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Abstract. The growing reliance on artificial intelligence in safety-
and security-critical applications demands effective neural network
certification. A challenging real-world use case is certification
against “patch attacks”, where adversarial patches or lighting con-
ditions obscure parts of images, for example traffic signs. One ap-
proach to certification, which also gives quantitative coverage es-
timates, utilizes preimages of neural networks, i.e., the set of in-
puts that lead to a specified output. However, these preimage approx-
imation methods, including the state-of-the-art PREMAP algorithm,
struggle with scalability. This paper presents novel algorithmic im-
provements to PREMAP involving tighter bounds, adaptive Monte
Carlo sampling, and improved branching heuristics. We demonstrate
efficiency improvements of at least an order of magnitude on rein-
forcement learning control benchmarks, and show that our method
scales to convolutional neural networks that were previously infeas-
ible. Our results demonstrate the potential of preimage approxima-
tion methodology for reliability and robustness certification.

1 Introduction
The widespread deployment of AI technologies places significant de-
mands on their trustworthiness and reliability, which are of particu-
lar concern in high-stakes applications, as recognized in the EU AI
Act [9]. Much effort has been devoted to ensuring safety and secur-
ity of AI applications involving neural networks (NNs) because of
their instability to adversarial perturbations [12]. A particularly chal-
lenging real-world example are “patch attacks” on images, such as
traffic signs. In Figure 1, we show two examples of physical patch
attacks: real graffiti on a traffic sign [10] (left) and a patch caused by
a sunbeam [5] (middle), which can result from a specific adversarial
manipulation of the image or for natural reasons.

Figure 1. Examples of physical patch attacks. Left: real graffiti [10].
Middle: sunbeam [5]. Right: our abstraction of a patch attack.

The above examples highlight the importance of studying robust-
ness of image recognition models to adversarial patch attacks for
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applications such as safe autonomous driving or biometric security
software. To this end, a wide range of methodologies have been de-
veloped for neural networks to enhance their robustness, either via
(certified) adversarial training [26, 20] or designing certifiable [33] or
empirical [31] defences. An alternative method is to certify robust-
ness by computing deterministic [13, 15] or probabilistic [30, 36]
guarantees on the network outputs. A drawback of certifiable de-
fences is their relatively high inference time, although there are vi-
able trade-offs [33, 32], Similarly to formal verification, certification
is more powerful than adversarial training or empirical defences be-
cause it can guarantee that the network output is correct for all in-
puts in a given region. Using the patch attack in Figure 1 (right) as
an illustration, and assuming the patch is placed in a fixed position,
certification aims to guarantee the prediction for all possible (RGB)
colour values.

Adversarial robustness certification methods commonly work by
bounding the outputs of the neural network for a given input sub-
domain, which may yield loose bounds for the resulting output
over-approximation. A recently developed alternative approach fo-
cuses instead on bounding the preimage of a given output specific-
ation (typically a polyhedron), either through over-approximating
the preimage [16, 39] or under-approximating it [38, 39]. Preim-
age under-approximation, in contrast to over-approximation, offers
stronger compliance guarantees, since all inputs in the computed ap-
proximation satisfy the guarantee, and quantitative verification, i.e.,
estimating the proportion of inputs that meet the specification, which
can directly serve as a reliability certificate. However, despite the
positive experimental results reported in [38, 39], existing methods
do not scale to high dimensions, such as commonly used convolu-
tional neural networks, which is compounded by the prohibitive size
of the branching computation tree.

In this paper, we aim to significantly improve the scalability and
computational performance of the state-of-the-art preimage approx-
imation algorithm PREMAP [38, 39]. This raises a number of chal-
lenges, which we resolve by careful analysis that allowed us to select
effective algorithmic improvements such as bound tightening, op-
timized branching and refinement, as well as adaptive Monte Carlo
sampling. We experimentally evaluate our method on a range of case
studies, showing that our method is able to complete almost twice
the number of cases solved using the original method. Now we are
able to certify robustness to patch attacks for convolutional networks
applied on GTSRB (traffic signs), SVHN (house numbers) and CI-
FAR (standard image benchmark), which were not feasible with the
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original PREMAP. We also provide a comparison with the previous
version of PREMAP on controller benchmarks, showing at least an
order of magnitude improvements in running time. Additionally, we
demonstrate how PREMAP can be used for interpretability, to in-
vestigate important regions of the input. Our results demonstrate the
potential of preimage approximation methodology for exploitation in
reliability and robustness certification.

2 Background

This section presents the relevant background. In Section 2.1, we
define preliminary concepts and provide an overview of the PREiM-
age APproximation (PREMAP) method [38, 39], focusing on key
aspects needed for our algorithmic improvements; for more detail of
the techniques please refer to [39]. Related works are discussed in
Section 2.2.

2.1 Preliminaries

Neural networks. We use f : Rd → Rm to denote a feed-forward
neural network, where f(x) = y. For layer l, Wl denotes the weight
matrix, bl the bias, zl the pre-activation neurons, and hl(zl) the
activation function, such that zl = Wlhl−1(zl−1) + bl. We use
under- and overlines to denote the lower and upper bounds, e.g.,
xi ≤ xi ≤ xi. In this paper we focus on ReLU neural networks,
where hl(zl) = ReLU(zl) = max(zl, 0) is applied element-wise,
but our method can also be generalized to other activation functions
that can be bounded by linear functions [37, 6].

Linear relaxation. Linear relaxation is used to transform non-
convex neuron constraints into linear programs, which provide ef-
fective means to approximate a neural network to ensure tractability
of analysis. As shown in Figure 2, given concrete lower and upper
bounds zl ≤ zl ≤ zl on the pre-activation values of layer l, there are
three cases to consider. When zli ≤ 0 then hl(zli) = 0 and the neuron
is inactive. Similarly, when zli ≥ 0 then hl(zli) = zli and the neuron
is active. Otherwise, the neuron is unstable and can be bounded by

αzli ≤ hl(zli) ≤ (zli − zli)z
l
i/(z

l
i − zli), (1)

where α is any value in [0, 1].
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Figure 2. Linear bounds for inactive, active and unstable ReLU neurons.

For the neural network f , linear relaxation is used to compute lin-
ear lower and upper bounds for the output like

Ax+ b ≤ f(x) ≤ Ax+ b, (2)

for a given bounded input region. These methods are known as Linear
Relaxation based Perturbation Analysis (LiRPA [34]) algorithms.

Preimage approximation. Given a subset O ⊂ Rm, the preimage
of a function f : Rd → Rm is defined to be the set of all inputs
x ∈ Rd that are mapped by f to an element of O. Since computing
the exact preimage is intractable, we are interested in computing an
under- or over-approximation of the preimage.

To apply LiRPA, we need to bound the input domain I ⊂ Rd,
for example as an axis-aligned hyper-rectangle I ⊆ {x ∈ Rd |∧d

i=1 xi ≤ xi ≤ xi}. We specify the output domain O as a set of
linear inequalities (a polytope) on the output

∧K
j=1(c

⊤
j y + dj ≥ 0).

Since the inequalities are linear, they can be implemented by adding
a linear layer to the neural network fO(x)j = c⊤j f(x) + dj . Then,
by bounding fO with LiRPA, such that Ax+b ≤ fO(x) ≤ Ax+b,
we obtain an under-approximation P of the preimage as

x ∈ I ∧Ax+ b ≥ 0 =⇒ f(x) ∈ O

and an over-approximation P as

x ∈ I ∧ f(x) ∈ O =⇒ Ax+ b ≥ 0.

PREMAP. The anytime PREMAP algorithm [39, 38], implements
both under- or over-approximation of the preimage of a given out-
put specification O restricted to the input domain I, in the form of
a disjoint union of polytopes. However, in this paper we will focus
on under-approximations because they offer stronger guarantees and
enable quantitative verification. Algorithm 1 shows an overview of
the method with our modification highlighted with green shading
(discussed further in Section 3). PREMAP relies on linear relaxa-
tion with LiRPA to approximate the preimage (see line 3), which
is further refined through splitting the problem into disjoint subre-
gions (on lines 8 and 9), which can be approximated independently
in parallel (see lines 10 and 11) with a divide-and-conquer approach.
The algorithm terminates upon reaching a preset threshold for the
preimage approximation, with exact rather than statistical quantitat-
ive guarantees.

Branching and refinement. Since the initial bound given by
LiRPA might be very loose (Algorithm 1, line 3), PREMAP iter-
atively partitions a subdomain Isub ⊆ I into two smaller subdomains
I−sub and I+sub (lines 5 to 12). Which subdomain to split is selected by
the largest difference in estimated volume between the exact preim-
age and the approximation in the subdomain (lines 6). The split can
be either on the input, which partitions the input into two subdomains
along some feature, or based on the pre-activation value of an inter-
mediate unstable neuron [39], called ReLU splitting. As this paper
deals with larger input domains, for which input splitting performs
less well, we will focus on the latter (line 8).

A key advantage of ReLU splitting is that it allows us to replace
unstable neuron bounds with precise bounds. For an unstable ReLU
neuron hl(zlj) = max(0, zlj), we use linear relaxation to bound the
post-activation value as in Equation (1). When a split is introduced,
the neuron becomes stable in each subdomain, and the exact linear
functions hl(zlj) = zlj and hl(zlj) = 0 can be used in place of its lin-
ear relaxation. This can typically tighten the approximation on each
subdomain as the linear relaxation errors for this unstable neuron are
removed and substituted with the exact symbolic function.

The bounds, Ax + b, for the new under-approximations are op-
timized via projected gradient descent (Algorithm 2, line 3) and the
process of refining the subdomains continues until an appropriate ter-
mination criterion is met (Algorithm 1, line 7). The procedure can
also be stopped anytime to produce a valid (but smaller) approxima-
tion. The (anytime) union of the preimage approximations P for the
disjoint subdomains Isub constitutes the preimage approximation of
the output property.



Algorithm 1 PREMAP is an algorithm for finding preimage under
approximations. The inputs are the neural network f , the input do-
main I, the output specifications O, the early stopping threshold vth,
and the number of samples n. Some functions are detailed in Al-
gorithm 2. The lines with our modifications compared to [39] are
highlighted with green shading and are discussed in detail in Sec-
tions 3.1 to 3.3.

1: function PREMAP(f, I,O, vth, n)
2: X← SAMPLE(I, 5n) ⟩⟩ Sample extra when it is easy
3: P← PREIMAGEAPPROX(fO, I,X)
4: D← {(P, I,X)} ⟩⟩ Approximation, domain, samples
5: while ESTIMATECOVERAGE(D, fO) < vth

6: P, Isub,X← POP(D, argmaxj(PRIORITY(Dj , fO)))

7: X← SAMPLE(Isub, n,X) ⟩⟩ Top up samples
8: l, i← SELECTNEURON(fO, Isub,X)

9: I−sub,X
−, I+sub,X

+ ← SPLITNEURON(Isub,X, l, i)

10: P− ← PREIMAGEAPPROX(fO, I−sub,X
−)

11: P+ ← PREIMAGEAPPROX(fO, I+sub,X
+)

12: D← D ∪ {(P−, I−sub,X
−), (P+, I+sub,X

+)}
13: return {P | (P, ·, ·) ∈ D}

Algorithm 2 Additional functions for PREMAP, see Algorithm 1 for
details. The LIRPAfunction produces linear bounds using the LiRPA
library [34] with optimisable parameters α.

1: function PREIMAGEAPPROX(fO, Isub,X)
2: A(α),b(α) ← LIRPA(fO, Isub)
3: α, β ← argmax

α

∑
x∈X

σ(− log(
∑

exp(−A(α)x− b(α))))

4: P← {x | x ∈ Isub ∧A(α)x+ b(α) ≥ 0}
5: return P ⟩⟩ Preimage under approximation
6: function ESTIMATECOVERAGE(D, fO)
7: vP ←

∑
(P,Isub,X)∈D

∑
x∈X [x ∈ P] /|X| · |Isub|

8: vO ←
∑

(P,Isub,X)∈D
∑

x∈X [fO(x) ≥ 0] /|X| · |Isub|
9: return vP/vO ⟩⟩ Approximated fraction of the preimage

10: function PRIORITY(P, Isub,X, fO)
11: vO\P ←

∑
x∈X [fO(x) ≥ 0 ∧ x /∈ P] /|X| · |Isub|

12: return vO\P ⟩⟩ Volume of preimage not approximated

2.2 Related works

Robustness certification methods focus on computing deterministic
[13, 15] or probabilistic/statistical [30, 36] guarantees on the out-
put of a neural network. The methods can be classified into complete
methods, such as constraint solving [15], or sound though incomplete
methods, e.g., convex relaxation [25], which can be strengthened
to ensure completeness by employing branch-and-bound procedures
[3, 4]. Building on [38, 39], our work employs convex (linear) relax-
ation and Monte Carlo sampling in a divide-and-conquer framework
for approximating the preimage of the neural network with exact (not
statistical) quantitative guarantees. We leverage LiRPA [34] as im-
plemented in CROWN tools [37, 35, 29] to compute symbolic relaxa-
tion bounds, adapting to preimage approximation. We note that exact
preimage computation is intractable for high dimensions, although
a variant of this problem known as backward reachability has been
studied in control [28] through exact computation or (guaranteed)
over-approximation [24, 8]. The method of [16] is limited to preim-
age over-approximation and scales less well than PREMAP, and con-
sequently our method. Compared to [3, 4], our divide-and-conquer
approach focuses on minimizing the difference between the under-

approximation and the preimage rather than maximizing a function
value.

Methods of defending against patch attacks [31, 32] include active
defences, such as small receptive fields or masking out all adversarial
pixels from the input image, and passive defences, for example certi-
fiable training using bound propagation. The most common of these,
small receptive fields, extract features and predictions from small re-
gions of the image, to avoid spatially localized attacks. The predic-
tion involves robust aggregation such as majority voting. The smaller
the receptive fields the better robustness but the worse clean perform-
ance, and [33] offers a computationally efficient trade-off.

Compared to active defences, which extend the model, our ap-
proach computes guarantees for the underlying neural network mod-
els. Certifiable training [19] involves estimating and propagating the
bounds of neuron activations in each layer to bound the attackers
influence on final predictions and is computationally expensive; in
contrast, our method approximates the set of inputs for which the
prediction is guaranteed for a given trained network.

3 Methods
The aim is to apply PREMAP [38, 39] on larger models with lar-
ger input spaces. This means we need to revisit some of the design
decisions that worked well on smaller problems. In Section 3.1 we
calculate tighter bounds for intermediate layers, in Section 3.2 we
describe how we adaptively draw more Monte Carlo samples, and
in Section 3.3 we design new heuristics for the selection of which
neuron to split next.

3.1 Bound tightening

When a neuron is split, the linear relaxation error from that neuron to-
wards all the following layers is reduced. However, β-CROWN [29],
on which PREMAP is built, typically only updates the final layer be-
cause the optimization is computationally intensive [29]. Instead of
using the full β-CROWN optimization, in this work, we propagate
the bounds using backwards mode LiRPA [34]. These bounds are
not as tight, but much faster to compute.

While LiRPA [34] only propagates bounds to the following layers
in the network, a split also implies restrictions in previous layers.
Hence, we derive how the bounds of previous layers and the input
might tighten after a split. As with backwards mode LiRPA, these
bounds are fast to compute but result in looser bounds.

After splitting the i:th neuron on layer l, we use LiRPA [34] as
in Equation (2) to calculate the linear approximation bounds with
respect to the preceding layers m < l (including the input) such that

Almzm + blm ≤ zl ≤ A
lm

zm + b
lm

.

The two constraints defined by the split, zli < 0 and zli ≥ 0, can be
propagated backwards using the linear approximations:

[Almzm + blm]i < 0 and 0 ≤ [A
lm

zm + b
lm

]i. (3)

From this we can update the bounds zm and zm so that:

zmj ← max(zmj ,−(c+ blm
i )/Alm

ij ) | Alm
ij < 0

zmj ← min(zmj ,−(c+ blm
i )/Alm

ij ) | Alm
ij > 0

for zli < 0, where c =
∑

k ̸=j min(Alm
ik zmk ,Alm

ik zmk ) and

zmj ← max(zmj ,−(c+ b
lm
i )/A

lm
ij ) | Alm

ij > 0



zmj ← min(zmj ,−(c+ b
lm
i )/A

lm
ij ) | Alm

ij < 0

for zli ≥ 0, where c =
∑

k ̸=j max(A
lm
ik zmk ,A

lm
ik zmk ). Note that the

division introduces additional numerical instability, which we mit-
igate with padding around zero, making the bounds slightly looser.
After the “reverse” propagation of bounds we use LiRPA to update
the bounds of subsequent layers, as mentioned above. This happens
in Algorithm 1 at the end of the SPLITNEURON function on line 9.

3.2 Sampling

The samples are used in PREMAP for three things: Monte Carlo
estimation of the volume of both the preimage and the approximation
(in Algorithm 2, lines 7 to 11), the gradient-based optimization of
the bounds in β-CROWN to maximise the preimage approximation
volume [39] (on line 3 of Algorithm 2), and in the heuristics to select
which neuron to split (in Algorithm 1, line 8).

We could, like the previous version of PREMAP [39], only draw
a large, fixed set of initial samples. Each split defines two subsets
where we can reuse the samples (see line 9 in Algorithm 1). How-
ever, the size of the subsets decrease exponentially with each split.
Hence, in this work, when the subsets get too small we draw ad-
ditional samples (line 7). At first, we use rejection sampling from
uniform samples, U(x,x). However, just as with subsets, the hit rate
decreases exponentially.

The inequalities introduced in Equation (3) create a polytope in
the input space. To sample from this polytope we use hit-and-run
sampling [21, 7]. The idea behind hit-and-run sampling is to start
from a point inside the polytope, conveniently provided by line 9 of
Algorithm 1. Then we draw a random direction, calculate the dis-
tance to the edge of the polytope, and uniformly sample a new point
on this line. Since consecutive steps are correlated, we take multiple
steps between every recorded sample. This yields uniformly distrib-
uted samples [21] from the polytope and the procedure can be paral-
lelized and GPU accelerated [7]. Note that Equation (3) is an outer
bound, so we still need to do rejection sampling on the activations.

3.3 Heuristics

The heuristic for selecting which neuron to split is condensed in Al-
gorithm 1 on line 8. What we do is calculate a score for each neuron
i on layer l and select the neuron with the highest score. The original
PREMAP [39] aims to keep the splits balanced in terms of samples
with a score function of

1−
∣∣∣2∑n

i=1
[zlij ≥ 0]/n− 1

∣∣∣ ,
where zlij is the pre-activation for sample j (out of n) at neuron i
on layer l. However, this heuristic offers no indication of how well
LiRPA [34] might tighten the bounds. Therefore, we suggest repla-
cing it with a combination of heuristics described below.

Since the layer l is likely to be in the middle of the network, after a
split the negative side, zlj <= 0.0, will be constant (by the definition
of ReLU) while the positive side will be non-linear with respect to the
output. Hence, as heuristics, we estimate how much the split would
reduce the “uncertainty” on the negative part.

The heuristics are visualized in Figure 3. First, we calculate the
linear bound with respect to the output, fO(x) ≥ Alzl + bl (or
fO(x) ≤ A

l
zl + b

l
for an over-approximation). Then we calculate

the area (yellow) that will be reduced,

∑
k

∣∣∣Alk
i zliz

l
i

∣∣∣ /max
l′i′

(∑
k

|Al′k
i′ zl

′

i′z
l′

i′ |

)
,

the maximum under-approximation (green),

∑
k

∣∣∣Alk
i zli

∣∣∣ /max
l′i′

(∑
k

|Al′k
i′ zl

′

i′ |

)
,

and the average extra uncertainty for the samples (blue),

∑
k

(
n∑

j=1

∣∣∣Alk
i min(zlij , 0)

∣∣∣ / n∑
j=1

[
zlij < 0

])
/max

l′i′
(. . .),

where k represents the, potentially, multiple outputs of fO. We com-
bine these heuristics with a weighted sum that is empirically determ-
ined in Section 4.2. Before settling on these heuristics we also con-
sidered other options, which are documented in Appendix A.

zli

fO(x)
k

zli

zli

Alk
i zli

Figure 3. Visualising the three new neuron selection heuristics. They are
the yellow area, the green distance, and the average blue length.

It is possible that the selected split assigns all samples to one
branch. This means either that (a) the other side is impossible to
reach with the current constraints but the bounds given by LiRPA
are not tight enough to show that, or (b) the other side is reachable,
but our current estimate for that volume is zero. Hence, we can avoid
processing that branch (in Algorithm 1, line 10 or line 11) without
significantly affecting the volume of the under-approximation.

3.4 Parallelisation

In the original PREMAP [39, 38] generating the under- or over-
approximation after a split (see Algorithm 1, lines 10 and 11) is done
in parallel. Furthermore, β-CROWN [29] processes the branches (the
while loop on line 5) in batches to take advantage of GPU resources.
For the pseudocode we opted not to show either for simplicity, but in
practice we use both strategies.

Due to the early stopping criteria introduced by PREMAP (line 5
of Algorithm 1) batching has an additional advantage. If it is difficult
to find tighter bounds for the primary branch selected by the heur-
istics (lines 6 and 8), the “beam search” introduced by the batching
might still progress and stop after fewer splits.

4 Experiments
In this section we empirically evaluate our improvements and
demonstrate use-cases for PREMAP. In Section 4.1 we describe the
experimental setup and datasets and in Section 4.2 we choose the
weights for the new heuristics. We compare to the previous version
of PREMAP in Section 4.3 and different network architectures in
Section 4.4. In Section 4.5 we perform an ablation study and in Sec-
tion 4.6 we use PREMAP as an investigation tool to enhance inter-
pretability.



4.1 Experimental setup

The experiments were run with four cores from an Intel Xeon 6252
CPU and one NVIDIA RTX 2080 Ti, except for the control tasks
in Section 4.3 that were run on an Apple M4 Pro CPU. All preimage
approximations were limited to 10 minutes with a batch size of 2 (ex-
cept the previous version of PREMAP that only processes the splits
in parallel). Unless otherwise mentioned, we use a stopping volume
threshold of 0.9.

For most of the experiments we use the following image datasets:
GTSRB [27] with traffic signs, SVHN [22] with house numbers, and
CIFAR-10 [17] with general images. Details about the model archi-
tectures (fully connected and convolutional) and training is in Ap-
pendix B. For experiments with image datasets (32 × 32 pixels) we
randomly sample images, evenly from every class, and patches with
random sizes between 3× 3 and 6× 6 and random positions within
the images. Additionally, in Section 4.3, we use five reinforcement
learning control tasks further detailed in [39].

The code for the method and experiments will be released under
an open source licence upon the acceptance of this paper.

4.2 Parameters

As described in Section 3.3 we now have three heuristics to combine.
All of them are normalized to [0, 1] to make a weighted sum easier.
For this experiment we sample images and patches as described in
Section 4.1 and uniformly sample weights for the heuristics. The
weights are sampled and evaluated multiple times so that we can
normalize the times (by dividing by the mean). We then fit a Gaus-
sian process with an RBF kernel and a white kernel and evaluate it
on a grid. The top results can be seen in Table 1, where the “under”
heuristic is slightly less important than “area” and “extra”.

Table 1. Using a Gaussian process to find weights for the heuristics. Show-
ing the top results from a grid of {0.0, 0.25, 0.5, 0.75, 1.0}.

Time (s) area under extra

0.715± 0.399 1.000, 0.750, 1.000
0.715± 0.400 1.000, 1.000, 1.000
0.718± 0.399 1.000, 0.500, 1.000
0.724± 0.399 1.000, 0.250, 1.000
0.726± 0.399 0.750, 1.000, 1.000

4.3 Comparison

Here we compare our version of PREMAP with the previous version
[39]. In Table 2 we consider the five smaller reinforcement learn-
ing tasks from [39], but run them with ReLU splitting instead of
input splitting. In all but dubinsrejoin, the improved splitting heur-
istic leads to finishing within time and with fewer splits. The cart-
pole and dubinsrejoin preimages are harder to approximate without
input splitting [39], but our new version makes more progress and
processes more splits in the same time.

Table 3 contains results from the two versions of PREMAP on
the GTSRB dataset. We aggregate the results from ten random im-
ages from every class with randomly placed and sized patches and
count the number of preimage approximations that finish within the
time limit. Some preimage approximations are easy enough to finish
without entering the loop (Algorithm 1, lines 5 to 12), which is also
visible in Figure 4. If we filter out those results, our version is able to
complete more than twice the number of harder cases, especially for
the convolutional neural network.

Table 2. Comparing our (new) version of PREMAP to the previous (old)
version on five reinforcement learning controllers, averaging ten different
seeds. The time limit is ten minutes with a stopping threshold of 0.9 for the
first two datasets and 0.75 for the last three. We measure the coverage of the
under-approximation (larger is better), the number of subdomains required to
reach that (smaller is better), and the time it took (smaller is better).

Coverage Domains Time (s)
Dataset new old new old new old

auto_park 0.918 0.916 2.0 3.0 0.05 0.39
vcas 0.931 0.905 17.0 21.1 0.16 5.57
lunarlander 0.750 0.574 813.8 2745.8 36.60 600.15
cartpole 0.750 0.424 1850.5 1601.7 118.05 600.14
dubinsrejoin 0.207 0.000 4742.7 1159.0 596.11 600.16

Table 3. Comparing our (new) version of PREMAP with the previous (old)
version on the GTSRB dataset. Since some patch and image combinations
reach the threshold of 0.9 in a single iteration, the second row is filtered to
exclude those. We measure the average coverage of the under-approximation
(larger is better), the number of instances reaching the threshold within 10
minutes (larger is better), and the average time required (smaller is better).

Dataset: GTSRB Coverage Completed Time (s)
Model Subset # new old new old new old

FC All 500 0.850 0.714 408 351 120.55 188.37
FC Hard 292 0.718 0.318 174 61 224.76 441.06

CNN All 500 0.751 0.501 358 244 186.91 313.70
CNN Hard 342 0.626 0.197 185 54 282.32 497.88

4.4 Networks

In Figure 4 we run PREMAP on the image datasets using both fully
connected (FC) and convolutional (CNN) neural networks. We di-
vide the results into two groups based on how close to the edge the
patch was. Both GTSRB and SVHN show strong dependence on the
location of the patch, which is to be expected since the traffic signs
and digits are in the centre of the images. Some SVHN images have
distracting digits in the surroundings [22] making the robustness at
the edges unsurprising.
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Figure 4. Time to calculate a preimage under-approximation with a 10
minute time limit and a 0.9 threshold. The patches are applied to random
images (from every class) with random positions and sizes. We group the res-
ults based on if the centre of the patch is within 10 pixels of the centre of the
image.

The LiRPA processing and the maximum number of splits is de-
pendent on the number of unstable neurons. For CNNs, the number
of activations scales with the size of the image. Here the first layer
has 30× 30× 32 = 28 800 activations. As can be seen in Figure 4,
this makes the CNNs slower and harder than the fully connected net-
works even though they have fewer parameters.



4.5 Ablation

In this section we perform an ablation study on a) the tightening of
intermediate bounds and b) the new split selection heuristics. The
result can be seen in Figure 5, where we measure the coverage of the
under-approximation over time running on random patches, as be-
fore, and average the results. Tightening is better than using neither
improvement, the heuristics are even better, and using both provides
the best results. Note that the tightening of intermediate bounds in-
troduces an additional computational overhead, which reduces the
utility on a time versus coverage graph.
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Figure 5. Comparing the average approximation coverage (higher is better)
over time. The stopping threshold is 0.9.

Figure 5 also demonstrates the anytime property of the algorithm:
if we stop early we still get an under-approximation, just a smaller
one, and when given more time more approximations reach the 0.9
threshold.

4.6 Interpretability

A popular approach to explainable artificial intelligence (XAI) is to
cover part of the image to see if the classification changes [14]. This
reasoning is easy to understand, since if the prediction changes that
area must have been important. However, this requires careful design
to make a “neutral” replacement pattern [11], preferably such that
the modified image is not be out-of-distribution [2]. With PREMAP
we do not consider any singular replacement pattern, but rather the
whole preimage of an area.

In Figure 6 we apply 4 × 4 patches on a grid covering the image
on the left. In the second image from the left we show the estimate of
the volume of the preimage (not the approximation) for every patch,
which indicates that this model is robust against patches of this size
on this image. However, in the third image we see that patches around
the ‘5’ require more splits for the approximation. This means that
in these areas the model is highly non-linear. Furthermore, in the
rightmost image we see that the preimage approximation of some
patches do not reach a high coverage in the allotted time, notably
around the areas where the ‘5’ could be turned into an ‘8’ with two
patches. This is how PREMAP can be used to investigate models,
which can aid model development and debugging [1].

5 Conclusions
This work introduced algorithmic improvements to the PREMAP al-
gorithm for finding preimage approximations for neural networks.
The main enhancements come from the improved heuristics for se-
lecting splits, the calculation of tighter bounds after a split, and the
adaptive Monte Carlo sampling. The improved performance is also
empirically validated on both smaller control benchmarks and patch
attack certification on images. We also demonstrate how to control
the trade-off between time and approximation coverage and how
PREMAP could be used for explainable AI. While we have focused

Input Image Preimage Estimate # Subdomains Approxim. Coverage

0.0 0.5 1.0 0.0 0.5 1.0100 102

Figure 6. Using PREMAP to investigate which parts of the image are
important for classification without the need to provide a user-defined re-
placement pattern by applying patches on a grid covering the image. The
figures are, from left to right, the original image, the estimated preimage
volume (higher means more robust), the number of subdomains required
(lower means easier), and the coverage of the preimage under approxima-
tions (higher is better).

our experiments on preimage under-approximation because of its
inherent advantages for robustness and reliability certification, the
methods also extend to over-approximations.

Future work includes applying PREMAP to other domains where
certification is needed, for example biometric security or medical
diagnosis. PREMAP could also be further enhanced to handle even
larger and more complex networks, such as transformers. Finally,
extending PREMAP to non-uniform input spaces would unlock ad-
ditional applications, for example being able to prioritize dangerous
conditions.
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A Heuristics
To improve the heuristic for selecting which neuron to split we con-
sider 12 alternative formulas for calculating the priority. These are
detailed in Table 4. Note that not all are new, e.g., "balance" is the
one used in the previous version of PREMAP [39, 38] and "lower"
[3] and “gap” [23] are used in β-CROWN [29].

Some heuristics in Table 4 use the (linear) bounds produced by
LiRPA [34, 29]. To minimize computational overhead we store them
for reuse after each optimization. Some heuristics use the activation
values of the samples. This requires computation on the scale of a
forward pass through the network, which is not significant for the
overall runtime.

To evaluate the heuristics we draw random samples (i.e., random
images with random patches as in Section 4) and run PREMAP mul-
tiple times with random combinations of the heuristics and normal-
ize the results by dividing by the mean times for that sample. The
weights for the different heuristics are drawn such that roughly half
are zero and the rest are uniform.

The results for individual heuristics can be seen in Figure 7, where
we fit a linear model to more clearly show the trend. Three of the pro-
posed heuristics have a promising slope (negative), with “balance”
and “lower” being among the worst (enabling these correlates with
longer times). However, some of these heuristics might be correlated,
so we cannot choose based on individual plots.

In Table 5 we enumerate all combinations of the heuristics (only
showing the best) and calculate the corresponding linear models. The



Table 4. Potential heuristics for selecting which neuron i (on layer l) to
split. There are j ∈ [1, . . . , n] samples and k ∈ [1, . . . ,K] outputs. All
formulas not already limited to [0, 1] are normalised by dividing by the max-
imum value and stable neurons with bounds zli ≥ 0 ∨ zlj ≤ 0 are skipped.

Heuristic Formula
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∑
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Figure 7. The effect off using various heuristics for the selection of which
neuron to split. The black line is a fitted, single variable, linear regression.
Lower values (y) with a non-zero weight (x) indicates that the heuristic helped
reduce the number of splits required.

combination of “area”, “under”, and “extra” continues to impress,
since anything else added would have a positive coefficient. This is
the selection we use for the paper, further discussed in Sections 3.3
and 4.2.

B Neural networks
For the image datasets we use two types of neural networks: fully
connected and convolutional. The architectures are described in
Table 6. The networks were trained with cross-entropy loss using
the AdamW [18] optimizer with brightness and hue variation until
the accuracy on the test set stopped decreasing (usually around 50
epochs). For the reinforcement learning tasks we used the same net-
works as in [39].
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