
Replace this file withprentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at theENTCS Macro Home Page.

Towards a unifying CSP approach for hierarchical
verification of asynchronous hardware

X. Wang M. Kwiatkowska G. Theodoropoulos Q. Zhang1

School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

Abstract

Formal verification is increasingly important in asynchronous circuit design, since the lack of a global syn-
chronizing clock makes errors due to concurrency (e.g., deadlocks) virtually impossible to detect by means
of conventional methods such as simulation. This paper presents a hierarchical approach to asynchronous
systems verification using CSP and its model checker FDR. The approach reflects the hierarchical asyn-
chronous hardware synthesis framework likeBalsaand verifies the system at different levels of abstraction
against properties such as deadlock, delay insensitivity, conformance and refinement. We demonstrate the
feasibility of our approach by automatically detecting errors due to delay sensitivity and deadlock in simple
asynchronous hardware components.

Key words: Asynchronous hardware, Hierarchical verification, CSP, Model checking,
Levels of abstraction.

1 Introduction

The predominant synchronization technique in hardware design today is the utilisation of a global
clock whose transitions define the points in time when communication transactions between com-
ponents can take place. This synchronous approach, however, has reached a critical point [21].
Increased clock speeds make on-chip clock skew significant and inter-chip skew a major prob-
lem. As VLSI technology advances and systems become larger, faster and more complex, timing
problems become increasingly severe and account for more and more of the design and debug-
ging expense. Thus, the last decade has witnessed an explosion of interest in asynchronous design
techniques, which do not rely on global clocks but achieve synchronization by means of localized
handshake synchronization protocols between the communicating subsystems.

Several asynchronous design techniques have been developed [21,17,11] and are progressively
finding their place in the mainstream VLSI design. The liberation from global synchronisation,
however, does not come without a price. The elimination of the clock results in highly concurrent,
non-deterministic systems2 , which are more difficult to specify, understand, design, evaluate and

1 {X.Wang,M.Z.Kwiatkowska,G.K.Theodoropoulos,Q.Zhang }@cs.bham.ac.uk
2 Note that highly concurrent, non-deterministic systems can have sequential and deterministic blackbox behaviours
and that the definitions of determinism in asynchronous systems and in synchronous systems are different.

c©2004 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Wang

verify. The variable delays and the non-deterministic behaviour (i.e., in the sense of asynchronous
systems) of arbiters introduces new problems that render simulation alone inadequate as testing
methodology. For instance, a distinguishing feature of asynchronous hardware is that they are
susceptible to deadlocks, an issue which does not exist in systems synchronised by a global clock
and operating in lock step. The correctness of the asynchronous system should not depend on the
ordering of independent streams of events; a correct design should be deadlock free for all possible
combinations of events, which can only be guaranteed by formal verification, not simulation.

Though many CAD environments exist for conventional, sequential, synchronous hardware
description languages, they are proving inappropriate for asynchronous hardware as they are fun-
damentally unsuitable for describing concurrent nondeterministic asynchronous behaviour. While
appropriate front-ends or translators exist for synchronous designs which allow users to work di-
rectly with VHDL or Verilog, with the tools building an (appropriately reduced) model and per-
forming checks, formal verification of asynchronous hardware is not as well established as that for
synchronous hardware.

In this paper we propose a formal verification approach for asynchronous hardware systems
using Balsa, the CSP-based specification and synthesis system developed by the AMULET group
at the University of Manchester [6,7]. Balsa is endowed with simulation, but not verification, tools.
We demonstrate how Balsa programs, handshake networks and asynchronous gate circuits can be
translated into CSP, which in turn enables the use of FDR [9], the mature model checker for CSP, to
serve as the back-end verification tool. Data independence can be employed to tackle the datapath
reduction problem. The proposed approach can be implemented as an add-on to existing Balsa
design and synthesis process.

The paper is structured as follows. We first outline the VLSI compilation framework for asyn-
chronous hardware design. Then we propose a hierarchical verification approach, as an extension
of the framework, based on the use of CSP as the unifying formalism. Next, we illustrate the
approach with the help of a Balsa program fragments, handshake networks, asynchronous logic
circuits and its synthesis process. For each level (three in all), we give a translational semantics of
the Balsa components in CSP and describe the outcome of verification experiments. Finally, we
conclude the paper by discussing related work and future plans.

2 High-level asynchronous circuit compilation

Languages for modelling asynchronous systems (especially at the high level) are frequently based
on CSP (Hoare’s Communicating Sequential Processes), whose channel communication paradigm
has been extensively advocated as particularly suitable for describing the behaviour of asynchronous
hardware systems. Of the various CSP-based approaches that have been used (e.g., [22,16,12,10]),
a particularly promising one employs silicon compilation to automatically generate gate-level im-
plementations from high-level specifications; most notable examples include Brunvand’s [4] work,
Tangram [2] and Balsa [6,7].

Within this asynchronous logic synthesis framework (Figure 1), a CSP-based parallel program-
ming language is usually employed to give a high-level algorithmic description of the design.
From such a description, syntax-directed compilation creates a network (composition) of hand-
shake components, where each language construct in the program is mapped to a corresponding
handshake implementation. Handshake components are usually pre-designed and stored in a li-
brary in the form of gate-level circuit fragments.

2

Wang

Figure 1. The three-level VLSI compilation framework

3 A hierarchical approach to asynchronous hardware verification

In this paper, based on the silicon compilation framework, we propose a hierarchical approach to
verifying asynchronous hardware designs, which utilises FDR, the model checker for CSP. The
approach centres around the two hierarchies in silicon compilation: the hierarchy of abstraction
levels (as shown in Figure 1) and the hierarchy of component composition.

The key observation is that CSP is appropriate for describingall three levelsof system descrip-
tion. The top level describes a synchronous system like in standard CSP; it utilizes fine-grained
parallel (parallel operator within sequential composition) that is rarely supported by other model
checkers. The lower two levels describe asynchronous systems, which poses challenges to the ex-
pressive power of standard CSP. Based on our novel idea of ascheduler, we find that asynchronous
systems can not only be modelled in CSP in a direct and intuitive way, but also be simplified to use
just the traces model. In some sense, our work is similar to Dill’s trace theory of asynchronous cir-
cuits [5]. At all three levels, the systems will be highly concurrent; past experiences have indicated
that FDR works well with a high degree parallelism [20].

Another advantage of using CSP and FDR, we find, is that refinement is natural and partic-
ularly effective in reducing a verification problem across component composition hierarchy. For
a component, it can be described from two points of view: an implementor’s view and a user’s
view. The user’s view treats the component as a blackbox and provides an abstract behavioural
specification. It is usually much simpler than its implementation counterpart, which may involve
complicated interactions among sub-components. If we have verified the refinement of the im-
plementation by the specification, the specification can replace the implementation in any further
verification work. Similarly, using the idea ofprotocols, we are able to hierarchically reduce the
verification of asynchronous systems as well.

3.1 Hierarchy across abstraction levels

Abstraction hierarchy is an important tool for managing the complexity in asynchronous circuit de-
sign, both for human designers as well as for verification tools. At theprogramming language level,
we use abstract concepts such as synchronous broadcast communication, shared variables, sequen-
tial and parallel composition, etc, to describe a high-level algorithmic view and structural design of
the hardware system. At thehandshake level, two-way asynchronous handshake signals, which ex-
ploit a basic set of handshake components (Fork, Split, Variable, Loop, Concur, BinaryFunc, etc.),
implement synchronous broadcast communication, interleaved variable accesses, control sequen-
tiality and parallelism, etc. At thebasic gate level, handshake signals are mapped to transitions on
the wires. The function of basic handshake components is synthesized from basic logic gates.

3

Wang

Figure 2. The hierarchy of abstraction

Given a large asynchronous hardware design, it is often infeasible to verify the whole design
at the lowest level. By utilising the abstraction hierarchy, the overall verification problem can
be decomposed into smaller, more tractable problems at different levels. Since we employ CSP
at all levels of abstraction, it is possible for us to establish a formal semantic link between the
levels, based on various techniques such as behaviour Refinement, Action refinement, abstract
Interpretation (RAI), etc. (In section 6.3, an example will be given on how to handshake expand
(i.e. RAI-refine) a Balsa program in CSP into several different handshake protocols in CSP.) In
a systematic approach, we expect to utilize this link in the future to validate Balsa’s compilation
functions and synthesis algorithms and prove some kind of correctness-by-construction results for
the system.

3.2 Hierarchy across component grain-sizes

Within an abstraction level, small components are often combined to form more complex compo-
nents. Flattening the composition hierarchy to perform verification is undesirable. Here we will
adoptspecification-based refinement checkingandprotocol-based closed-circuit testingto verify
asynchronous hardware system. The former applies to the synchronous blocking communication
of the Balsa language level, and the latter to the asynchronous non-blocking communication of
handshake and basic gate levels.

In the synchronous case, although events are blocking, delay is generally irrelevant. At this
level we apply the traditional CSP refinement, that is, separate specification of a component from
its implementation; after checking, the specification can be used instead of implementation when
composing components.

An asynchronous hardware system, at lower levels, is an input/output system which consists
of a collection of asynchronous components connected by channels. A channel is two-way and
associated with delay. Components communicate by sending/receiving signals with non-blocking
semantics. Although CSP enforces synchronisation of input and output on the same channel into
a single event, we choose to model the two operations separately and use aschedulerto explicitly
schedule the delay and synchronization of input and output. A scheduler will first nondeterministi-
cally select an enabled output (those in the initials of the process) of a sending component and then
force it onto the input of the receiving component. This nondeterminism of the scheduler can sim-
ulate all the possible delay scenarios of the system. If a system runs correctly with a scheduler, this
implies that the system runs correctly in all delay scenarios. That is, the system isdelay insensitive.
If there is an assumption on channel delay, such as isochronic fork, the scheduler can be modified
to reflect the assumption. This enables us to verify quasi-delay insensitive and speed-independent
systems.

4

Wang

An asynchronous input/output system can be an open-circuit system or a closed-circuit system.
A closed-circuit system models a complete system, which neither inputs from nor outputs to the
environment. An open-circuit system models a component. Generally speaking, an open-circuit
system can be described by a protocol, which dictates all its legal sequences of input and output
events with environment. The use of the protocol can be two-fold: for a system, the protocol
describes its environment assumption, and, for a component in a larger system, its behavioural
specification.

When verifying a closed-circuit system, we run the system in parallel with the scheduler. If it
deadlocks when the scheduler forces the output onto the input, we say the system is incorrect, in
the sense that the system does not constitute a good environment in which all the protocols of the
sub-components are obeyed. Because the scheduler participates in the occurrence of every event,
any deadlock of the scheduler will be global, and hence easy to check in FDR.

When verifying an open-circuit system, we use its protocol as the environment of the system to
close-circuit it and verify as before using the scheduler. Then deadlock freedom implies not only
that the system is a correct environment for all its sub-components, but also that the system cor-
rectly implements, or conforms to, the protocol. A complete example of open-circuit verification
will be shown in section 7.

4 Balsa

Balsa is both an asynchronous hardware synthesis framework and the CSP-like language for de-
scribing such systems. Balsa generates purely asynchronous macromodular circuits similar to
those of Philips’ Tangram [2]. (One major difference is that Balsa extends Tangram withhandshake
enclosure[6,7].) Balsa is technology independent (e.g. channel connections can be implemented
using speed-independent or delay-insensitive schemes) and it targets standard cell and FPGA tech-
nologies for producing gate-level netlists. Three levels of simulation are supported: behavioural
at the Balsa level, and functional and timing (using native simulators of the supported commercial
CAD tools) at the basic gate and layout levels (Figure 3). No verification tool is available.

Fainter lines in Figure 3 denote manual processes. It is obvious from the figure that most
validation work in Balsa is done manually.

Figure 3. Balsa System

5

Wang

5 Asynchronous hardware programming

Hardware programming enables system designers to approach the design of complex asynchronous
VLSI circuits at a high level of abstraction.

5.1 A translational semantics of Balsa in CSP

Balsa supports most of the features of the CSP concurrent language, such as blocking synchronous
communication (input/output), assignment, (input-)guarded command, sequential composition,
parallel composition, iteration and conditional. A Balsa-described component will synchronously
communicate with the environment by outputting/inputting data to/from channels. A channel can
connect two or more components; output on the channel will be broadcast to the components re-
ceiving data from the channel. Generally speaking, simultaneous output to the same channel can
cause interference.

Balsa does not have a formal semantics, though Tangram has one based onhandshake pro-
cesses[2]. But handshake processes are asynchronous and the semantics is essentially at the hand-
shake level. It is much less abstract than at the top level. In this paper we give a CSP translational
semantics to Balsa programs directly at the top level. The variant of CSP language we use is simi-
lar to the ones in [16] and [8], which have an imperative flavour but can give terse descriptions of
asynchronous circuits3 :

Syntax ofCSP

CMD ::= c?x : b | c!e | Skip | CMD 2 CMD′ | CMD u CMD′

| CMD o
9 CMD′ | CMD |[chans]|CMD′ | CMD ‖ CMD′ | CMD \ chans

| l(e1, ... , en) | if b thenCMD elseCMD′ | {l(z1, ... , zn) = CMD, ...}

wherex, y andz are variables4 , chansis a set of channel names (e.g.,{c1, ... , cn}), b is a boolean
expression ande is a value expression.c?x : b is a selective input command; inputx on c is
accepted iff it satisfiesb. |[chans]| is an interface parallel operator; it synchronize its two sub-
processes only on the events inchans. ‖ is a special alphabetized parallel; it synchronizes its
two sub-processes only on the events shared by their minimal alphabets (i.e., the set of events
syntactically occured in their process expressions). Sequential composition binds stronger than
choices, while choices are stronger than parallel composition.

As a running example, we will use the Balsa code fragment for an arbiter:

import[type] -- importing some types and library procedures
procedure Arb -- procedure defines a component
(input NTarget1, NTarget2:InsAdd; -- input of the component

output NTarget : InsAdd) -- output of the component
is local variable C: bit -- internal variable
begin

loop arbitrate -- arbitrate is two-way choice
NTarget1 then -- first one waits on NTarget1

if NTarget1.c = C
then NTarget <- NTarget1 end

3 The conversion to CSPm of FDR is trivial, as can be found in our CSPm scripts [27] of the examples in the paper.
4 In the rest of paper, all the variables are assumed to have been declared in the beginning of specifications so that we
can omit them for brevity.

6

Wang

| NTarget2 then -- second one waits on NTarget2
C := NTarget2.c
|| NTarget <- NTarget2 -- input from NTarget2 outputted to NTarget

end
end

end

The arbiter Balsa program can be translated to CSP processarb in a straightforwardly way
shown below:

channel ntarget,ntarget1, ntarget2 : ADDR.COLOR
channel nt1 end, nt2 end
channel read, write : COLOR
arbc = ntarget1?x?c o

9 read?c′o9 if c = c′ thenntarget!x!c elseSkipo
9 nt1 endo

9 arbc

2 ntarget2?x?c o
9 (write!c ‖ ntarget!x!c) o

9 nt2 endo
9 arbc

lcv(c) = read!c o
9 lcv(c) 2 write?c′ o

9 lcv(c′)
arb = (arbc ‖ lcv(0)) \ {read,write}

Balsa supports several features not present in CSP. Firstly, it has variables and assignment;
that is, Balsa programs are imperative. There are two possible ways to translate it into declarative
CSP: one is to translate a variable as a process and read/write operations as communications on its
channels [19], and the other is to translate processes as state passing functions [24]. We will use the
former in this paper, which is shown to be an efficient technique in respect of FDR [20]. Thus, the
local variableC in the Balsa program is translated as the processlcv. Note that, when two processes
are sharing the same variable, accesses to the variable are interleaved. So channel communication
on variable processes is narrowcast, rather than broadcast as in other Balsa channels.

Another special feature of Balsa isguard enclosure(i.e., extended rendezvous), which is mostly
associated with theSelectandArbitrate commands. Semantically, it involves a long lasting event
enclosing a collection of shorter events. In CSP, we model it by a pair of events (we call it a
duration pair), one representing the start of the ‘duration’, and the other the end. For example,
the input and output events on channelntarget1 are guard enclosures and are modelled by duration
pairs(ntarget1?x?c,nt1 end) and(ntarget1!x!c,nt1 end).

Duration pairs are also useful in detecting simultaneous occurrences of events, which, due to
its interleaving semantics, is not captured by CSP. Detecting simultaneous occurrences of events
will be very useful, as it can imply interference on channel/variable accesses or interference on
choice activations. Interference on choice activations (i.e., simultaneous activation of two or more
branches of a choice) distinguishes anArbitrate command from aSelectcommand; that is, only
Arbitratecan be used when there is interference5 .

5.2 Verification of Balsa programs in CSP

CSP has a mature verification tool, FDR, and a data reduction theory, data independence. To
utilise them in verifying Balsa-described asynchronous hardware systems, we need to implement
our hierarchical verification approach in FDR.

For a Balsa implemented systemI , whereI needs to satisfy the specificationS, we can translate
I and S into CSP and obtainSYSand SPEC. If SYSand SPEC involve large data types, data

5 Note that, at the Balsa level, we will not distinguishSelectfrom Arbitratesemantically, although this distinction has
to be made at lower levels.

7

Wang

independence reduction can be applied yielding the reducedsysandspec. We can then check the
refinement ofsysby specin FDR, which establishes thatI indeed conforms to the specificationS.

As an example, Figure 4 illustrates an asynchronous circuit which has been taken from SAMIPS,
an asynchronous implementation of the MIPS processor currently under development at the Uni-
versity of Birmingham [25]. The figure shows an abstraction of the first two pipeline stages of
SAMIPS, namely Instruction Fetch (IF) and Instruction Decode (ID).

IF is essentially the instruction prefetching unit of the processor, where the physical address
- either the current program counter (PC) incremented by four (ADD4) or a new target address
from datapath, if a control hazard occurs - is calculated and then sent toPC and the main memory,
through an arbitration unit (AAU). A new target address (NTarget2) will typically be the result
of a control hazard that takes place in the datapath. To stop prefetching invalid instructions (via
NTarget1) (and discard those that have been prefetched) in SAMIPS, a colouring mechanism has
been developed [23], whereby both the state of the processor at any particular moment and the
instructions are “coloured”. Instructions are executed only if their colour matches that of the
processor, which changes every time a control hazard occurs and is piggybacked on the new target
address to colour the new instruction stream. To break the current prefetching loop, the arbitration
unit AAU keeps a copy of the colour as the new target addresses pass through it. To simplify
our example, we assume only two colours (0 and 1), and one type of control hazard, namely the
execution of a jump instruction in theID stage.

PC +4

BaseAddr

NTarget2

PCvalue

A
D

D
4

DeCode

IF ID

A
A

U

NTarget1

NTarget

Figure 4. The instruction fetching circuit

The CSP equivalent of the arbiter unit (AAU) has been shown above. ThePC unit is just a
buffer storing the program counter:

pc(x, c) = pcvalue!x!c o
9 ntarget?x′?c′ o

9 pc(x′, c′)

TheADD4 unit is an abstraction of several units of a processor. It accepts an address fromPC.
Then, on one hand, it fetches the instruction at that address and sends to theDECODEunit. On the
other hand, it adds four to the address and sends it toAAU. The instruction set here is simplified to
distinguish onlyjumpones fromnon jumpones. We use nondeterministic choice ‘u y : INS•’ to
abstract the instruction fetching from the memory:

datatype INS= jump | non jump
channel baseaddr: ADDR.COLOR.INS

add4 = pcvalue?x?c o
9 (ntarget1!(x + 4)!c o

9 nt1 end‖u y : INS• baseaddr!x!c!y) o
9 add4

8

Wang

The DECODEunit accepts input fromADD4. If the instruction is a jump and the colour is
correct, it changes the current colour and sends it with the jump destination toAAU. The jump des-
tination is nondeterministically selected ‘u x′ : ADDR•’; this is an abstraction. If the instruction
is not a jump and the colour is correct, the instruction will be sent to later stages of the pipeline for
execution. Because we abstracted the later stages of the pipeline in this example, the instruction
will be treated similarly to the instruction with an incorrect colour: the script simply returns by
callingdecode(c).

decode(c) = baseaddr?x?c′?yo
9

if c = c′ ∧ y = jump

thenu x′ : ADDR• ntarget2!x′!(1− c) o
9 nt2 endo

9 decode(1− c)
elsedecode(c) - - - discard or execute ‘y’

This completes the CSP translation of the system. However, the system does not have a spec-
ification. It is a closed system, since we have chosen to abstract away the remaining parts of the
pipeline. Therefore, we only need to check deadlock freedom of the system below:

system= decode(0) ‖ add4 ‖ arb ‖ pc(0, 0)

In system, ADDRcan be a very large data type and may blow up the state space dramatically for
FDR. By applying data independence theory,ADDR is shown to be weakly data independent [15].
According to theorem 5.1.2 in [15], it can be reduced to a data type of size 1. Using the reduced
model with only three addresses inADDR(for illustration purposes), we have found the deadlock
trace for the instruction fetching system with a buffer-less arbiter.

pcvalue.0.0,baseaddr.0.0.jump,ntarget1.4.0,ntarget.4.0,nt1 end,pcvalue.4.0,
ntarget1.8.0,ntarget.8.0,nt1 end,ntarget2.8.1

It deadlocks becauseDECODE is trying to send colour1 and address8 to PC via the arbiter.
But PC is waiting to send the program counter8 and colour0 to ADD4, which in turn is waiting
to send address8, colour 0 and some instruction toDECODE. This forms a loop of waiting
indefinitely.

We can correct the system by adding a buffer to the arbiter, thus breaking the loop. Using FDR
we have shown that the corrected system is deadlock-free6 .

6 Handshake networks

After a system has been programmed in Balsa, the Balsa compiler will automatically translate
the program into a network of handshake components and we enter the world of asynchronous
nonblocking communication.

6.1 Handshake components

A handshake component connects with the environment via a number of handshake channels.
Whereas Balsa channels are synchronous, the handshake channels have different characteristics.
Firstly, at the Balsa level, each communication constitutes one synchronous blocking event; at

6 Detailed Balsa and CSPm scripts can be found at [27].

9

Wang

the handshake level, however, each communication consists of a pair of non-blocking events,req
and ack. This is calledhandshake expansion; it implements the transition from synchrony to
asynchrony. Depending on which side initiates the communication (i.e., by sendingreq), the ports
on a channel are divided intoactive portsandpassive ports. Naturally, one channel connects just
one active port with one passive port.

Secondly, a handshake channel connects only two adjacent components. It can either synchro-
nize them (i.e., representing the control path of the circuit) or communicate data between them (i.e.,
representing the datapath of the circuit). For datapath, it collects information from one and dis-
tributes to the other. On one channel, a component cannot send in a communication while receiving
in another7 . To connect multiple components, as Balsa channels do, some special handshake com-
ponents are needed to do the plumbering (e.g., forking and merging) to create multi-way passages.
In order to implement the broadcast and narrowcast communication in Balsa, the plumbering also
needs to perform information copying and information flow arbitration/selection for the correct
collection and distribution.

Thirdly, depending on whether there will be interference on choice activations or channel/variable
accesses, we will be able to simplify the merging implementation by replacing arbitration with se-
lection.

For example, the component in the left part of Figure 5 is aFalseVariable(FV) handshake
component.

WD RD

S WDr Sr RDr

WDa Sa RDa

Figure 5. The false variable and its protocol in STG

TheFV handshake component resembles a normalVariable, with one passive (denoted by an
open circle) write portWD and one passive read portRD8 . It differs, however, in the presence of
an active (denoted by a filled circle) probe portS. The component is namedFalseVariablebecause
it does not store data.

The behaviour of theFV component (the Signal Transition Graph [14] in Figure 5) can be
described as follows. AWRITERprocess produces data that is pushed on channelWD. A READER
process consumes data by pulling it on channelsRD. TheREADERmust wait until valid data has
been sent by theWRITERbefore reading. ChannelS is used byFV to indicate the arrival of
valid data on channelWD. SinceFV does not store data, theWRITERis allowed to take the data
away only after theREADERhas consumed it. All channels are implemented using request and
acknowledge signals. TheFV component is usually used to implementarbitrate/selectcommands
in Balsa.

7 But biput ports[2] are allowed. Biput ports exchange information (both send and receive data) in every communi-
cation.
8 This is a simplification; usually we will have multiple read ports.

10

Wang

6.2 Syntax-directed compilation and handshake component network

By compiling the arbiter program written in Balsa9 , we can obtain the handshake component
network in Figure 6. The edges with arrows represent datapath while the edges without arrows
represent control path.

The central component namedclr is the local colour variable of the arbiter program. On its
left, components ‘DW’ and ‘(>’ implement thearbitrate itself. Below it, we see the sub-network
implementing the first branch ofarbitrate, and above it, the sub-network for the second branch.
FV components are used to accept data input from channelNtraget1 andNtarget2. ‘|’ component
is used to multiplex data flow from the two branch and output toNtargetchannel.

#

activate

DW

FV

-> ||

->

@1

->

|

[32
:32]

FV

=

(> clr
NTarget

NTarget2

NTarget1

[32
:32]

->

s

s

Figure 6. The handshake network for Arbiter

6.3 Verification of handshake networks in CSP

Let us assume that a Balsa programB, whose semantics in CSP isC, is compiled into a handshake
networkN. m is a handshake component inN, whose protocol in CSP isc. In order to verify that
N correctly implementsB, we need to first handshake-expand (RAI refine)C in order to get the
handshake level protocolPRT for the network.

Then, for eachm in N, its protocolc is used as its behaviour specification. Composing up these
cs (as they are connected inN) gives us a CSP translation of the network,SYS.

PuttingSYSandPRT in parallel with a scheduler, we can check for deadlock in FDR to prove
thatSYSconforms toPRT, that is,N is a correct implementation ofB.

In the instruction fetching example above, the CSP description of the arbiter unitarb is equiv-
alent to:

spec(c) = ntarget1?x?c′o9 if c = c′ thenntarget!x!c elseSkipo
9 nt1 endo

9 spec(c)
2 ntarget2?x?c′ o

9 ntarget!x!c′ o
9 nt2 endo

9 spec(c′)

SinceNTarget1 andNTarget2 are both passive ports, whileNTargetis an active port, the proto-
col above can be handshake-expanded into:

9 Note that although the distinction betweenSelectandArbitrate is not reflected in Balsa CSP semantics, it is utilised
in the compilation process to optimise the resulting network.

11

Wang

prot′(c) = NT1.r?x?c′o9 if c = c′ thenNT.r!x!c o
9 NT.a elseSkipo

9 NT1.a o
9 prot′(c)

2 NT2.r?x?c′ o
9 NT.r!x!c′ o

9 NT.a o
9 NT2.a o

9 prot′(c′)

Or, with more concurrency, into:

prot(c) = NT1.r?x?c′o9 if c = c′ thenNT.r!x!c o
9 NT.a elseSkipo

9 NT1.a o
9 prot(c)

‖ NT2.r?x?c′ o
9 NT.r!x!c′ o

9 NT.a o
9 NT2.a o

9 prot(c′) ‖ serialize
serialize = NT.r?x?c′ o

9 (NT1.a 2 NT2.a) o
9 serialize

prot is the protocol for (arbitrate) handshake network of Figure 6, whileprot′ is for optimised
(select) handshake network when there is no interference on choice activation.

Due to space limitations, we will not show the verification at the handshake level. Instead, a
full example using protocol-based closed-circuit testing will be shown at the gate level.

7 Basic gate circuits

After the basic set of handshake components (40 plus for Balsa) is identified and defined, each
component can be synthesized into a gate level circuit, manually or automatically, based on some
encoding scheme. An encoding scheme decides how to implement abstract req/ack and data signal
of the handshake level using voltage transitions of wires in gate-level circuit.

7.1 Asynchronous logic synthesis

(a) (b)

Figure 7. The gate-level protocol of FV and T elements*

Given a handshake component, the initial input to the synthesis process should be its hand-
shake protocol. The synthesis process then concretizes (RAI refines) the protocol according to the
encoding scheme, yielding a new gate-level protocol. This is a design process; the new proto-
col must consider the implications it has on the speed, cost, safeness, etc, of synthesized circuits.
General principles of gate-level protocol design include allowing more concurrency, maintaining
delay-insensitive interface behaviour, avoiding state dependency that is too costly to implement,
etc.

For example, theFV component has recently been re-designed by Manchester AMULET group
for a dual-rail level-signalling scheme. The new refined protocol is shown in Figure 7(a).

12

Wang

Because of level-signalling, useful transitions will be usually upward (+). The downward
transitions (−) are needed just to return the voltage to zero in order to prepare the next round of
upward transitions.

Based on the new protocol, their proposed implementation is shown in Figure 8. The behaviour
of theT element is specified by the protocol of Figure 7(b)10 .

One point to note in the circuit is that dual-rail scheme encodes control signalsWDr andRDa
into data flow. Data is transmitted on a bus of n-bit width. Due to delay variation of wires, there is
a delay between the arrival of the first bit and the arrival of all bits. Duration pairs can model this
well. In Figure 7(a),WDr0+ denotes the arrival of the first bit on incoming bus, whileWDr[1,n−1]+

denotes the arrival of all bits. The detection of the arrival of all bits is implemented by theCD
element (Completion Detection) in Figure 8. TheReadPortelement connects the incoming bus
with outgoing bus. The opening and closing of the port is controlled byRDr.

Figure 8. The implementation of false variable*

The detailed reasoning behind the derivation of the gate-level protocol from the handshake
protocol can be found in [18] at [27]. It is also obvious there that they are very much concerned
about the delay insensitivity of the above design, and they can only use complicated informal
reasoning to try to exclude delay-sensitivity.

7.2 CSP verification

Imagine that a handshake componentH is implemented in a gate-level circuitT. T’s protocol is
captured byPRT in CSP.g is a gate-level element inT, and its protocol in CSP isc. Then, for each
g in T, its protocolc is used as the behaviour specification. Composing up thesecs (as they are
connected inT) yields a CSP translation of the network,SYS.

Putting SYSand PRT in parallel with a scheduler, we prove thatSYSconforms toPRT by
checking for deadlock in FDR. Sometimes an elementg may itself be implemented by even more
basic elements in circuitt (e.g., theT elements in theFV circuit). Then the protocol ofg will be
the protocol oft. By translatingt into CSP, we can similarly provet implementsg.

For theFV example, after abstracting the data bus and completion detection, the gate-level
circuit implementation becomes:

10 The input/output wiring definition can be found in Figure 9.
* Figure 7 and 8 are taken from [18].

13

Wang

C

T

READ PORT

ANDn

WDr0

WDr

Sr

Sa

RDr

RDa

WDa fork’

fork

Ir Or

Oa
Ia

Oand
Iand1

IandN2

Oc
Ic1

Ic2

In1

In2

Out

I

O1

O2

O1’

O2’ I’

Figure 9. The abstract implementation circuit

Translating the STG in Figure 7(a), we obtain the CSP protocol for the circuit as:

protocolFV= (writer ‖ reader) o
9 WDa.downo

9 protocolFV
writer = (WDr.up ‖ RDr.down) o

9 WDa.up o
9 WDr.down

reader= (WDr0.up o
9 Sr.up o

9 RDr.up ‖WDr.up) o
9 RDa.up o

9 Sa.up o
9 Sr.downo

9 RDr.down
o
9RDa.downo

9 Sa.down

Similarly, we can get the behaviour specification of theT element as:

protocolT= Ir .up o
9 Or.up o

9 Oa.up o
9 (Or.downo

9 Oa.down‖ Ia.up o
9 Ir .down) o

9 Ia.downo
9 protocolT

There are two forks in the circuit; their behaviour specification is:

fork0 = I .up o
9 (O1.up ‖ O2.up) o

9 fork1
fork1 = I .downo

9 (O1.down‖ O2.down) o
9 fork0

The Muller-C element has the behaviour:

protocolC= (Ic1.up ‖ Ic2.up) o
9 O.up o

9 protocolC′

protocolC′ = (Ic1.down‖ Ic2.down) o
9 O.downo

9 protocolC

TheREADPORTelement, after abstraction of data bus, functions like anANDgate:

readport= (In1.up ‖ In2.up) o
9 Out.up o

9 readport′

readport′ = (In1.downo
9 (Out.down‖ In2.down) 2 In2.downo

9 (Out.down‖ In1.down)) o
9 readport

The behaviour of the one-input negatedAND gate could be similarly specified. But because
it is used in this particular circuit in a limited way, its protocol is rather different from the above.
This is a good example of verification using protocols instead of the full specification of elements.

andN= IandN2.up o
9 (Iand1.up ‖ IandN2.down) o

9 Oand.up o
9 andN′

andN′ = Iand1.downo
9 Oand.downo

9 andN

One important observation we can make of the above specification is that no element shares
any event. It is due to our principle of separating input from output so that we can use the scheduler
to link and synchronize them. The definition of the scheduler is as below:

signalling(x, y) = x?z o
9 y!z

scheduler= (signalling(WDr0, Ir) 2 signalling(Oc,WDa) 2 signalling(WDr, I)
2 signalling(O1, Ic2) 2 signalling(O2, In2) 2 signalling(O1′, IandN2)
2 signalling(O2′, In1) 2 signalling(Oand, Ic1) 2 signalling(Ia, Iand1)
2 signalling(Or,Sr) 2 signalling(Sa, Ia) 2 signalling(RDr, I ′) 2 signalling(Out,RDa))
o
9 scheduler

14

Wang

signalling(x, y) connects the output channelx of one element to the input channely of another
element. Whenever an output11 is made onx, the scheduler will force it ontoy.

Putting all the elements in parallel with the scheduler and the protocolprotocolFV, we finally
obtain our testing system below.

test system= scheduler|| protocolFV || protocolC|| fork0 || readport|| fork0′ || andN0 || protocolP

Checking thetest systemwith FDR, we find it deadlocks. One of the deadlock traces is:

(WDr.up, I .up) (O2.up, In2.up) (WDr0.up, Ir .up) (Or.up,Sr.up) (RDr.up, I ′.up) (O2′.up, In1.up)
(Out.up,RDa.up) (Sa.up,Oa.up) Ia.up

The system deadlocks onANDn in this trace becauseIa.up from T overtakes the arrival of
RDr.up via fork′. This is illegal according to theANDnprotocol, because, otherwise,ANDnwill
outputOand.upand through the MullerC element will causeWDa.up. This is clearly not allowed
by the FV protocol; it means that the writer can remove the data before the reader gets it.

However, by adding an isochronic fork constraint tofork′, the arrival ofRDr.up on ANDn
will overtake Ia.up, and so block theOand.up in advance. This is verified by FDR. Actually,
with another minor constraint on timing, we prove with FDR that the above implementation is
correct12 .

Our scheduler approach can check asynchronous circuits not only for safety conditions as in
trace thoery [5] but also for progress conditions [8]. The merit of introducing a scheduler explic-
itly is that it enables us to use standard CSP theory, rather than specialised asynchronous theo-
ries [5,13]. It makes ‘asynchrony’ much easier to understand and verify. The formal semantic link
and rigorous comparison with the asynchronous theories, however, need await our recent develop-
ment of a thoery for scheduler.

8 Related work and comparison

Formal verification of asynchronous hardware is not as well established as that for synchronous
hardware, and is known to suffer from the state explosion problem. For example, the verification
of the Amulet processor using CCS and the Concurrency Workbench was hindered by state space
explosion [3]. It was circumvented by verifying only parts of the system, discarding the datapath
description and simplifying the processor model by treating only one class of instructions at a time.

For our approach, we propose to divide the verification work across both the abstraction hier-
archy and the component hierarchy so that we will not need to verify the expanded system at the
lowest level of abstraction. Our approach to verification should be viewed as an add-on to Balsa
design and synthesis process. Balsa automatically gives the division of ‘labour’ across abstraction
levels, and enables us to solve different verification problems at different levels. It is also based
on handshake component reuse and compositional construction of asynchronous hardware sys-
tems, which are ideal for employing the step-wise refinement and the protocol-based close-circuit
testing to hierarchically divide verification problems. This point is supported by our partners’ intu-
ition about Balsa at the lower levels: an asynchronous component is usually more complicated in
its implementation (i.e., its internal structure and dynamics) than in its function (i.e., its blackbox

11 For this example, it is anup transition or adowntransition.
12 Details and full scripts in CSPm can be found at [27].

15

Wang

behaviour). So replacing an implemention by its protocol could significantly reduce the size of
the verification problem. We have reasons to believe this be also true at the Balsa level: Balsa
programs are usually just algorithmic implementations of simple functions.

Other works closely related to ours include the Rainbow project [1] and the receptive process
theory [13]. Rainbow has several high-level languages, each supporting a different view on asyn-
chronous hardware. These languages have semantics in a unified process algebra, but automated
verification support is very weak. Receptive process theory includes several algebras, all based
on CSP but for lower levels of abstraction (i.e., gate level and handshake level); it uses the PVS
theorem prover to verify circuits, which is not automatic. Furthermore, both the Rainbow project
and the receptive process theory have not addressed the datapath reduction problem and there are
few case studies.

On the other hand, our work encompasses all the levels and we are using standard CSP. The
benefits of FDR and the theory of data independence are immediately available to us.

Of the remaining works on asynchronous hardware verification, the majority concentrate on
only one level of abstraction, for example, trace theory [5], which is in many ways comparable
to our CSP verification theory at the gate level. Much research activity is based on graphical
notations, such as ASFM, STG, Petri nets, etc. However, the associated verification theory and
tools are based on either trace theory or general net theory. The problem with graphical notations
is their scalability; it is often difficult to use them to design very large-scale systems.

9 Conclusion and future work

We have proposed a hierarchical framework for an integrated approach to allow the design, simu-
lation and verification of asynchronous hardware in the Balsa system. The main advantage of our
approach is that it naturally exploits the different levels of abstraction used by the circuit design-
ers to manage complexity in order to divide and reduce verification problems. Bringing all three
levels of abstraction into a unified formalism of CSP gives us the opportunity to connect them se-
mantically, and to use the mature CSP model checker FDR as the back-end tool for verification to
prove or disprove important asynchronous circuit properties such as deadlock, delay insensitivity,
equivalence and refinement. We have demonstrated the feasibility of our approach by translating
and verifying a component of an asynchronous processor, discovering a genuine unknown bug in
the False Variable circuit design caused by delay-sensitivity.

Certainly, more work needs to be done to fully realize our approach. Currently, we are working
with our parters on developing CSP specifications (or, more accurately, protocols) for all 40 plus
handshake components in the Balsa system. Based on these specifications, on the one hand we can
verify their implementation at the gate level as illustrated in section 7; on the other hand, we can
verify the compilation function translating Balsa programs into handshake component networks.
Previously, our partners have experienced some incompatibility problems when composing hand-
shake components into handshake networks. At the same time we are also working on a larger
case study like the one in [3]. It is based on an asynchronous MIPS processor core design in
collaboration with Manchester AMULET group [25]. Other future work includes automating the
translation at different levels and completing our theory of modelling asynchronous hardware in
standard CSP.

Acknowledgements We would like to thank the members of the AMULET group, and in par-

16

Wang

ticular Doug Edwards, Andrew Bardsley and Luis Plana for their invaluable advice and help. The
research is funded by EPSRC projects GR/S11091/01 & GR/S11084/01 [26].

References

[1] H. Barringer, D. Fellows, G. Gough, P. Jinks, and A. Williams. Multi-view design of asynchronous
micropipeline systems using rainbow. InIFIP VLSI’97, pages 265–276. Chapman and Hall, 1997.

[2] K. van Berkel.Handshake circuits - an Asynchronous Architecture for VLSI Programming. Cambridge
University Press, 1993.

[3] G. Birtwistle. Control state in asynchronous micropipelines. InAINT 2000, pages 45–55, 2000.

[4] E. Brunvand and M. Starkey. An Integrated Environment for the Design and Simulation of Self Timed
Systems. InIFIP VLSI’91, pages 137–146, North-Holland, 1991

[5] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1993.

[6] D. Edwards and A. Bardsley. Balsa: An Asynchronous Hardware System. Principles of Asynchronous
circuit Design, Part II, Dec 2001, Eds: J Spars, S Furber.

[7] D. Edwards and A. Bardsley. Balsa: An Asynchronous Hardware Synthesis Language. The Computer
Journal, vol 45, no 1, pages 12–18, Jan 2002.

[8] J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. Dissertation, Eindhoven
University of Technology, Department of Computing Science. October 1987.

[9] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual, 1999.
* http://www.formal.demon.co.uk*.

[10] G. Gopalakrishnan and V. Akella. Specification, Simulation, and Synthesis of Self-Timed Circuits. In
HICSS’93, pages 399–408, IEEE Computer Society Press, 1993.

[11] S. Hassoun and D. Marculescu. Towards GALS Design Methodologies. InFMGALS’03, Italy, Sep.
2003.

[12] H. Hulgaard and S. M. Burns. Bounded Delay Timing Analysis of a Class of CSP Programs with
Choice. InASYNC’94, IEEE Computer Society Press, 1994.

[13] M. B. Josephs and J. T. Udding. An algebra for delay-insensitive circuits. InCAV’90, LNCS 531,
pages 343–352. Springer-Verlag, 1990.

[14] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous
circuits. Kluwer Academic Publishers, 1993.

[15] R. Lazíc. A Semantic Study of Data Independence with Applications to Model Checking. PhD thesis,
Oxford University Computing Laboratory, 1999.

[16] A. J. Martin. Synthesis of Asynchronous VLSI Circuits. J. Staunstrup, editor,Formal Methods for
VLSI Design, North Holland, 1990.

[17] C. J. Myers.Asynchronous Circuit Design. John Wiley and Sons, 2001.

17

*

Wang

[18] L. A. Plana, D. Edwards, and A. Bardsley. Dual-rail falsevariable redesign. Personal communication,
2003.

[19] A. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1998.

[20] A. Roscoe. Compiling shared variable programs into CSP. Proceedings of PROGRESS 2001
Workshop.* http://web.comlab.ox.ac.uk/oucl/research/areas/concurrency*, 2000.

[21] J. Sparso and S. Furber.Principles of Asynchronous Circuit Design: A Systems Perspective. Kluwer
Academic Publishers, 2001.

[22] G. Theodoropoulos and J. V. Woods. Occam: An Asynchronous Hardware Description Language? In
IEEE Euromicro’97, IEEE Computer Society Press, 1997.

[23] G. Theodoropoulos and Q. Zhang. A Distributed Colouring Algorithm for Control Hazards in
Asynchronous Pipelines. Proceedings of I-SPAN ’04, Hong Kong, 2004.

[24] X. Wang, S. C. Cheung, and J. Wei. Merging data flow with control flow: a closer semantic integration
of Z and CSP. Tech. Report (HKUST-CS01-09), Dept. of Computer Science, Hong Kong University
of Sci. & Tech., 2001.

[25] Q. Zhang and G. Theodoropoulos. Towards an Asynchronous MIPS R3000 Processor. Proceedings of
ACSAC’03, LNCS 2823, pages 137-150, 2003.

[26] An Integrated Framework for Distributed Simulation and Formal Verification of Asynchronous
Hardware.* http://www.cs.bham.ac.uk/research/parlard*.

[27] Balsa Verification Examples Page.* http://www.cs.bham.ac.uk/research/parlard/examples*.

18

*
*
*

	Introduction
	High-level asynchronous circuit compilation
	A hierarchical approach to asynchronous hardware verification
	Hierarchy across abstraction levels
	Hierarchy across component grain-sizes

	Balsa
	Asynchronous hardware programming
	A translational semantics of Balsa in CSP
	Verification of Balsa programs in CSP

	Handshake networks
	Handshake components
	Syntax-directed compilation and handshake component network
	Verification of handshake networks in CSP

	Basic gate circuits
	Asynchronous logic synthesis
	CSP verification

	Related work and comparison
	Conclusion and future work
	References

