatically by tools termed probabilistic model checkers.

We will illustrate the use of quantitative verification for a dynamic power man-
agement (DPM) system with the structure in Fig. 5(a). This system comprises a
service provider responsible for handling requests generated by a service requester
and stored in a finite request queue. The service provider can operate in three dif-
ferent modes—busy, idle and sleep—that correspond to different power usages and
operation rates. Fig. 5(a) depicts the power usage of each mode (in watts), the pos-



Synthesis and verification of self-aware systems 15

Dynamic power
management system

Service provider
Power 

Manager

Service Requester

busy
2.15W

idle
0.95W

sleep
0.13W 

0J

0J 7J

0.067J
state
information

state-
transition
commands

Request queue

q 
Qmax

(a) The DPM system

(b) PRISM analysis of lost requests

(c) PRISM analysis of power usage (d) PRISM code for the DPM system

Fig. 5 Modelling and quantitative verification of DPM system properties

sible transitions between modes, and the energy consumed by each transition (in
joules). These values are taken from [56] and correspond to a Fujitsu disk drive.

The DPM system operates as follows. Upon receiving a new request, the ser-
vice provider automatically transitions to the busy mode, if it is in the idle mode;
otherwise (i.e., if in the sleep or busy mode), its mode remains unchanged. If the
queue contains q > 1 requests and the service provider is in the busy mode, one



16 R. Calinescu et al

of these requests is processed. Upon processing the last request, q = 0, the service
provider automatically transitions to the idle mode. A software power manager con-
trols the transitions between the sleep and idle service provider modes. In doing so,
the power manager considers the state of the system and aims to reduce power use
while maintaining an acceptable service level.

Fig. 5(d) shows a CTMC model of the DPM system. This model is adapted
from [56], and is defined in the high-level modelling language of the probabilistic
model checker PRISM [49]. The RequestQueue, ServiceProvider and PowerMan-
ager modules within this model correspond to the similarly named components of
the DPM system. The local variables from the RequestQueue and ServiceProvider
modules represent the number of requests within the queue (q) and the service
provider mode (sp). Synchronisation between all modules occurs through the re-
quest and serve actions, which denote requests arriving into the queue and being
processed, respectively. The service provider manages the transitions between the
busy and idle operating modes (lines 28–31). In contrast, the transitions between
idle and sleep are controlled by the power manager through the synchronisation of
ServiceProvider and PowerManager commands using common actions (lines 32–
34 and 44–45). For instance, when the request queue becomes empty, the power
manager performs an idle to sleep transition with probability switchToSleep (lines
41–42). Similarly, when the request queue grows to q ≥ qT hreshold requests, the
power manager performs a sleep to idle transition to ensure that the service provider
starts handling requests (line 44).

Finally, CTMC states and transitions are associated with rewards...endrewards
structures (lines 48–62). The “Energy” reward structure encodes the energy con-
sumed by the service provider in each mode and during transitions between modes.
The “DroppedRequests” and “ServedRequests” reward structures associate a re-
ward of 1 with the transitions where requests are dropped due to a full queue and
served, respectively. Using these reward structures and a reward-augmented vari-
ant of continuous stochastic logic (CSL), it is possible to specify and analyse QoS
properties of the DPM system. For example, Fig. 5(b) and 5(c) depict the expected
number of dropped requests and the expected energy use over 100s of system opera-
tion, as a function of the switchToSleep probability, when arrivalRate = 0.8s−1 and
qT hreshold = 8. These results were obtained by analysing the CSL reward proper-
ties R“DroppedRequests”

=? [C≤100] and R“Energy”
=? [C≤100], respectively.

4.1 Application to self-aware systems

Extending the applicability of quantitative verification to self-aware systems re-
quires the continual use of the technique at run time [15]. To this end, quantitative
verification at runtime integrates this formal verification technique into the MAPE
(Monitor-Analyse-Plan-Execute) closed control loop of self-aware systems.

Quantitative verification at runtime requires the monitoring of self-adaptive sys-
tems and their environment, in order to identify relevant changes and quantify them
using fast on-line learning techniques. These observations are used to continually



Synthesis and verification of self-aware systems 17

Table 1 QoS requirements for the self-aware DPM system

ID Informal description Formal specification

R1 Performance: “The expected number of dropped re-
quest per 100s of running time should not exceed 0.5.”

R“DroppedRequests′′
≤0.5 [C≤100]

R2 Energy use: “The service provider should consume at
most 100 Joules per 100s of running time.”

R“Energy′′
≤100 [C≤100]

R3 Utility: “Subject to R1 and R2 being met, the DPM sys-
tem must use a configuration that maximises

utility(switchToSleep,qT hreshold) = w1S+w2/E,

where S is the number of requests served given by eval-
uating the property R“ServedRequests”

=? [C≤100] and E is the
energy used by the service provider per 100s of system
running time. The weights w1,w2>0 express the trade-
off between system throughput and battery usage.

find

argmax utility (switchToSleep,

qT hreshold)

such that R1 and R2 are satisfied

update a probabilistic model of the system, starting from an initial model provided
by the system developers. For example, fast on-line learning techniques are used in
[16, 17, 29] to monitor the changing probabilities of successful service invocation
for service-based systems, and thus to update DTMC models of these systems. Prob-
abilistic model checking performed at runtime is then used to re-verify the compli-
ance of these updated models with QoS requirements related to the system response
time, reliability, cost, etc. If QoS requirement violations are identified or (when the
functionality associated with the unsatisfied requirements has not been exercised)
predicted, the results of the analysis support the synthesis of a reconfiguration plan.
Executing this plan ensures that the self-adaptive system will continue to satisfy its
QoS requirements despite the changes identified during monitoring.

To illustrate the use of the technique, suppose that the DPM system from the
previous section must comply with the QoS requirements from Table 1 in the pres-
ence of changes in the request arrival rate. To achieve this compliance, the power
manager uses quantitative verification at runtime. Request arrivals are monitored to
establish the current request arrival rate. This information is used to continually up-
date the CTMC model from Fig. 5(d). The updated CTMC model is then verified to
identify values for

• the probability switchToSleep for setting the service provider to sleep mode, and
• the parameter qThreshold for switching the service provider to idle mode

which ensure that the DPM system meets its QoS requirements for the current re-
quest arrival rate. As an example, Figs. 6(a) and 6(b) show the results of the quanti-
tative verification carried out at runtime when arrivalRate = 0.65s−1. These results
establish the expected number of dropped requests and the energy usage for a range
of possible switchToSleep and qThreshold values. The shaded areas from Fig. 6(a)
and 6(b) correspond to parameter values (i.e., to power manager configurations) that
violate requirements R1 and R2, respectively. These configurations are discarded.



18 R. Calinescu et al

qThreshold=0 qThreshold=2 qThreshold=4 qThreshold=6 qThreshold=8 qThreshold=10

0.2 0.4 0.6 0.8 1
Switch to sleep probability

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Ex
pe

ct
ed

 d
ro

pp
ed

 re
qu

es
ts

 p
er

 1
00

s

(a)

0.2 0.4 0.6 0.8 1
Switch to sleep probability

50

100

150

200

250

300

Ex
pe

ct
ed

 e
ne

rg
y 

us
e 

pe
r 1

00
s 

[J
]

(b)

0.1 0.2 0.3 0.4 0.5
Switch to sleep probability

83.5

84

84.5

85

85.5

86

86.5

87

ut
ilit

y

(c)

Fig. 6 Verification results for (a) requirement R1 and (b) requirement R2 from Table 1, and (c)
utility of the valid configurations of the DPM system

Next, the utility of the remaining, feasible configurations is computed. Fig. 6(c) de-
picts the utility values calculated for the feasible configurations from Figs. 6(a) and
6(b), with w1 = 1 and w2 = 2000 in the utility formula from Table 1. The configura-
tion that maximises the system utility is circled in Fig. 6(a)–(c). This configuration
is adopted by the power manager when arrivalRate = 0.65s−1.

4.2 Research challenges

Quantitative verification at runtime is a new area of research. Although successful
applications have emerged in QoS optimisation for service-based systems [16, 29],
reconfiguration of cloud computing infrastructure [42], and adaptive resource man-
agement in embedded systems [13], several research challenges remain unsolved.

In particular, the state explosion problem that affects model checking is an even
greater challenge for quantitative verification at runtime. In the case of self-aware
systems, the probabilistic model checking of an updated model needs to be per-
formed not only with acceptable overheads for the verified system, but also fast
enough to support timely self-adaptation, and before the model is rendered obso-
lete by the next update. Recent research has proposed preliminary approaches to
tackling this challenge through parametric verification (described in the next sec-
tion), compositional and incremental [42] verification, and, more recently, decen-
tralised quantitative verification [13]. Nevertheless, further research is needed to
extend these approaches and to enable the application of the technique to large,
rapidly changing and distributed systems.



Synthesis and verification of self-aware systems 19

Even when quantitative verification at runtime can be performed very fast for the
model associated with a configuration of a self-aware system, the extremely large
configuration spaces of many such systems pose a major challenge. The recently
proposed search-based software engineering approach to probabilistic model syn-
thesis [34] may have the potential to help address this challenge, as it operates with-
out an exhaustive exploration of the configuration space. Assessing the applicability
of these solutions to self-aware systems remains an area of future research.

Finally, another key challenge is to ensure that the probabilistic models verified
at runtime are accurate. Despite the development of effective techniques for learning
the transition probabilities of Markov chains from runtime observations [16, 17, 29],
the current use of point estimates for these probabilities may introduce unquantified
estimation errors. Quantitative verification with confidence intervals has been intro-
duced recently to address this problem [14], although its use in self-aware systems
is yet to be explored.

5 Parametric verification

Many systems that are subject to verification are inherently stochastic. Examples
include randomized distributed algorithms (where randomization breaks the sym-
metry between processes), security (e.g., key generation at encryption), systems
biology (where species randomly react depending on their concentration), embed-
ded systems (interacting with unknown and varying environments), and so forth. A
well-known example is the crowds protocol, which employs random routing to en-
sure anonymity. Nodes randomly choose to deliver a packet or to route it to another
randomly picked node. In the presence of “bad” nodes that eavesdrop, we could be
interested in analyzing probabilistic safety properties such as “the probability of a
bad node identifying the sender’s identity is less than 5%”.

In the recent past, different automata- and tableau-based probabilistic model-
checking techniques to prove model properties specified by, e.g., probabilistic ω-
regular languages or probabilistic branching-time logicssuch as pCTL and pCTL∗

have been developed [37]. Probabilistic model checking is applicable to a plethora of
probabilistic models, ranging from discrete-time Markov chains to continuous-time
Markov decision processes and probabilistic timed automata, possibly extended
with notions of resource consumption (such as memory footprint and energy us-
age) using rewards (or prices). For instance, PRISM [49] or MRMC [44] are mature
probabilistic model checkers and have been applied successfully to a wide range of
benchmarks.

A major practical obstacle is that these quantitative verification techniques and
tools work under the assumption that all probabilities in models are a priori known.
However, at early development stages, certain system quantities such as faultiness,
reliability, reaction rates and packet loss ratios are often not (or at the best par-
tially) known. In such cases, parametric probabilistic models can be used for speci-
fication, where transition probabilities are specified as arithmetic expressions using
real-valued parameters. In addition to checking instantiated models for fixed param-



20 R. Calinescu et al

eter values, the important problem of parameter synthesis arises, posing the question
which parameter values lead to the satisfaction of certain properties of interest. Para-
metric models are very natural in adaptive and self-aware software where “contin-
uous” verification frequently amends system models during deployment as well as
in model repair, where probabilities are dynamically tuned so as to satisfy a desired
property. This section will describe the state of the art in parametric quantitative
verification and its usage in model repair.

5.1 Parametric Markov Chains

We will first introduce the model at hand. A parametric discrete-time Markov chain
(pMC) is defined as a usual discrete-time Markov chain (MC), with probabilities
given by rational functions (fractions of polynomials) over a given set of parameters.

Consider the example pMC given in Figure 7(a). From state s0 three transitions
emerge, one transition carrying probability 0.5 and two parametric transitions with
the parameters p and q. In order for these three transitions to form a suitable proba-
bility distribution, one needs to make sure that the parameters are only instantiated
in a way such that all probabilities emanating from s0 sum up to one. We call such
an instantiation a valuation of parameters, which is a function mapping from the set
of parameters to the real numbers. A valuation inducing probability distributions is
called well-defined. For instance, the valuation v with v(p) = v(q) = 0.25 induces a
well-formed MC which is depicted in Figure 7(b).

s0 s1

s2

s3

s4

s5

p

0.5

q

0.5

0.5

0.3
0.7

1

1
2p

q
q

(a) An example pMC M .

s0 s1

s2

s3

s4

s5

0.25

0.5

0.25

0.5

0.5

0.3
0.7

1

1
0.5

0.25
0.25

(b) The MC D resulting from instanti-
ating all parameters of the pMC M .

s0 s1

s2 s4

s5

p

0.5

2pq/1−q q2/1−q

0.5

0.5

0.3
0.7

1

1

(c) The pMC M resulting from elimi-
nating state s3.

s0

s4

s5

fs0,s4

fs0,s5

1

1

(d) The pMC M resulting from elimi-
nating all states but s0, s4, and s5.

Fig. 7 Parametric Markov chains



Synthesis and verification of self-aware systems 21

The properties we investigate are so-called reachability properties, i. e. to com-
pute the probability of reaching a dedicated set of target states. For instance, for the
MC in Figure 7(b) the probability to reach state s5 from the initial state s0 is 0.72.
For pMCs, this can be solved by computing a rational function over the occurring
parameters describing the reachability probability. This means, if the parameters
of the function are instantiated by a valuation that is well-defined for the original
pMC, this will evaluate to exactly the reachability probability of the correspond-
ing instantiated MC. In our running example, the functions describing reachability
probabilities from s0 to s4 and s5 are given by:

fs0,s4 =
40p2 +20pq+6p+3q

68p2 +34pq+34q2 +34p+17q

fs0,s5 =
28p2 +14pq+34q2 +28p+14q
68p2 +34pq+34q2 +34p+17q

This example shows that already for very simple benchmarks rather complicated
functions might occur.

5.2 State of the art

In 2004, Daws [25] first proposed to represent reachability probabilities in pMCs by
means of rational functions, which are obtained by state elimination (as for obtain-
ing a regular expression from automata). The basic idea is to “bypass” a state s by
removing it from the model and increasing the probabilities P(s1,s2) of the transi-
tions from each predecessors s1 to each successors s2 by the probability of moving
from s1 to s2 via s, possibly i cluding a self-loop on s.

Consider again the pMC in Figure 7(a). Assume, state s3 is to be eliminated.
The states that are relevant for this procedure are the only predecessor s0 and the
successors s0 and s5. Applying state elimination yields the model in Figure 7(c).
Moreover, if all intermediate states are eliminated, only transitions directed from
initial states to absorbing states remain. The result is depicted in Figure 7(d). This
is what we call the model checking result for parametric probabilistic verification.

This technique has been improved by Hahn et al. [36] by directly computing and
simplifying intermediate functions, as a major drawback of the state elimination
technique is the rapid growth of rational functions. The simplification involves the
addition of rational functions where the costly operation of computing the great-
est common divisor (gcd) needs to be performed. Jansen et al. [41] further im-
proved the state elimination technique by combining it with SCC decomposition,
and a dedicated gcd-computation operating on partial factorizations of polynomi-
als. State elimination is the core of the tool PARAM [36] and has recently been
adopted in PRISM [49]. The new tool PROPhESY [27] also employs variants of
state-elimination. These are—to the best of our knowledge—the only available tools
for computing reachability probabilities (and expected rewards) of pMCs. For the



22 R. Calinescu et al

0.0 0.2 0.4 0.6 0.8 1.0
pK

0.0

0.2

0.4

0.6

0.8

1.0

p
L

(a) Sampling

0.0 0.2 0.4 0.6 0.8 1.0
pK

0.0

0.2

0.4

0.6

0.8

1.0

pL

(b) Coarse region partition

0.0 0.2 0.4 0.6 0.8 1.0
pK

0.0

0.2

0.4

0.6

0.8

1.0

pL

(c) Fine region partition

Fig. 8 Sampling and region analysis

common benchmarks available at the PRISM website [49], PROPhESY performs
best on nearly all benchmark instances both for reachability probabilities and ex-
pected rewards. In general, for systems with two parameters instances having up to
10 million states can be handled within reasonable time.

With the exception of PROPhESY, the available tools just output the rational
function sometimes accompanied by constraints ensuring well-definedness. The
problem of parameter synthesis is thereby not addressed directly. Other works con-
sider parameter synthesis of timed reachability in parametric CTMCs [19].

In model repair [8], models refuting a given property are amended so as to satisfy
this property. In this setting, parametric MCs are used as underlying model.

5.3 Parameter synthesis

In our setting, a requirement is given as an upper bound on reachability probabilities.
For instance, for the function fs0,s5 as in Figure 7(d) one might give a value λ ∈ [0,1]
such that fs0,s5 < λ . Now, to determine whether the requirement is met, one has to
consider all possible parameter valuations for p and q. These parameter synthesis
problems are challenging and substantially more complex than verifying standard
MCs—just checking whether a pMC is realizable (having a parameter evaluation
inducing a well-defined MC) is exponential in the number of parameters.

The tool PROPhESY addresses this problem as follows. To give the user a feasi-
ble and usable approach, an (approximate) partitioning of the parameter space into
safe and unsafe regions is computed. Each parameter instantiation within a safe re-
gion satisfies the requirement under consideration, while inside unsafe regions, no
instantiation meets the requirement.

This is done in an incremental fashion: After the rational function is computed,
the first step is to sample the rational function up to a user-adjustable degree. This
amounts to instantiating parameter values (determined by dedicated heuristics) over
the entire parameter space. This yields a coarse approximation of parts of the so-
lution space that are safe or unsafe and can be viewed as an abstraction of the true
partitioning into safe or unsafe parts. A typical sampling result with respect to two



Synthesis and verification of self-aware systems 23

M1 :

(1) (2)

1
2

1
2

1
2

1
2

M2 : (1) (2)

1
2−x

1
2−y

1
2+x 1

2+y

(a) Environment M1 and strategy M2

M :

(1,1) (2,1)

(1,2) (2,2)

1
1
4+

1
2 x

1
4+

1
2 y 1

1
4+

1
2 x

1
4−

1
2 x

1
4−

1
2 x1

4−
1
2 y

1
4−

1
2 y

1
4+

1
2 y

(b) Parallel composition M

Fig. 9 Parametric Markov chain for model repair

parameters can be seen in Figure 8(a). Points (or rather parameter instantiations)
that satisfy the requirement are drawn green, the other are red.

The goal is now to divide the parameter space into regions which are certified
to be safe or unsafe. This is done in an iterative CEGAR-like fashion. First, a re-
gion candidate assumed to be safe or unsafe is automatically generated. An SMT
solver like Z3 [43] is then used to verify the assumption. In case it was wrong, a
counterexample in the form of a contradicting sample point is provided along which
the abstraction/sampling is refined, giving a finer abstraction of the solution space.
Using this, new region candidates are generated. A very coarse partition into such
regions is shown in Figure 8(b), a fine partition covering over 90% of the parameter
space is shown in Figure 8(c). For the used benchmarks, a covering of over 95% can
be achieved within seconds. After that it is increasingly costly to determine the rest.

5.4 Model repair

A still open and important problem is how to automatically and efficiently repair a
MC model that does not meet a certain requirement. This application of parametric
models is highly relevant for several applications such as in the area of robotics. A
first approach was presented by Bartocci et al. [8], based on defining a non-linear
optimization problem encoding that the system is changed with minimal cost such
that desired property is satisfied. The main practical obstacle of using non-linear
optimization, be it using a dedicated optimization algorithm or using an SMT-solver
for non-linear real algebra [43] coupled with a binary search towards the optimal
solution, is scalability. As the optimization involves costly computations of greatest
common divisors of polynomials, approaches like [36, 41] are inherently restricted
to small pMCs with just a few parameters.

Recently, Pathak et al. [55] proposed a heuristic approach to model repairs moti-
vated by a robotics scenario. The method starts from an initial parameter assignment
and iteratively changes the parameter values by local repair steps. To illustrate the



24 R. Calinescu et al

D :

(1,1) (2,1)

(1,2) (2,2)

1
1
4

1
4

1

1
4

1
4

1
4

1
4

1
4

1
4

(a) Initial MC D

D̂ :
(1,1) (2,1)

(1,2) (2,2)

1
7
20

1
4

1

7
20

3
20

3
20

1
4

1
4

1
4

(b) Repaired MC D̂

Fig. 10 Model repair

basic idea, assume a model in which the probability to reach some “unsafe” states
is above an allowed bound. Using model checking we know for each state the prob-
ability to reach “unsafe” states. The higher this probability, the more dangerous it
is to visit this state. To repair the model, we iteratively consider single probability
distributions in isolation, and modify the parameter values such that we decrease the
probability to move to more dangerous successor states. The approach is shown to
be sound in the sense that each local repair step improves the reachability probabil-
ity towards a desired bound for a repairable pMC.

To illustrate the robotics scenario and the proposed technique, consider a toy
example from [55] given in Figure 9(a). An object moves between two places (1)
and (2) according to the MC M1. To catch the object, a robot moves between the
places according to a strategy modelled by the pMC M2. With certain parameter
domains, this defines the degree of freedom one has to perturb the strategy. For
these two systems, the synchronous parallel composition is depicted as the pMC M
in Figure 9(b). Intuitively, the probability to actually catch the ball is the probability
to finally reach the states (1,1) and (2,2).

Assume now that for some reason it is dangerous to catch the ball at (2). We
therefore want to decrease the probability of reaching state (2,2) in M , say it should
be smaller than 0.5. Assume furthermore, an initial valuation of parameters leads to
the MC D depicted in Figure 10(a) by basically instantiating all parameters with
zero. In D , the probability to reach (2,2) is 0.5, i. e., the requirement is not met.
Locally changing the probability distributions towards the requirement means, that
the reachability probability needs to be decreased. A possible result is the MC D̂
depicted Figure 10(b), where the probability to reach (2,2) is now only 4/9, which
means that the requirement is met. We call D̂ a repair of D . Experiments show that
this approach is feasible for systems with millions of states.



Synthesis and verification of self-aware systems 25

6 Runtime verification and probabilistic models

The goal of system health management is similar to that of a healthcare system,
which aims to keep people healthy. System health management [23], in contrast,
focuses on artificial or engineered systems, including aerospace [59, 60], electrical
power [51, 57], infrastructure, mobile, and software systems [52, 58], and aims to
keep them (and consequently also their users and operators) healthy or safe. Key
system health management processes are detection, isolation, prognosis, and miti-
gation. Detection amounts to asking “Is something wrong or faulty in the system?”
Isolation asks “Which components, if any, are faulty?” Prognosis is forecasting, and
asks the question “Is the system or any components going to fail soon?” Finally, mit-
igation focuses on the question “What can I do in order to work around failures?”

The methods used to address each of these four questions, along with their rel-
ative importance, vary from application area to application area. In the following
we will focus on general methods—namely probabilistic graphical models [45] and
runtime verification [61]—and illustrate them by means of aerospace applications.
Unmanned aerial systems (UASs), some of which are also known as drones, will be
emphasized.

In general, there are two systems involved [23]. One system is the system being
monitored; this can be a mechanical system, an electrical power system, a mobile
phone, or a software system. Second, there is the monitor. In our case, the monitor
is called a system health monitor (SHM). The SHM is typically a computer run-
ning adjacent to the system being monitored, and is taking as input sensor readings
from the monitored (or target) system. The concept of sensor reading should here
be interpreted broadly, and can be vibration measurements for a mechanical system,
voltage measurements for an electrical power system, or log file entries for a soft-
ware application. What these sensor readings have in common is that they reflect
the target’s health status, and are used by the system health monitor to compute
estimates of the target’s current and future health status. Often, the SHM relies on
the use of one or several models, along with algorithms operating on them, and a
key questions system health management centers around how these models are ex-
pressed, how they are developed, what they are used for, and how computation with
them is performed.

We are in particular focused on models that are represented as probabilistic
graphical models, and specifically using Bayesian networks and arithmetic circuits.
Bayesian networks have received substantial attention both from researchers and
practitioners, and have been successfully employed for target systems such as elec-
trical power systems and software systems. Sometimes, not only the monitored sys-
tem is being modeled, but also its sensors. This enables the one to distinguish be-
tween system failure and sensor failure in the SHM model and thus by the SHM
monitor.

Bayesian network models for system health management can be developed man-
ually by developers in collaboration with subject matter experts as well as in a com-
pletely data-driven fashion [64]. There are also hybrid development methods, in
which the structure of the Bayesian network is constructed manually, while its pa-



26 R. Calinescu et al

rameters are estimated from data, perhaps informed by a Bayesian prior. Once a
probabilistic graphical model for SHM has been developed, there is the question of
its V&V as well as deployment. A Bayesian network model can be used directly
by an SHM monitor for online system health management, or it can be compiled
to a secondary model which is then used by SHM monitor. Data structures for such
secondary models include junction trees and arithmetic circuits. Benefits of using a
secondary data structure include faster computation, simpler SHM algorithms, more
predictable compute time and memory consumption, and lower power consumption.
In addition, different computational platforms can come into play, including not only
CPUs but also graphics processing units (GPUs) [67, 68] and field programmable
gate arrays (FPGAs).

Regardless of whether a Bayesian network model or a compiled model is used
for SHM monitoring, a posterior distribution P(H | e) is computed by means of the
probabilistic graphical model. Here, e is the input to the model (computed from
the target or monitored system), while H is a set of random variables that reflect
the health status of the target system. One random variable among this set can,
for example, represent the health status of one component or one subsystem in the
target system. Each component in the target system is typically represented by a
handful of random variables in the SHM model. The graph structure of the model
will reflect dependencies and independencies of the target system, and will also
reflect the structure of the problem that we are trying to solve.

There are at least three key design requirements for SHM in aerospace [60]:
unobtrusiveness, responsiveness, and realizability. Unobtrusiveness means that the
SHM framework must not change in any way the properties of the vehicle.5 Re-
sponsiveness means that the SHM framework must operate in real time. Realizabil-
ity means that the SHM framework must easily plug into the existing hardware and
software stack of the UAS. One cannot expect that this stack can be easily changed;
an SHM component needs to blend into an existing ecosystem without too much
“pain.”

The above requirements have been met in the novel rt-R2U2 framework [60].
The rt-R2U2 framework is a hybrid or modular one, in which different models are,
to a large extent, developed and implemented separately but with well-defined in-
terfaces. Typical building blocks of rt-R2U2 are the following: signal processing
blocks, temporal logic blocks, Bayesian reasoning blocks, and miscellaneous com-
puting blocks. These blocks can be connected in a block diagram fashion, thus a
temporal logic block can take as input results from a Bayesian reasoning block and
vice versa. Bayesian reasoning blocks contain arithmetic circuits compiled from
Bayesian networks. Bayesian reasoning blocks are typically used to estimate com-
ponent and sensor state-of-health from noisy and uncertain sensor data. Tempo-

5 For example, for manned flight there is a stringent certification requirement. For both unmanned
and manned flight, there is typically stringent resource limitations. These resource requirements
may vary from aerospace vehicle to aerospace vehicle, but are often concerned with electrical
power consumption, weight, and computational needs. These requirements are different from what
is often seen in other applications of verification or runtime verification, and impact the techniques
developed to meet the requirements.



Synthesis and verification of self-aware systems 27

ral logic blocks, on the other hand, contain temporal logic formulas that express
aerospace safety requirements. Linear Temporal Logic (LTL) and Metric Temporal
Logic (MTL) are often used to formalize safety requirements in aerospace. The key
benefit of the rt-R2U2 framework is that such temporal formulas can be used for
runtime verification, even on a UAS under the three quite strict design requirements
discussed above (unobtrusiveness, responsiveness, and realizability). The rt-R2U2
framework has been implemented on an FPGA, and overall this approach meets
the three design requirements identified above, namely unobtrusiveness, responsive-
ness, and realizability.

The rt-R2U2 framework has been successfully implemented and validated us-
ing data from the Swift UAS, an unmanned all-electric aircraft at NASA [60]. In
the Swift UAS, there is a read-only interface from the bus attached to the main
flight computer. This read-only interface is used by the SHM monitor, which is
implemented by means of an FPGA. The FPGA is used to compute with an arith-
metic circuit (AC) model compiled from a Bayesian network model. In addition to
a Bayesian network model, runtime verification methods are being used. These run-
time verification techniques are evaluating temporal logic formulas on the FPGA.
These temporal logic formulas express flight rules, operational limitations of the
Swift UAS, and so forth. Inputs to an AC model can be sensor readings, filtered
sensor readings, or outputs of another Bayesian reasoning or temporal logic block.
This enables a powerful and flexible system health management capability for a
UAS, and we believe it could be foundation for similar SHM systems outside of
aerospace.

There is a close relationship between the techniques discussed in this section
and those discussed in Section 4 and Section 5. However, there are some additional
requirements and constraints in place, due to the aerospace or more broadly trans-
portation setting that is being focusing on here. For such aerospace (runtime) veri-
fication techniques, there are requirements and concerns beyond the concern for the
potential of a state space explosion found in some traditional verification and model
checking techniques.

7 Analysis and synthesis for self-adaptation exploiting
environment assumptions

During the construction of a self-aware computing system, developers face many de-
cisions about the system’s architecture and design. For example, questions such as
whether to employ centralized or decentralized decision-making, or whether adap-
tation should be executed reactively or proactively must be carefully considered.

The answer to these questions can be informed by past experience with similar
existing systems, or by prototyping and simulation activities that can provide a good
estimation of the behavior of the system at run time. Nevertheless, experience with
similar systems may not always be available, and prototyping or simulating (po-
tentially many) system design variants is not cost-effective. Moreover, prototyping
and simulation are good at providing estimations of the behavior of a system in the



28 R. Calinescu et al

“normal” case, but do not systematically support system analysis in the context of
an unpredictable environment (e.g., worst-case scenario).

In this section, we overview a technique to analyze self-adaptive systems that ex-
plicitly considers the uncertainty in their operating environment. The approach en-
ables developers to approximate the behavioral envelope of a self-adaptive system
by analyzing best- and worst-case scenarios of alternative designs for self-adaptation
mechanisms, given some assumptions about the behavior of the operating environ-
ment. The formal underpinnings of the approach are based on model checking of
stochastic multiplayer games (SMGs) [20], a technique appropriate to analyze the
interplay between a self-adaptive system and its environment. SMG models are ex-
pressive enough to capture: (i) the inherent uncertainty and variability of the envi-
ronment; and (ii) the competitive behavior between a system and its environment
(reflecting the fact that environment changes cannot be controlled by the system).

The underlying idea behind the approach is modeling a system and its environ-
ment as players in a SMG, which can either cooperate to achieve a common goal
(best-case scenario analysis), or compete against each other (worst-case scenario
analysis). Being purely declarative, this technique does not require the availability
of specific adaptation algorithms or infrastructure.

This technique is intended to endow developers with a preliminary understand-
ing of the behavior resulting from architecting a self-adaptive system based on a
set of coarse-grained design decisions, helping them to narrow down the solution
space. Once the coarse-grained architecture of the system has been laid out, it can
be refined into more detailed specifications that can be employed to develop pro-
totypes or simulations that require the availability of specific adaptation algorithms
and demand more effort to develop, compared to a declarative approach.

The remainder of this section first provides an overview of the technique for
model checking SMGs that serves as foundation for analyzing self-adaptation. Next,
we describe how model checking of SMGs is applied to compare alternative ap-
proaches to proactive adaptation in the context of Znn.com [21], a benchmark sys-
tem that has been employed to assess different works on self-adaptation. Finally,
we discuss the challenges in shifting the technique from design-time analysis to
run-time synthesis of adaptation behavior.

7.1 Model checking stochastic games

Automatic verification techniques for probabilistic systems have been successfully
applied in a variety of application domains that range from power management or
wireless communication protocols, to biological systems. In particular, techniques
such as probabilistic model checking provide a means to model and analyze systems
that exhibit stochastic behavior, enabling reasoning quantitatively about probability
and reward-based properties (e.g., about the system’s use of resources, or time).

Competitive behavior may also appear in systems when some component cannot
be controlled, and could behave according to different or even conflicting goals with



Synthesis and verification of self-aware systems 29

respect to other system components. In such situations, a natural fit is modeling a
system as a game between different players, adopting a game-theoretic perspective.

The approach that we describe in this section builds upon a recent technique for
modeling and analyzing SMGs [20]. In this technique, systems are modeled as turn-
based SMGs, meaning that in each state of the model, only one player can choose
between several actions, the outcome of which can be probabilistic. Players can
cooperate to achieve the same goal, or compete to achieve their own goals.

The approach includes a logic called rPATL for expressing quantitative properties
of stochastic multiplayer games and reasoning about the ability of a set of players
to collectively achieve a particular goal. Properties written in rPATL can state that
a coalition of players has a strategy which can ensure that either the probability of
an event’s occurrence or an expected reward measure meets some threshold. rPATL
is a CTL-style branching-time temporal logic that incorporates the coalition oper-
ator 〈〈C〉〉 of ATL [1], combining it with the probabilistic operator P./q and path
formulae from PCTL [12]. Moreover, rPATL includes a generalization of the re-
ward operator Rr

./x from [32] to reason about goals related to rewards. An extended
version of the rPATL reward operator 〈〈C〉〉Rr

max=?[F φ ] enables the quantification
of the maximum accrued reward r along paths that lead to states satisfying state
formula φ that can be guaranteed by players in coalition C, independently of the
strategies followed by the other players. An example of typical usage combining
the coalition and reward maximization operators is 〈〈sys〉〉Rutility

max=?[F
c end], meaning

“value of the maximum utility reward accumulated along paths leading to an end
state that a player sys can guarantee, regardless of the strategies of other players.”

Reasoning about strategies is a fundamental aspect of model checking SMGs,
which enables the synthesis of a strategy that is able to optimize an objective ex-
pressed as a property including an extended version of the rPATL reward operator.
An SMG strategy resolves the choices in each state, selecting actions for a player
based on the current state and a set of memory elements (please refer to [20] for
more details on SMG strategy synthesis).

7.2 Reasoning about self-adaptation using stochastic games

The underlying idea behind the approach to analyze self-adaptive systems consists
in modeling both the self-adaptive system and its environment as two players of a
SMG. The system’s player objective is optimizing an objective function encoded in
a rPATL specification (e.g., minimizing the probability of violating a safety prop-
erty, or maximizing accrued utility - encoded as a reward structure on the game). In
contrast, the environment can either be considered as adversarial to the system (en-
abling worst-case scenario analysis), or as a cooperative player that helps the system
to optimize its objective function (enabling best-case scenario analysis).

We illustrate the technique in the context of Znn.com [21], a benchmark case
study employed to assess different works on self-adaptation.

The main objective for Znn.com is to provide content to customers within a rea-
sonable response time, while keeping the cost of the server pool within a certain op-



30 R. Calinescu et al

erating budget. It is considered that from time to time, due to highly popular events,
Znn.com experiences spikes in requests that it cannot serve adequately, even at max-
imum pool size. To prevent losing customers, the system can maintain functionality
at a reduced level of fidelity by setting servers to return only textual content during
such peak times, instead of not providing service to some of its customers. There are
two main quality objectives for the self-adaptation of the system: (i) performance,
which depends on request response time, server load, and network bandwidth, and
(ii) cost, which depends on the number of active servers.

c0

c1

c2

lbproxy

s0

s1

s2

s3

Fig. 11 Znn.com system architecture

When response time becomes too high,
the system can execute adaptation tactics to:
(i) increment its server pool size if it is within
budget to improve performance; or (ii) switch
servers to textual mode if the cost is near to
budget limit. For simplicity, we consider a
simple version of Znn.com that adapts only
by adjusting server pool size. Note that differ-
ent adaptation tactics take different amounts
of time until their effects are produced (i.e., they have different latency). For exam-
ple, adapting the system to serve results in textual mode may be achieved quickly
if it can be done by changing a simple setting in a component, whereas booting up
a server to share the load may take some time. When planning how to adapt, self-
adaptive approaches tend to make simplifying assumptions about the properties of
adaptation, such as ignoring the time it takes for an adaptation tactic to cause its
intended effect.

In the following, we show how SMG analysis can be instantiated to quantify the
benefits of employing adaptation latency information in decision-making, compar-
ing latency-aware with latency-agnostic adaptation in Znn.com.

The approach consists of two phases: (i) model specification, consisting of
building the game model that describes the possible interactions between the self-
adaptive system and its environment, and (ii) strategy synthesis, in which a game
strategy that optimizes the objective function of the system player is built, enabling
developers to quantify the outcome of adaptation in boundary cases.

7.2.1 Model specification

We consider a game for Znn.com played in turns by two players who are in control
of the behavior of the environment and the system, respectively:

• Environment Player. The environment is in control of the evolution of time and
other variables of the execution context that are out of the system’s control. Dur-
ing its turn, the environment sets the number of request arrivals for the current
time period and updates the values of other environment variables (e.g., increas-
ing the variable that keeps track of execution time).

• System Player. During its turn, the system can either: (i) trigger the activation of a
new server, which will become effective only after the latency period of the tactic



Synthesis and verification of self-aware systems 31

expires; (ii) discharge a server (with no latency associated); or (iii) yield the turn
to the environment player without executing any actions. In addition, the system
updates during its turn the value of the response time according to the request
arrivals placed by the environment player during the current time period and the
number of active servers (computed using an M/M/c queuing model [22]).

The objective of the system player is maximizing the accrued utility during exe-
cution. To represent utility, we employ a reward structure that maps game states to
a utility value computed according to a set of utility functions and preferences (i.e.,
weights). We consider two functions UR and UC that map the response time and the
number of active servers in the system to performance and cost utility, respectively.

In latency-aware adaptation, a reward structure rIU encoded in the game employs
the value of response time MMc(s,a) computed according to the request arrivals a
and the number of active servers s during the tactic latency period to compute the
value of instantaneous utility as rIU= wR ·UR(MMc(s,a))+wC ·UC(cps · s), where
cps is the cost of operating a server.

However, in non-latency-aware adaptation, the instantaneous utility expected by
the algorithm during the latency period for activating a server does not match the
real utility extracted for the system, since the new server has not yet impacted the
performance (although there is impact on cost, since the server is already active
while booting up). In this case, we add to the model a second reward structure rEIU in
which the utility for performance during the latency period is based on the response
time that the system would have if the new server had completed its activation:
rEIU= wR ·UR(MMc(s+1,a))+wC ·UC(cps · s).

7.2.2 Strategy synthesis

To illustrate how SMG analysis can be employed to compare latency-aware with
latency-agnostic adaptation, we describe rPATL specifications that enable quantify-
ing the maximum accrued utility that adaptation can guarantee, independently of the
behavior of the environment (worst-case scenario analysis).

• Latency-Aware Adaptation. We define the real guaranteed accrued utility (Urga)
as the maximum real instantaneous utility reward accumulated throughout exe-
cution that the system player is able to guarantee, independently of the behavior
of the environment player:

Urga , 〈〈sys〉〉RrIU
max=?[F

c t=MAX TIME]

This expression quantifies the utility that an optimal self-adaptation algorithm
would be able to extract from the system, given the most adverse possible condi-
tions of the environment.

• Latency-Agnostic Adaptation. In latency-agnostic adaptation, real utility does
not coincide with the expected utility that a self-adaptation algorithm would em-
ploy for decision-making. Hence, the analysis is performed in two steps:

1. Compute the strategy that the adaptation algorithm would follow based on the
information it employs about expected utility. That strategy is computed based



32 R. Calinescu et al

on an rPATL specification that obtains the expected guaranteed accrued utility
(Uega) for the system player:

Uega , 〈〈sys〉〉RrEIU
max=?[F

c t=MAX TIME]
For the specification of this property we use the expected utility reward rEIU
instead of the real utility reward rIU (in latency-aware adaptation Uega =Urga).

2. Verify the Urga under the generated strategy. This is done by building a product
of the existing game model and the strategy synthesized in the previous step,
obtaining a new game under which further properties can be verified. In our
case, we quantify the reward for real utility in the new game in which the
system player strategy for maximizing expected utility has already been fixed.

Model checking different variants of Znn.com’s SMG shows that latency-aware
adaptation outperforms in all cases its latency-agnostic counterpart (more details
in [18]). Concretely, latency-aware adaptation is able to guarantee an increment in
utility extracted from the system, independently of the behavior of the environment
(∆Urga) that increases progressively with higher tactic latencies.

7.3 From design-time analysis to runtime synthesis

Although the approach presented in this section is oriented towards obtaining a pre-
liminary understanding of adaptation behavior at design-time, its underlying princi-
ples can also be tailored to decide how to adapt at run-time by synthesizing system
strategies while considering explicitly the behavior of the environment.

The main advantage of using probabilistic model checking at run-time instead
of a specific adaptation algorithm is that the adaptation decision is optimal (e.g.,
over a time horizon), since the model checker selects a strategy that optimizes the
system’s goal through exhaustive search. However, the current approach has limited
scalability, since the interleaving of environment and system transitions can easily
lead to an explosion of the state-space. This limitation can be mitigated by carefully
choosing the level of abstraction of the model, or representing the behavior of the
environment only over a relevant time horizon, for instance. Moreover, we expect
that the maturation of this technology will result in the development of efficient
run-time synthesis techniques, following the lead of recent advances in efficient
quantitative verification at run-time [33, 31].

8 Summary

We presented two classes of techniques that support key processes associated with
the operation of self-aware computing systems—verification and synthesis. Us-
ing probabilistic models ranging from Markov chains and Bayesian networks to
stochastic multiplayer games, verification enables self-aware systems to reason
about their reliability, performance, cost and other QoS properties. When changes
in the environment or goals render the actual or predicted values of these proper-



Synthesis and verification of self-aware systems 33

ties inadequate, the synthesis of connectors and service compositions supports the
adaptation of the software architecture of self-aware systems.

Acknowledgments

The work concerning the synthesis method described in Section 2 has been sup-
ported by the European Union’s H2020 Programme under grant agreement number
644178 (project CHOReVOLUTION - Automated Synthesis of Dynamic and Se-
cured Choreographies for the Future Internet), and by the Ministry of Economy and
Finance, Cipe resolution n. 135/2012 (project INCIPICT - INnovating CIty Planning
through Information and Communication Technologies).

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

2. J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling dimensions of self-adaptive
software systems. In SEfSAS, pages 27–47. 2009.

3. M. Autili, D. Di Ruscio, A. Di Salle, and A. Perucci. CHOReOSynt: Enforcing choreography
realizability in the future internet. In FSE’14, pages 723–726, 2014.

4. M. Autili, A. Di Salle, and M. Tivoli. Synthesis of resilient choreographies. In Software
Engineering for Resilient Systems, pages 94–108. 2013.

5. M. Autili, P. Inverardi, and M. Tivoli. Automated synthesis of service choreographies. IEEE
Software, 32(1):50–57, 2015.

6. M. Autili, L. Mostarda, A. Navarra, and M. Tivoli. Synthesis of decentralized and concurrent
adaptors for correctly assembling distributed component-based systems. Journal of Systems
and Software, 81(12):2210–2236, 2008.

7. M. Autili and M. Tivoli. Distributed enforcement of service choreographies. In FOCLASA’14,
pages 18–35, 2014.

8. E. Bartocci, R. Grosu, P. Katsaros, et al. Model repair for probabilistic systems. In TACAS’11,
pages 326–340. 2011.

9. S. Bernardi, J. Merseguer, and D. C. Petriu. Model-Driven Dependability Assessment of Soft-
ware Systems. Springer, 2013.

10. M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software systems with
process algebras. ACM TOSEM, 11:386–426, 2002.

11. A. Bertolino, A. Calabrò, F. Di Giandomenico, et al. On-the-fly dependable mediation between
heterogeneous networked systems. In ICSOFT’11, pages 20–37, 2012.

12. A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In FSTTCS, pages 499–513, 1995.

13. R. Calinescu, S. Gerasimou, and A. Banks. Self-adaptive software with decentralised control
loops. In FASE’15, pages 235–251. 2015.

14. R. Calinescu, C. Ghezzi, K. Johnson, et al. Formal verification with confidence intervals to
establish quality of service properties of software systems. IEEE Transactions on Reliability,
pages 1–16, 2015.

15. R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications of the ACM, 55(9):69–77, 2012.

16. R. Calinescu, K. Johnson, and Y. Rafiq. Developing self-verifying service-based systems. In
ASE’13, pages 734–737, 2013.

17. R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakir. Adaptive model learning for continual
verification of non-functional properties. In ICPE’14, pages 87–98, 2014.



34 R. Calinescu et al

18. J. Cámara, G. A. Moreno, and D. Garlan. Stochastic game analysis and latency awareness for
proactive self-adaptation. In SEAMS’14, pages 155–164, 2014.

19. M. Ceska, F. Dannenberg, M. Z. Kwiatkowska, and N. Paoletti. Precise parameter synthesis
for stochastic biochemical systems. In CMSB’14, pages 86–98, 2014.

20. T. Chen, V. Forejt, M. Z. Kwiatkowska, et al. Automatic verification of competitive stochastic
systems. Formal Methods in System Design, 43(1):61–92, 2013.

21. S. Cheng, D. Garlan, and B. R. Schmerl. Evaluating the effectiveness of the rainbow self-
adaptive system. In SEAMS’09, pages 132–141, 2009.

22. R. Chiulli. Quantitative Analysis: An Introduction. Automation and production systems. 1999.
23. A. Choi, A. Darwiche, L. Zheng, and O. J. Mengshoel. A tutorial on Bayesian networks

for system health management. In Data Mining in Systems Health Management: Detection,
Diagnostics, and Prognostics. 2011.

24. V. Cortellessa, A. Di Marco, and P. Inverardi. Model-Based Software Performance Analysis.
Springer, 2011.

25. C. Daws. Symbolic and parametric model checking of discrete-time Markov chains. In IC-
TAC’04, pages 280–294, 2004.

26. R. de Lemos, H. Giese, H. A. Müller, et al. Software engineering for self-adaptive systems: A
second research roadmap. In SEfSAS II, pages 1–32. 2013.

27. C. Dehnert, S. Junges, N. Jansen, et al. PROPhESY: A probabilistic parameter synthesis tool.
In CAV’15, pages 214–231, 2015.

28. A. Di Marco, P. Inverardi, and R. Spalazzese. Synthesizing self-adaptive connectors meeting
functional and performance concerns. In SEAMS’13, pages 133–142, 2013.

29. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-time param-
eter adaptation. In ICSE’09, pages 111–121, 2009.

30. European Commission. Digital Agenda for Europe - Future Internet Research and Experi-
mentation (FIRE) initiative, 2015.

31. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model checking. In
ICSE’11, pages 341–350, 2011.

32. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques for
probabilistic systems. In SFM’11, pages 53–113, 2011.

33. S. Gerasimou, R. Calinescu, and A. Banks. Efficient runtime quantitative verification using
caching, lookahead, and nearly-optimal reconfiguration. In SEAMS’14, pages 115–124, 2014.

34. S. Gerasimou, G. Tamburrelli, and R. Calinescu. Search-based synthesis of probabilistic mod-
els for quality-of-service software engineering. In ASE’15, pages 319 – 330, 2015.

35. M. Güdemann, G. Salaün, and M. Ouederni. Counterexample guided synthesis of monitors
for realizability enforcement. In ATVA’12, pages 238–253. 2012.

36. E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric Markov
models. Software Tools for Technology Transfer, 13(1):3–19, 2010.

37. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1194.

38. M. C. Huebscher and J. A. McCann. A survey of autonomic computing – degrees, models,
and applications. ACM Comput. Surv., 40(3):1–28, 2008.

39. P. Inverardi, V. Issarny, and R. Spalazzese. A Theory of Mediators for Eternal CONNECTors.
In ISoLA’10, pages 236–250, 2010.

40. P. Inverardi, R. Spalazzese, and M. Tivoli. Application-Layer Connector Synthesis. In
SFM’11, pages 148–190, 2011.

41. N. Jansen, F. Corzilius, M. Volk, et al. Accelerating parametric probabilistic verification. In
QEST’11, pages 404–420, 2014.

42. K. Johnson, R. Calinescu, and S. Kikuchi. An incremental verification framework for
component-based software systems. In CBSE’13, pages 33–42, 2013.

43. D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In IJCAR, pages 339–354,
2012.

44. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, et al. The ins and outs of the probabilistic model
checker MRMC. Performance Evaluation, 68(2):90–104, 2011.



Synthesis and verification of self-aware systems 35

45. D. Koller and N. Friedman. Probabilistic Graphical Methods: Principles and Techniques.
MIT Press, 2009.

46. S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska. Model-driven Algorithms and Ar-
chitectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041). Dagstuhl Reports,
5(1):164–196, 2015.

47. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change management.
IEEE Trans. Softw. Eng., 16(11):1293–1306, 1990.

48. M. Kwiatkowska. Quantitative verification: models, techniques and tools. In ESEC/FSE’07,
pages 449–458, 2007.

49. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In CAV’11, pages 585–591, 2011.

50. S. Malek, N. Beckman, M. Mikic-Rakic, and N. Medvidovic. A framework for ensuring and
improving dependability in highly distributed systems. In Architecting Dependable Systems
III, pages 173–193. 2004.

51. O. J. Mengshoel, M. Chavira, K. Cascio, et al. Probabilistic model-based diagnosis: An elec-
trical power system case study. Systems, Man and Cybernetics, 40(5):874–885, 2010.

52. O. J. Mengshoel and J. M. Schumann. Software health management with bayesian networks.
In 2nd Intl. Workshop On Software Health Management, 2011.

53. N. Nostro, R. Spalazzese, F. Di Giandomenico, and P. Inverardi. Achieving functional and non
functional interoperability through synthesized connectors. Journal of Systems and Software,
pages 185–199, 2016.

54. J. L. Pastrana, E. Pimentel, and M. Katrib. QoS-enabled and self-adaptive connectors for web
services composition and coordination. Comput. Lang. Syst. Struct., 37(1):2–23, 2011.

55. S. Pathak, E. Ábrahám, N. Jansen, et al. A greedy approach for the efficient repair of stochastic
models. In NFM’15, pages 295–309, 2015.

56. Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a power-managed system: construction
and optimization. In Intl. Symp. on Low Power Electronics and Design, pages 194–199, 1999.

57. B. Ricks and O. J. Mengshoel. Diagnosis for uncertain, dynamic and hybrid domains us-
ing bayesian networks and arithmetic circuits. Intl. Journal of Approximate Reasoning,
55(5):1207–1234, 2014.

58. J. Schumann, T. Mbaya, and O. J. Mengshoel. Bayesian software health management for
aircraft guidance, navigation, and control. In Prognostics and Health Management Society,
2011.

59. J. Schumann, O. J. Mengshoel, and T. Mbaya. Integrated software and sensor health man-
agement for small spacecraft. In Intl. Conf. on Space Mission Challenges for Information
Technology, pages 77–84, 2011.

60. J. Schumann, K. Y. Rozier, T. Reinbacher, et al. Towards real-time, on-board, hardware-
supported sensor and software health management for unmanned aerial systems. Intl. Journal
of Prognostics and Health Management, 6, 2015.

61. J. Schumann, A. N. Srivastava, and O. J. Mengshoel. Who guards the guardians? toward V&V
of health management software. In RV’10, pages 399–404, 2010.

62. R. Spalazzese and P. Inverardi. Mediating connector patterns for components interoperability.
In ECSA’10, pages 335–343, 2010.

63. B. Spitznagel and D. Garlan. A compositional formalization of connector wrappers. In
ICSE’03, pages 374–384, 2003.

64. A. Srivastava and J. Han, editors. Data Mining in Systems Health Management: Detection,
Diagnostics, and Prognostics. Chapman and Hall/CRC Press, 2011.

65. M. Tivoli, P. Fradet, A. Girault, and G. Gößler. Adaptor synthesis for real-time components.
In TACAS’07, pages 185–200, 2007.

66. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM Trans.
Program. Lang. Syst., 19, 1997.

67. L. Zheng and O. J. Mengshoel. Exploring multiple dimensions of parallelism in junction tree
message passing. In UAI Application Workshops, 2013.

68. L. Zheng and O. J. Mengshoel. Optimizing parallel belief propagation in junction trees using
regression. In KDD’13, pages 757–765, 2013.


