
Building Power Consumption Models from Executable
Timed I/O Automata Specifications

Benoît Barbot
∗

, Marta Kwiatkowska, Alexandru Mereacre and Nicola Paoletti
Department of Computer Science, University of Oxford, UK

{benoit.barbot, marta.kwiatkowska, alexandru.mereacre, nicola.paoletti}@cs.ox.ac.uk

ABSTRACT
We develop a novel model-based hardware-in-the-loop (HIL)
framework for optimising energy consumption of embedded
software controllers. Controller and plant models are spec-
ified as networks of parameterised timed input/output au-
tomata and translated into executable code. The controller
is encoded into the target embedded hardware, which is con-
nected to a power monitor and interacts with the simulation
of the plant model. The framework then generates a power
consumption model that maps controller transitions to dis-
tributions over power measurements, and is used to optimise
the timing parameters of the controller, without compromis-
ing a given safety requirement. The novelty of our approach
is that we measure the real power consumption of the con-
troller and use thus obtained data for energy optimisation.
We employ timed Petri nets as an intermediate represen-
tation of the executable specification, which facilitates effi-
cient code generation and fast simulations. Our framework
uniquely combines the advantages of rigorous specifications
with accurate power measurements and methods for online
model estimation, thus enabling automated design of correct
and energy-efficient controllers.

1. INTRODUCTION
Embedded devices are at the core of numerous safety-

critical applications in areas such as avionics, automotive
and biomedical. One of the main challenges in the design
and implementation of embedded devices is to ensure that
their behaviour meets design-time requirements while, at the
same time, consuming the least amount of energy possible.

These contrasting aspects are typically addressed in two
separate phases: requirements are enforced through devel-
oping formal models of the system and analysing their cor-
rectness using formal verification methods, whereas energy
efficiency through selecting low-power hardware components
and tuning the physical device to reduce consumption. An

∗Now in LACL, Université Paris Est Créteil, France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

established approach to deal with this separation is to em-
ploy integrated design and analysis of software and hard-
ware components, called hardware/software co-design, and
in particular hardware-in-the-loop (HIL) optimization. This
involves automated optimisation of hardware based on eval-
uating its behaviour in interaction with the simulation of the
plant model, a method known as HIL simulation [3]. Since
the device under test works in real-time, effective HIL simu-
lation approaches must enable real-time simulations, as well
as synchronisation and data transfer between hardware and
software. However, existing HIL optimisation approaches
are ad hoc and lack automated support that incorporates
formal verification and synthesis methods.

In this paper, we develop a comprehensive and fully auto-
mated model-based framework for hardware-in-the-loop en-
ergy optimization of embedded devices that, for the first
time, integrates rigorous specifications with data-driven en-
ergy optimisation and online estimation of power models. At
the system-design level, we adopt the widely used MATLAB
Stateflow modelling formalism. We support hybrid systems
specified as networks of parameterised timed I/O automata
and encoded in Stateflow, and employ parameter synthesis
methods to restrict the search to the device parameters that
guarantee a given safety property. At the HIL optimisation
level, we implement a novel method to generate executable
code from the Stateflow diagrams by resorting to an interme-
diate representation as timed Petri nets, which is compact
and event-driven, and thus facilitates fast real-time simula-
tions and hardware/software synchronisation. The novelty
of our approach is that we derive predictive power consump-
tion models from actual power measurement data, and query
these models to find the device parameters that maximise
battery lifetime. Our framework is sufficiently general to
synthesise energy-efficient embedded software for a variety
of applications, which we demonstrate through the evalua-
tion on a temperature controller and a cardiac pacemaker.

1.1 Overview of the framework
The purpose of our framework is twofold. First, we aim

to estimate detailed power consumption models for enabling
the design of energy-efficient embedded software. Second,
we aim to parameterise the device in order to optimise power
consumption and prolong battery life, such that the correct
functioning of the device is not compromised. Figure 1 shows
the high-level structure of our framework. We consider sys-
tems characterised by a controller that acts on a plant.

At the system design level, the specifications for the plant
and controller are given as timed input/output automata with
data (TIOA) [26]. This formalism (described in Section

TIOA/STATEFLOW MODELS

Plant Controller BATTERY
MODEL

PARAMETER
SYNTHESIS

SYSTEM
 DESIGN

 LEVEL

PETRI NETS TRANSLATION AND CODE GENERATION

HIL SIMULATION

Plant Controller Power monitor
POWER

READINGS

BUILD
POWER
MODEL

PROBABILISTIC
POWER MODEL

SAFE REGION

OPTIMISATION
ALGORITHM

HIL O
PTIM

ISATIO
N

 LEVEL

Figure 1: Modelling, hardware-in-the-loop optimisation and power model estimation framework

2.1) is able to represent networked systems with real-time
constraints and discrete control actions (suitable to model
the controller), as well as hybrid dynamics through contin-
uous variables and non-linear update functions (to model
the plant). Importantly, the framework supports the use
of MATLAB Stateflow for specifying TIOA models. At
this level, we additionally focus on guaranteeing correct-
ness, which we achieve by excluding the region of controller
parameter values that violate a given safety requirement.
Such parameters describe, for instance, the switching fre-
quency of the device from the active to the idle modes, or
the frequency of data capture and processing. This phase is
described in Section 2.2 and builds on a parameter synthe-
sis method implemented using Satisfiability Modulo Theory
(SMT) techniques. In order to optimise the battery lifetime,
we also need a battery model, given, in our case, as a system
of ordinary differential equations (ODEs) (see Section 2.3).

At the HIL optimisation level, HIL simulation has the role
of executing the controller code, which is embedded in pro-
grammable hardware (e.g. a microcontroller or FPGA), in
combination with the plant simulation, running on a com-
puter system. The generation of executable code for HIL
simulations from formal TIOA specifications leverages an
intermediate representation in terms of timed Petri nets
(TPNs), which enables real-time simulations as well as fast
event scheduling and hardware-software synchronisation. In
Section 3.1, we describe the translation from TIOAs into
TPNs, the generation of executable code and the HIL simu-
lation algorithm. The controller unit is attached to a power
monitor that measures the power consumption of the de-
vice. In particular, we are interested in the amount of en-
ergy consumed by the controller when performing specific
transitions, which is used to build the probabilistic power
consumption model, as illustrated in Section 3.2. By taking
consumption data from multiple HIL simulations, this step
produces a probabilistic power model with the same structure
as the controller TIOA, but annotated with rewards that de-
scribe, for transition t and energy value e, the probability
that the device consumes an amount of energy equal to e
when performing t. Finally, the optimisation algorithm uses
the battery and consumption models to optimise the battery
lifetime. This objective is evaluated by simulating the plant,
controller and power consumption models on the computer
until the battery runs out. Note that, in this case, a real-
time HIL simulation would take an excessive amount of time.

Here, we speed up this task through pure software simulation
that nevertheless utilises real power readings through the es-
timated power consumption model. Specifically, we follow
a Gaussian process optimisation scheme (see Section 3.3),
which has the additional advantage of deriving a statistical
model of the objective function with respect to controller
parameters. To avoid sampling unsafe parameters, the opti-
misation algorithm also requires the safe region synthesised
at the system design level.

1.2 Related work
In recent years, a number of approaches have been pro-

posed for the design of energy-efficient systems. Benini et.al.
[9] provide a comprehensive survey, examining techniques for
optimizing energy at different levels: modelling, system de-
sign and runtime management. The review by Unsal et.al.
[31] focuses on techniques enabling low-power design for real-
time systems, covering the whole span of architectural levels,
from hardware to operating systems and computer networks.
HIL simulation has been successfully employed in a number
of industrial applications, including the testing of automo-
tive control systems [20], power electronics [12], avionics [24]
and biomedical devices [11, 18, 21]. HIL optimisation ap-
proaches are relatively more recent and have been used to
optimise, e.g., the performance of wireless networks [28], or
the speed of humanoid robots [19]. Despite much research on
energy-aware design and combined hardware/software test-
ing, our work is the first to seamlessly integrate, in a fully
automated framework based on the widely used Simulink
Stateflow notation, rigorous design methods, specifically pa-
rameter synthesis, with HIL optimisation and the generation
of data-driven power consumption models from real hard-
ware measurements.

In our previous work [8], we introduced a HIL optimisa-
tion approach for the energy consumption of cardiac pace-
makers, using the Simulink code generation capabilities and
evaluating the safety of the pacemaker parameters at HIL
simulation time. In contrast, the framework presented in
this paper supports general system specifications – even if
we also evaluate the pacemaker case study, see Section 4.2
– and provides numerous improvements and novelties, in-
cluding the derivation of probabilistic consumption models,
optimisation of battery lifetime and the formal synthesis of
safe controller parameters. Importantly, here we implement
a dedicated code generation method in place of the one pro-

vided by Simulink. Indeed, the code generated through the
latter method is not suitable for accurate energy consump-
tion measurements because it keeps the device running, and
thus consuming energy, even when the controller is inac-
tive, e.g. waiting for events from the plant. On the other
hand, our code and scheduling algorithm use the power sav-
ing modes of the embedded system when the controller is
idle. In this way, energy readings consistently reflect the
controller activity, at the same time improving energy effi-
ciency of the code. Other approaches exist for generating
executable code from timed automata and Petri nets speci-
fications, to mention [2, 29, 5].

The method for synthesising safe parameters has been
adapted from our previous work [26]. There, we consider
the problem of maximising the robustness of parameters
with respect to a given safety property, which we could solve
without exploring the full parameter space. In contrast, in
this work we have to synthesise the full safe region, and thus
cannot exclude any parameter region from the analysis. Pa-
rameter synthesis for TIOA models was first considered in
[16] and solved by combining parameter sampling and con-
straint solving.

2. SYSTEM DESIGN LEVEL

2.1 Timed I/O automata with data
We consider a set of variables V = X ∪D, where X and D

are the set of clocks and data, respectively. A variable valua-
tion η : V → R is a function that maps data variables to the
reals and clocks to the non-negative reals. We also consider
a set of real-valued parameters Γ and valuation functions
γ : Γ → R. For a set Y, we denote with V(Y) the set of all
valuations over Y. The update of a set of variables V ′ ⊆ V
is a real-valued function r : V ′ × V(V) × V(Γ) → R. Given
valuations η and γ, η is updated by reset r to the valuation
η[r] = {v 7→ r(v, η, γ) | v ∈ V ′} ∪ {v 7→ η(v) | v 6∈ V ′}
that applies the reset r to the variables in V ′ and leaves
the others unchanged. We denote with R the set of up-
date functions. We consider guard constraints of the form
g =

∧
i vi ./i fi, where vi ∈ X is a clock, ./i ∈ {<,6, >,>}

and fi is a real-valued function over data variables and pa-
rameter valuations. We denote with B(V) the set of guard
constraints over V .

In the following, we introduce our main modelling lan-
guage, which extends [25] with priorities, data variables and
parameters.

Definition 1 (TIOA). A deterministic timed I/O au-
tomaton (TIOA) with priority and data A = (X ,Γ,D, Q,
q0,Σin, Σout,→) consists of:

• A finite set of clocks X , data variables D and param-
eters Γ.

• A finite set of locations Q, with initial location q0 ∈ Q.

• Finite sets of input Σin and output Σout actions.

• A finite set of edges →⊆ Q×(Σin∪Σout)×N×B(V)×
R×Q. Each edge e = (q, a, pr, g, r, q′) is described by
a source location q, an action a, a priority pr, a guard
g, an update r and a target q′.

TIOAs are able to express hybrid dynamics, since they
support data variables and arbitrary functions in the right-
hand side of guards and updates. Continuous flows, i.e. the

update of variables through differential equations, cannot be
expressed directly, but can be modelled with update func-
tions using the explicit solution of the equations. Therefore,
TIOAs can express any hybrid automata whose flows admit
explicit solutions that can be effectively computed.

We require that priorities define a total ordering of the
edges out of any location, and that output actions have
higher priority than input actions. To facilitate modular
designs, TIOAs are able to synchronise on matching input
and output actions, thus forming networks of communicating
automata. We say that an output edge is enabled when the
associated guard holds. On the other hand, an input edge
is enabled when both its guard holds and it can synchronise
with a matching output action fired by another component
of the network. Note that, unlike input edges, output edges
can fire even without synchronising with a matching input
action. A component of a network of TIOAs is enabled
if, from its current location, there is at least one outgoing
edge enabled. Also, we assume that output edges are ur-
gent, meaning that they are taken as soon as they become
enabled. As shown in [16], priority and urgency imply that
the TIOA is deterministic.

Definition 2 (Network of TIOAs). A network of
TIOAs with m components is a tuple N = ({A1, . . . ,Am},X ,
Γ,D,Σin,Σout) of TIOAs, where

• for j = 1, . . . ,m, Aj = (X ,Γ,D, Qj , qj0,Σin,Σout, →j)
is a TIOA,

• X , Γ, D, Σin and Σout are the common sets of clocks,
parameters, data variables, input and output actions,
respectively.

We define the set of network modes by ~Q = Q1 × · · · ×Qm,
with initial mode ~q0 = (q1

0 , . . . , q
m
0) and the initial variable

valuation η0. A state of the network is a pair (~q, η), where

~q ∈ ~Q is the vector of active locations and η ∈ V(V) is the
variable valuation.

A parametric network of TIOAs is a network where the pa-
rameter valuation is unknown. N (γ) denotes the concrete
network obtained by instantiating the valuation γ.

The execution of a network N (γ) of TIOAs is described

by a path ρ = (~q0, η0) t0−−→ (~q1, η1) t1−−→ · · · , where, for each
i, ρ[i] = (~qi, ηi) is a state of the network and ti is the time
spent in that state. A step in the path occurs as soon as at
least one component is enabled. In this case, each enabled
component fires the enabled edge with maximum priority,
moving to the corresponding target location. The new vari-
able valuation reflects the updates of the fired edges and
time spent in the previous state. For a detailed account of
the formal semantics of TIOA networks, see [26].

Example 1. Consider the TIOAs A1, A2 and A3 from
Fig. 2. The automata model the bang-bang temperature con-
trol system given in [1]. The controller switches the boiler
on or off depending on the current temperature (variable t)
and on a predefined threshold θ. Automaton A1 has the
role of controlling the boiler, while A2 models the led light
that notifies the user when the boiler is heating or switched
off. The boiler automaton A3 changes the room temperature.
Parameters are: Ton, which describes the minimum time be-
fore the controller switches on the boiler, if the temperature
(variable t) is below the threshold θ; Tp, which defines the

Off

On OnP

x≥Ton ∧ t<θ,
Lon!,
x:= 0

x≥Tp

II, t<θ, x:=0

I, t≥θ,
Loff !,
x:= 0

x:=0

(a) Temperature controller, A1

FOff FOn

Off

Lon?,
y:=0

II, y≥Tfon, `:=1,
y:=0

I,
Loff?,
`:=0

I,
Loff?,
`:=0

II, y≥Tfon, `:=0, y:=0

`:=0

(b) Led controller, A2

Off

On

t:=t0,
z:=0

I, Loff? I, Lon?

II, z ≥ Tinc, z:=0,
t = t − 0.004 · Tinc

II, z ≥ Tinc, z:=0,
t = t + 0.04 · Tinc

(c) Boiler (plant), A3

Figure 2: TIOA network for the bang-bang temperature control example [1]. Roman numbers indicate edge priorities. Symbols ”!” and
”?” denote output and input actions, respectively.

polling period of the temperature sensor; the switching fre-
quency Tfon for the led, whose state is given by variable `;
and Tinc, the time step for updating the temperature in the
boiler automaton. Starting from the initial temperature t0, t
increases by 0.04◦C per milliseconds when the heater is on,
while it decreases by 0.004◦C when it is off.

The automata A1, A2 and A3 can be composed to form
a network. Call this N . The states of N are of the form
((qA1 , qA2 , qA3), η) where, for i = 1, 2, 3, qAi is the active lo-
cation in Ai and η = (η(x), η(`), η(y), η(t), η(z)) is the vari-
able valuation. Network components communicate with each
other by means of actions Lon and Loff . By instantiating
the set of parameters Ton, Tp, θ, t0 and Tinc, N induces an
execution ρ, for instance:

ρ = ((Off ,Off ,Off), (0, 0, 0, t0, 0)) Tinc−−−→

((Off ,Off ,Off), (Tinc, 0, Tinc, t0 − 0.004 · Tinc, 0)) Ton−Tinc−−−−−−−→
((On,FOff ,On), (0, 0, 0, t0 − 0.004 · Tinc, Ton − Tinc)) · · ·

We now define the model of TIOAs with rewards labelling
the transitions, which we will use to describe the power con-
sumption model.

Definition 3 (TIOAs with rewards). A determinis-
tic timed I/O automaton (TIOA) with rewards is a tuple
Ar = (X ,Γ,D, Q, q0,Σin, Σout,→r), where X ,Γ,D, Q, q0,
Σin, and Σout are defined as in Def. 1 and →r⊆ Q× (Σin ∪
Σout)× N× B(V)×R×Distr(Q≥0)×Q.

In the above definition, Distr(Q≥0) is the set of all probabil-
ity distribution functions with finite support over the set of
positive rational numbers. For instance, we can associate to
an edge e ∈→r the function Prob ∈ Distr(Q≥0) that assigns
Prob(23) = 1

3
and Prob(1

4
) = 2

3
. We let rewards accumulate

over executions of Ar. For example, when the total reward
accumulated so far is c and Ar takes the edge e, c will be in-
creased by 23 with probability 1

3
and by 1

4
with probability

2
3
. The definition of network of TIOAs with rewards follows

from Definitions 2 and 3.

Encoding in Stateflow. TIOA models can be expressed
as MATLAB Stateflow diagrams, which are generally richer
than TIOAs. Our framework only supports the TIOA frag-
ment of the Stateflow language, thus excluding features like
hierarchical components and continuous flows. However,
unlike TIOAs, Stateflow diagrams do not support the defi-
nition of arbitrary clocks and clock updates. In particular,

each Stateflow component only possesses an implicit clock,
which is reset to 0 whenever an edge is taken, and guards
are specified through Stateflow temporal operators. Specifi-
cally, we use the operator after(t) in place of the guard x ≥ t,
before(t) for x ≤ t and at(t) for x = t, where x is the implicit
clock and t is a time value that can be specified as a function
over data variables and parameters.

2.2 Computation of safe region
We compute the set of parameter valuations such that

the TIOA network meets a given safety property using a
method adapted from [26] and based on satisfiability mod-
ulo theory (SMT) solving [14]. For a path ρ of length k,
we focus on bounded safety properties of the form φ =∧k−1

i=0 fi(ρ[0], . . . , ρ[i]), where fi is a predicate over the states
of the network up to position i. Then, for property φ, we
seek to compute the set S of safe parameter valuations, de-
fined as S = {γ ∈ V(Γ) | ρ(γ) |= φ}.

The algorithm for computing the set S (described in the
technical report [7]) relies on a symbolic SMT-based encod-
ing of the network and the property, and works by exhaus-
tively exploring bounded counter-examples to safety, which
amounts to finding valuations such that ¬φ holds at some
point in the path. To ensure decidability, we provide a dis-
crete encoding in the theory of bit-vectors (SMT UF BV),
where non-integer values and non-linear functions are ex-
pressed in a sound way through a conservative interval-based
abstraction. We remark that the framework can be gener-
alised to support more general path properties, see [26].

2.3 Kinetik battery model
Using a battery model, one can describe the state of the

battery over time, which in our framework enables the de-
velopment of power usage models and the optimisation of
battery lifetime. We consider the Kinetik Battery Model,
which describes variations of the battery capacity as a func-
tion of charge and discharge currents [27]. The model is
given by the following system of ODEs:

dy1(t)

dt
= −i(t) + k

(
y2(t)

1− c −
y1(t)

c

)
(1)

dy2(t)

dt
= −k

(
y2(t)

1− c −
y1(t)

c

)
The battery charge is distributed in two wells: available
charge y1(t) and bound charge y2(t). The function i(t) de-

notes the current applied to the battery. When the value
of i(t) is zero the battery enters the recovery mode, where
the energy flows from the bound-charge well to the available-
charge well. However, when the current i(t) is not zero, both
y1(t) and y2(t) decrease over time. If C [Ah] (ampere-hour)
is the initial total capacity of the battery then y1(0) = c ·C
and y2(0) = (1 − c) · C, where c is a fraction of the total
capacity. The conduction parameter k represents the flow
rate of charge from the bound-charge well to the available-
charge well. The battery is considered to be empty when
y1(t) = 0. As explained in Section 3.3, integration with
the TIOA power consumption model results in a piecewise
constant i(t), and thus in a hybrid battery model.

2.4 Timed Petri nets
Petri nets are a well known formalism for modelling the

control flow of concurrent systems [15]. They have an in-
tuitive semantics and are ideally suited to generating event
based executable code. We use them as an intermediate
model in the process of generating code from networks of
TIOAs. The main advantage of the Petri net formalism
compared to TIOAs is the ability to compute in advance the
synchronisation event between different transitions, which is
central to the real-time scheduling algorithm for HIL simu-
lation, as we will explain in Section 3.1.

Definition 4 (Petri net). A Petri net or
Place/Transition net is a tuple O = (P, T,W−,W+,W 0,m0)
with P ∩ T = ∅ where

• P is a finite set of places.

• T is a finite set of transitions.

• W− : P × T → N is the pre incidence matrix.

• W+ : P × T → N is the post incidence matrix.

• W 0 : P × T → N is the inhibitor incidence matrix.

• m0 ∈ NP is the initial marking.

We call a marking m ∈ NP of a Petri net N a vector assign-
ing an integer to each place of the net. A transition t ∈ T
is enabled in a marking m if ∀p ∈ P. m(p) −W−(p, t) ≥
0 ∧ m(p) − W 0(p, t) < 0. The firing of an enabled tran-
sition t from a marking m leads to marking m′, denoted

m
t−→ m′, where m′ is defined, for each p ∈ P , as m′(p) =

m(p)−W−(p, t) +W+(p, t).
Timed behaviours are introduced in Petri nets by adding

time constraints on transitions [10]. We denote by Rd the
set of update functions defined as in the case of TIOAs,
except that we restrict the functions only to data variables.

Definition 5 (TPN). A timed Petri net (TPN) with
priority and data is a tuple O = (P, T,W−,W+,W 0,m0,D,
α, β, Pr, up) with P ∩ T = ∅ where

• (P, T,W−,W+,W 0,m0) is a Petri net with inhibitor
arcs.

• D is a finite set of data variables.

• α : T → (R+ ∪ ∞) is a function assigning to each
transition its earliest firing time.

• β : T → (R+ ∪ ∞) is a function assigning to each
transition its latest firing time.

• ∀ t ∈ T. α(t) ≤ β(t).

11

21

2

212

2

2 1
2

2 1

2

21

2
1

P1

P2

Ton

Tp

Tfon

{` := 0}
Tfon

{` := 1}

t ≥ θ
{` := 0}

t ≥ θ
{` := 0}

t < θ

Figure 3: Petri net for the bang-bang controller of Fig. 2. Arcs
with arrowheads are input and output arcs. Arcs ending with
a circle are inhibitor arcs. Each arc is labelled by its valuation.
Transitions in grey are timed; transition in black, instantaneous.
Updates of data variables are enclosed in brackets.

• Pr : T → N is a function assigning to each transition
a priority.

• up : T → Rd mapping transitions to update functions
over data variables.

An implicit clock is associated with each transition t of the
net. The clock is reset when the transition becomes enabled.
The transition is enabled when the clock valuation lies be-
tween the earliest (α(t)) and latest (β(t)) firing times. A
transition can fire only if no transition with higher priority
is enabled. In our setting we work with TPNs for which the
timed behaviour is deterministic, that is, for any transition
t, α(t) = β(t) and all transitions have different priorities.

From TIOA networks to TPNs. For our purposes,
we only need to consider the subset of TIOAs derived from
Stateflow diagrams. As explained in Section 2.1, this corre-
sponds to having, for each TIOA A, exactly one clock xA,
which is reset every time an edge is taken.

For each automaton Aj = (X , Γ, D, Qj , qj0, Σin, Σout,
→j) of a network N , we build a TPN Oj = ({pj}, Tj , W

−
j ,

W+
j , W

0
j , m0,j , D, αj , βj , P rj , upj). We define an injective

function fj : Qj → N that allows encoding each location
q ∈ Qj of the automaton as a marking of the place pj .
For each edge (q, a, pr, g, r, q′) ∈→j of Aj , a transition t is
added to the TPN Oj . Three arcs are added between pj
and t: an input arc with valuation fj(q), an inhibitor arc
with valuation fj(q) + 1 and an output arc with valuation
fj(q

′). The update function is defined such that upj(t) =
r. The firing time of the transition is set to the smallest
time satisfying the guard g. A temporary labelling function
Λ(t) = a keeps the action of t. Prj reflects the priorities
in the original automaton. The algorithm for composing all
TPNs O1, . . . ,Oj obtained from N into a single TPN Ô is
described in the technical report [7]. The resulting TPN is
of the same order of magnitude as the input TIOA and, thus
is very compact and facilitates efficient code generation. It
can be shown that deterministic delays and the structure of
W−j , W

+
j and W 0

j imply that such a derived TPN preserves
the determinism of the input TIOA.

Example 2. In Fig. 3 we depict the composed TPN Ô
obtained from the network of automata A1 and A2 from Ex-
ample 1. Locations of A1 and A2 are encoded as markings

of the net Ô as follows. Place P1 encodes the locations of A1

with the function f1 = {Off 7→ 0,On 7→ 1,OnP 7→ 2} that
maps each locations of the automaton to the corresponding
number of tokens. The function f2 = {Off 7→ 0,FOn 7→
1,FOff 7→ 2} encodes the locations of A2 in P2. Automata
edges that do not synchronise with other components are
translated into transitions that are connected to only one
place (visible at the top and bottom of Fig. 3). For example,
the edge from On to OnP in A1 corresponds to the TPN
transition on the bottom-left corner. Given the weights on
the connected arcs, this transition can be fired when P1 con-
tains exactly 1 token and, after firing, puts 2 tokens back in
place P1. Each possible synchronisation between automata
edges is translated into a single TPN transition, which is
connected to all places encoding for the automata involved
in the synchronisation. An example is the transition in the
centre of the figure between P1 and P2. Edges with a time
guard are translated into timed transitions in Ô (depicted in
grey and labelled with the delay). Edges without time guards
are translated into immediate transitions (depicted in black).

3. HIL OPTIMISATION LEVEL

3.1 Code generation for HIL simulation
In this step, we generate executable C code from the TPN

translation of the TIOA network. Importantly, the gen-
erated code facilitates cross-platform deployment, since it
uses the same simulation and event scheduling algorithm for
the plant and the controller, which are run on two separate
hardware platforms. In this way, the HIL simulation algo-
rithm can execute the plant code and the controller code as
if they were two TIOAs in a network, except that the actions
are sent and received using hardware communication proto-
cols (serial, Ethernet, Bluetooth, etc). The only platform-
dependent aspects are related to the functions used for han-
dling simulation time and data communication, which may
vary depending on the target architecture.

We implemented the code generation procedures as an
extension of the Cosmos tool [4], which already provides
features for encoding TPN models into C code.

The executable code consists of two main parts, responsi-
ble for encoding the structure of the TPN and for simulating
the execution of the TPN, respectively. The main challenge
is scheduling the execution of the next transition/event in a
very short amount of time, which is crucial to ensure real-
time HIL simulations. Importantly, by analysing the struc-
ture of the TPN, we can pre-compute both the maximum
number n of transitions enabled for scheduling and, for each
transition t, the set of transitions that might become en-
abled or disabled after firing t. This significantly increases
the speed of simulation because it restricts the number of
transitions to test, thus enabling fast HIL simulations.

The algorithm for simulating a TPN relies on a heap data
structure to store the scheduled events. This structure guar-
antees the removal and insertion in O(log(n)). Each event is
of the form e = (id, time, transition), where id is the identifier
of e, time is the firing time and transition the corresponding
TPN transition. The memory consumption of the heap is
constant and equals n · (2sid + sfloat) bits, where sid is the
number of bits required to store the identifier of an event,
and sfloat is the number of bits required to store the floating
point representation of the firing time. The code for simula-
tion and scheduling is presented in Algorithm 1. The main

functions used by the algorithm are as follows:

initialEventHeap() - computes the event heap in the initial
state of the simulator.

realTime() - returns the current simulation time.

sleep(t) - enters the idle mode and waits for t milliseconds.
If an event is received, the wait period is interrupted.

IsDataAvailable() - returns true if there is new data on the
hardware communication link. The data transferred be-
tween plant and controller correspond to the identifiers of
the fired transitions.

readData() - receives and reads data, and updates the state
of the TPN accordingly.

fire(t) - fires transition t, updating both the marking of the
net and the value of the variables related to t.

update(EQ) - updates the event queue according to the new
state. A naive implementation of this function is to examine
each transition t and check if it is enabled; if so, add t to the
event queue together with the minimal time for which t can
fire. Our implementation is more involved, but much faster,
because it exploits the precomputed information about the
enabled transitions, as discussed above.

Algorithm 1: HIL Simulation Algorithm

Function Simulate()
EQ := initialEventHeap()

ctime := realTime()

while EQ 6= ∅ do
e := min(EQ)
if e.time > ctime then

sleep(e.time - ctime)
ctime := RealTime()

if IsDataAvailable() then
readData()

update(EQ)

else
ctime := e.time
fire(e.transition)
update(EQ)

The algorithm iterates over the elements of the heap and
picks the transitions with the minimal absolute firing time.
If this is greater than the current simulation time (ctime),
the algorithm stays in the idle mode for time e.time− ctime.
If there is an event available, which is tested through func-
tion IsDataAvailable(), the algorithm wakes up. We remark
that, at soon as an event is received, the algorithm exits the
sleep mode and processes the event, which implies a deter-
ministic waiting time. When the sleep function is called by
the plant, we just pause its execution. When it is called by
the controller, the hardware platform that embeds the con-
troller code enters the power saving mode. In this way, the
algorithm optimises the power consumption of the device by
changing its power states only when transitions are enabled.

3.2 Power model builder
The controller unit is attached to a power monitor de-

vice that measures the consumption of the unit in order
to build the probabilistic power model for the controller.
This process takes in the readings from the power monitor,
corresponding to measurements of the electric current con-
sumed by the controller at each instant of time. Note that
we can equate power and current consumption in our set-

ting, because the voltage applied by the power monitor to
the hardware is constant, and thus power consumption is
proportional to current consumption.

As output, the process produces a TIOA network with
the same structure as the controller network, but annotated
with rewards that characterise the consumption of each tran-
sition. Given that the actual power consumption depends on
many physical parameters that we cannot control or model,
we choose to construct a probabilistic model through multi-
ple executions of the HIL simulator. In this way, each con-
troller transition is mapped to a probability distribution (see
Definition 3) which is built from the power measurements
recorded for that transition. When, instead, the controller
is idle, we assign a constant current in the model, taken as
the average of the readings obtained in the idle mode.

3.3 Optimisation of battery lifetime
We aim to find the controller parameters that maximise

the expected battery lifetime, that is, the time T at which
the available charge is depleted in the battery model: y1(T) =
0 (see Eq. (1)).

As explained in Section 1.1, the objective function is eval-
uated by simulating the plant and the controller on the
computer until the battery runs out. With a sufficiently
large number of simulations, this provides a good estimate
of the expected battery lifetime under the current param-
eters. Clearly, this step cannot be performed through HIL
simulation (real-time) due to the excessive time needed to
deplete the battery. To incorporate real measurements in
the simulation, we integrate the battery model with the
power consumption model as follows. For each transition
performed by the controller during a simulation, we sample
an electrical current value r from the corresponding proba-
bility distribution in the power consumption model. Then,
r is used to update the current function i(t) applied to the
battery model (see Eq. (1)). Therefore, i(t) is a piecewise
constant function. Finally, the battery lifetime T is com-
puted by deriving the analytical solution for y1(t) at each
sub-domain of i(t).

The objective function T is maximized with respect to the
set S of safe parameters (computed as per Section 2.2) by
running the optimisation algorithm described below.

Optimisation algorithm. We use a black-box opti-
misation method known as Gaussian process optimisation
(GPO). The main advantage of GPO is that, together with
a sub-optimal solution to the optimisation problem, it pro-
vides a statistical model of the (unknown) response function
f , corresponding in our case to the battery lifetime T . As
new samples are evaluated, these are used to improve on-
line the accuracy of the statistical model, which, in turn, is
queried to draw new samples. The algorithm is based on
[23] and consists of the following steps:

i) select n initial samples (by e.g. Latin hypercube) from S
and compute their objective values; ii) estimate a statistical

model from the current samples;

iii) use the model to predict the point x∗ ∈ S that maximises
the expected improvement and obtain the objective value
f(x∗);

iv) add (x∗, f(x∗)) to the set of samples and go to step ii).

The algorithm terminates after performing steps ii-iv) for
a given number of iterations. The statistical model is built

following the Gaussian process regression (GPR) method
[30], which can be seen as a stochastic generalisation of
classical regression. Given n samples x1, . . . , xn and their
respective objective function values f(x1), . . . , f(xn), the
method assumes that they are drawn from a model of the
form:

f(xi) = ~g(xi)
T ·~β + ε(xi) i = 1, 2, . . . , n (2)

~g(xi)
T ·~β is called the regression part, where ~g(xi) is the vec-

tor of basis functions and ~β is the vector of unknown coef-
ficients estimated through classical regression techniques. ε
is normally distributed with zero mean and correlation de-
pendent on a weighted Euclidean distance of the n samples.
Such weights are the parameters of the statistical model, and
are estimated by maximising the likelihood function. For a
point x∗, GPR is able to predict both an approximate value
for f(x∗), assuming it is randomly distributed according to
Eq. (2), and an estimate of the prediction standard error.

4. THE SETUP AND CASE STUDIES
The hardware setup for the case studies consists of three

main components: a desktop computer, Arduino board con-
taining AVR microcontroller, and MonsoonTM power moni-
tor. The controller model runs on the AVR board and com-
municates with the computer through a USB to serial con-
verter. The USB link between the computer and the USB
to serial converter has been altered to ensure that no energy
flows through it. We use two transistors and two resistors
controlled by the microcontroller to simulate the energy con-
sumed by the controller unit. For instance, in the pacemaker
case study (see Section 4.2), these act as the leads of the
pacemaker. The power monitor supplies the circuit with a
voltage while monitoring power consumption.

For the software setup, we use Stateflow to specify TIOA
models, the Z3 theorem prover [13] to compute the safe re-
gion, the MATLAB-based SUMO toolbox [17] to perform
GPO, and the Cosmos tool [4] to generate code and per-
form simulations. Specifically, we implemented conversion
procedures from Stateflow diagrams to TPNs and extended
Cosmos in order to generate code for the AVR microcon-
troller. Finally, we have consolidated and integrated each
software component into a single script that realises the
full HIL loop. Stateflow diagrams and corresponding Petri
net translations are available at http://www.veriware.org/
heart_pm_methods.php#HIL.

4.1 Temperature Controller
In our experimental evaluation, we aim to find values for

parameters Ton and Tp that maximise the battery lifetime.
Figure 6 summarises the results of the safe region computa-
tion and optimisation. We set the temperature threshold θ
to 24◦C and define a safety property ensuring that the room
temperature is always within 23.6◦C and 24.4◦C.

In the computation of the safe region (depicted in Fig.
6a), we consider Ton ∈ [1, 200] ms, Tp ∈ [1, 200] ms and a
path length of 50. However, we find safe parameters only
in the region Ton ∈ [1, 110] ms and Tp ∈ [1, 20] ms, which
we use as the parameter space in the optimisation loop. We
also observe that, with Tp > 11 ms, the property cannot be
guaranteed in a robust way, that is, several unsafe parameter
values exist. This suggests that a relatively high polling
frequency is necessary to keep the temperature within tight

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

x 104

Energy (mA ⋅ ms)

D
en

si
ty

(a) Off → On

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

x 104

Energy (mA ⋅ ms)

D
en

si
ty

(b) On→ OnP

Figure 4: Power model for the temperature controller. Plots show
the distributions over the energy consumed by controller actions
for: switching the boiler on (a) and polling the sensor (b).

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5000 10000 15000 20000 25000

B
at
te
ry

C
ap

ac
it
y

Time(s)

y1
y2

(a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

22000 22200 22400 22600 22800 23000

B
at
te
ry

C
ap

a
ci
ty

Time(s)

y1

(b)

Figure 5: (a) Evolution of battery capacity during one simulation.
y1 (red) is the available charge. y2 (blue) is the bound charge.
(b) Zoom of the available capacity.

bounds.
Figure 4 shows the synthesised power model for the tem-

perature controller. The model associates controller’s ac-
tions with the discrete probability distributions over the en-
ergy measurements. In particular, we report the electric
charge (measured in mA·ms) that, under fixed voltage, is
proportional to the electric energy. As regards the action
of switching the boiler on (Fig. 4a), the most likely energy
value is around 0.07 mA·ms, whereas for the action of polling
the sensor (Fig. 4b) it is around 0.05 mA·ms. In general, we
observe that the shapes of the two histograms cannot by ad-
equately approximated with an analytical distribution (e.g.
Gaussian), which supports our choice of using discrete dis-
tributions for the power model.

Figure 5 illustrates the evolution of the battery capacity
along a simulation trace, up to the point where the available
charge is depleted. In Figure 5b, we zoom into a shorter
time window, to show the detailed evolution of the available
capacity. The effects of the periodic polling of the sensor are
clearly visible, as well as the activation of the heater in the
middle of the graph.

In this case study, we employ 5000 simulations for each
evaluation of the expected battery lifetime, that is, the func-
tion we seek to optimise. The optimisation algorithm re-
turns a statistical model of the objective function (Figures
6b and 6c) together with the maximising parameters, in this
case being: Tp = 16 ms and Ton = 104 ms. However, we
notice that all the simulated parameters (black dots in Fig.
6b) yield similar objective function values. This results in
“almost uniform” sampling strategy by the GPO algorithm,
with a slightly higher number of sampled parameters around
the optimal one. Thus, the standard deviation (SD) of the
estimation is “almost constant” (see Fig. 6c). Due to the re-

gression algorithm, SD values tend to decrease in proximity
of sampled parameters. Indeed, we detect higher SD values
only for high Tp, where many parameters are unsafe and
thus excluded from the search. The analysis of the standard
deviation is crucial because we generally aim to derive pa-
rameters that not just yield (sub-)optimal mean values, but
also with low uncertainty.

4.2 Heart and Pacemaker
To demonstrate the versatility of our framework, we con-

sider a system composed of a cardiac pacemaker (the con-
troller) and the heart (the plant). The heart model is used
to reproduce the propagation of the cardiac action poten-
tial from the atrium to the ventricle. The pacemaker has
the role of maintaining the synchronisation between the two
chambers, by delivering impulses that establish correct heart
rhythm. We consider the TIOA model for the heart recently
presented in [6]. The pacemaker model is a TIOA adaptation
of the model in [22]. The heart-pacemaker TIOA network
comprises 14 components, 38 locations and 75 edges, leading
to more than 1 billion reachable states. The TPN transla-
tion resulted in 21 places, 95 transitions and 427 arcs, which
is less than an order of magnitude larger than the automaton
and, thus provides evidence of a very efficient representation.

We consider the following two parameters: TAVI, which
mimics the conduction time from the atrium to the ventri-
cle, and TURI, which sets an upper bound on the heart
rate. In particular, TURI is the amount of time that the
pacemaker waits before pacing the ventricle, after an im-
pulse from the atrium has occurred and TAVI elapsed. The
nominal values as suggested by pacemaker manufacturers
are TAVI = 150 ms and TURI = 500. The safe region
(Fig. 7a) is constructed by considering TAVI ∈ [1, 2000] ms,
TURI ∈ [1, 2000], a path length of 25 and a safety prop-
erty requiring that the time between two consecutive beats
in the ventricle is always within the range [500, 1000] ms,
which implies a heart rate between 60 and 120 BPM. The
algorithm is able to find safe parameters only in the interval
TAVI ∈ [1, 620] ms and TURI ∈ [1, 1000] ms, used as the
search space in the optimisation algorithm.

In the first experiment, we aim to minimise the total elec-
tric current during 1 minute of HIL simulation. In this alter-
native configuration of our framework, we bypass the con-
struction of the power model and feed the measurements di-
rectly into the optimisation algorithm, which, in turn, sends
the parameters to evaluate to the HIL simulator. Results in-
dicate that the optimal parameters overestimate the nominal
ones and are obtained at TAVI = 208 ms and TURI = 778
ms, but we can achieve similar consumption values for most
of the simulated points (see Fig. 7b). In the region approxi-
mately given by TAVI ∈ [300, 600] ms and TURI ∈ [600, 800]
ms, we observe much higher consumption values. However,
these are just estimations by the GP regression algorithm,
since no parameters are actually simulated in this region.
High standard deviation values are registered in this region
(see Fig. 7c) and, more prominently, in the unsafe half-plane
of the parameter space. As explained in Section 4.1, unsafe
parameters are excluded from the optimisation, resulting in
high uncertainty in their statistical estimation.

Second, we maximise the expected battery lifetime, thus
running the default HIL optimisation loop. Results are re-
ported in Fig. 7d and 7e. In this case, the optimal param-
eters underestimate the nominal ones and are: TAVI = 64

2

4

6

8

10

12

14

16

18

20 40 60 80 100

T
on

 (ms)

T p (
m

s)

(a) Safe region

20 40 60 80 100

2

4

6

8

10

12

14

16

18

20

T
on

 (ms)

T p (
m

s)

18

16

14

12

10

8

6

4

2

0
x 105

(b) Mean

20 40 60 80 100

2

4

6

8

10

12

14

16

18

20

T
on

 (ms)

T p (
m

s)

0.5

1

1.5

2

2.5

3

3.5

4

x 105

(c) SD

Figure 6: Battery lifetime optimisation results for the temperature controller. Parameters are Ton (x-axis) and Tp (y-axis). (a) depicts
the safe (white) and the unsafe (red) parameters. (b) The heat map shows the mean values of the estimated Gaussian process (red:
short battery life, blue: long battery life). In this case, the colour scale is not linear. Black dots indicate the simulated samples, the red
dot the optimal sample (indicated also by a white arrow). (c) Standard deviation (blue: low, red: high). Max expected battery lifetime:
177193 ms at Tp = 16 ms and Ton = 104 ms (white arrow in plot b).

ms and TURI = 205 ms. The other simulated parameters
give comparable objective function values (all above 89% of
the optimal lifetime), except for the parameters TAVI = 207
ms and TURI = 382 ms, which yield a lifetime 44% lower
than the optimal. This can be ascribed to the probabilistic
nature of the power model. By regression, we register a red
area (low lifetime) around this point (plot 7d), and a high
standard deviation in its surroundings (plot 7e).

We highlight the strengths of our approach, which is not
limited to the evaluation of the single optimal parameter val-
uation, but also allows for a detailed analysis of the whole
parameter space, in terms of correctness (through parameter
synthesis) and energy efficiency (through the statistical es-
timation by GPO). These aspects are crucial for the design
of safety-critical systems like cardiac pacemakers.

5. CONCLUSION
We presented a framework for optimising energy consump-

tion of embedded software and estimating consumption mod-
els from measurement data, which supports hybrid systems
specified as parametric timed automata with data, and en-
coded in MATLAB Stateflow. We implemented this frame-
work through a fully automated workflow, employing a wide
range of methods, including SMT-based parameter synthe-
sis, embedded code generation from Petri nets, real energy
measurements and Gaussian process optimisation. Our ap-
proach is the first to integrate HIL optimisation with rigor-
ous design methods, parameter synthesis and online power
model construction, thus providing, in addition to the op-
timised parameters, a wealth of information on the design
space of the system. The evaluation on the temperature
controller and cardiac pacemaker case studies demonstrates
the versatility and effectiveness of the approach, which ul-
timately enables the synthesis of embedded controllers that
are both correct-by-design and energy-efficient-by-design for
a wide variety of embedded systems. As future work, we aim
at extending our framework to support probabilistic plant
models and the synthesis of controller code and components.

Acknowledgements. This work is supported by the ERC
AdG VERIWARE, ERC PoC VERIPACE and the Institute
for the Future of Computing, Oxford Martin School.

6. REFERENCES
[1] Bang-bang control using temporal logic.

http://tinyurl.com/ngp4epu.

[2] T. Amnell, E. Fersman, P. Pettersson, H. Sun, and
W. Yi. Code synthesis for timed automata. Nord. J.
Comput., 9(4):269–300, 2002.

[3] M. Bacic. On hardware-in-the-loop simulation. In
CDC-ECC, pages 3194–3198. IEEE, 2005.

[4] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and
N. Pekergin. HASL: A new approach for performance
evaluation and model checking from concepts to
experimentation. Performance Evaluation, 2015.

[5] V. Bandur, W. Kahl, and A. Wassyng. Microcontroller
assembly synthesis from timed automaton task
specifications. In Formal Methods for Industrial
Critical Systems, pages 63–77. Springer, 2012.

[6] B. Barbot et al. Estimation and verification of hybrid
heart models for personalised medical and wearable
devices. In CMSB, pages 3–7, 2015.

[7] B. Barbot et al. Building Power Consumption Models
from Executable Timed I/O Automata Specifications.
Technical Report CS-RR-16-01, Dept of Computer
Science, University of Oxford, 2016.

[8] C. Barker et al. Hardware-in-the-loop simulation and
energy optimization of cardiac pacemakers. In EMBC,
pages 7188–7191. IEEE, 2015.

[9] L. Benini and G. d. Micheli. System-level power
optimization: techniques and tools. ACM TODAES,
5(2):115–192, 2000.

[10] B. Berthomieu and M. Diaz. Modeling and verification
of time dependent systems using time Petri nets.
IEEE TSE, 17(3):259–273, 1991.

[11] E. Dassau et al. In silico evaluation platform for
artificial pancreatic β-cell development-a dynamic
simulator for closed-loop control with
hardware-in-the-loop. Diabetes technology &
therapeutics, 11(3):187–194, 2009.

[12] E. de Jong et al. European white book on real-time
power hardware in the loop testing: Derlab report no.
r-005.0. 2012.

[13] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340. Springer, 2008.

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

TAVI (ms)

T
U

R
I (

m
s)

(a) Safe region

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600

TAVI (ms)

T
U

R
I (

m
s)

1

1.5

2

2.5

x 104

(b) Mean (power consumption)

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600

TAVI (ms)

T
U

R
I (

m
s)

1

2

3

4

5

x 104

(c) SD (power consumption)

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600

TAVI (ms)

T
U

R
I (

m
s)

−6

−5.5

−5

−4.5

−4

−3.5

−3

x 104

(d) Mean (battery lifetime)

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600

TAVI (ms)

T
U

R
I (

m
s)

1000

2000

3000

4000

5000

6000

7000

(e) SD (battery lifetime)

Figure 7: Optimisation of the total power consumption (b,c) and battery lifetime (d,e) of the pacemaker. Legend is as in Fig. 6. The
black dot in plot (a) indicates the default pacemaker parameters. (b) Mean value of the Gaussian process for min current: 11803 mA at
TAVI = 208 ms and TURI = 778 ms (red: high consumption, blue: low consumption). (d) Max expected battery lifetime: 58303 ms at
TAVI=64 ms and TURI=205 ms.

[14] L. De Moura and N. Bjørner. Satisfiability modulo
theories: An appetizer. In SBMF, volume 5902 of
LNCS, pages 23–36. Springer, 2009.

[15] M. Diaz. Petri Nets: Fundamental models, verification
and applications. Wiley, 2010.

[16] M. Diciolla, C. H. P. Kim, M. Kwiatkowska, and
A. Mereacre. Synthesising Optimal Timing Delays for
Timed I/O Automata. In EMSOFT. ACM, 2014.

[17] D. Gorissen et al. A surrogate modeling and adaptive
sampling toolbox for computer based design. Journal
of Machine Learning Research, 11:2051–2055, 2010.

[18] B. Hanson, M. Levesley, K. Watterson, and P. Walker.
Hardware-in-the-loop-simulation of the cardiovascular
system, with assist device testing application. Medical
engineering & physics, 29(3):367–374, 2007.

[19] T. Hemker et al. Hardware-in-the-loop optimization of
the walking speed of a humanoid robot. In Proc. of
CLAWAR, 2006.

[20] R. Isermann et al. Hardware-in-the-loop simulation for
the design and testing of engine-control systems.
Control Engineering Practice, 7(5):643–653, 1999.

[21] Z. Jiang et al. Cyber–physical modeling of implantable
cardiac medical devices. Proc. of the IEEE,
100(1):122–137, 2012.

[22] Z. Jiang et al. Modeling and verification of a dual
chamber implantable pacemaker. In TACAS, pages
188–203. Springer, 2012.

[23] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.

Journal of Global optimization, 13(4):455–492, 1998.

[24] D. Jung and P. Tsiotras. Modeling and
hardware-in-the-loop simulation for a small unmanned
aerial vehicle. AIAA Infotech at Aerospace, AIAA,
pages 07–2763, 2007.

[25] D. Kaynar et al. The theory of timed I/O automata.
Synthesis Lectures on Distributed Computing Theory,
1(1):1–137, 2010.

[26] M. Kwiatkowska, A. Mereacre, N. Paoletti, and
A. Patanè. Synthesising robust and optimal
parameters for cardiac pacemakers using symbolic and
evolutionary computation techniques. In HSB, 2015.

[27] J. F. Manwell and J. G. McGowan. Lead acid battery
storage model for hybrid energy systems. Solar
Energy, 50(5):399–405, 1993.

[28] M. Mehari et al. Efficient multi-objective optimization
of wireless network problems on wireless testbeds. In
CNSM, pages 212–217. IEEE, 2014.

[29] S. Philippi. Automatic code generation from high-level
petri-nets for model driven systems engineering.
Journal of Systems and Software, 79(10), 2006.

[30] C. E. Rasmussen. Gaussian processes for machine
learning. MIT press, 2006.

[31] O. S. Unsal and I. Koren. System-level power-aware
design techniques in real-time systems. Proc. of the
IEEE, 91(7):1055–1069, 2003.

