
Recursive Timed Automata

Ashutosh Trivedi and Dominik Wojtczak

Computing Laboratory, Oxford University, UK

Abstract. We study recursive timed automata that extend timed automata
with recursion. Timed automata, as introduced by Alur and Dill, are finite
automata accompanied by a finite set of real-valued variables called clocks.
Recursive timed automata are finite collections of timed automata extended
with special states that correspond to (potentially recursive) invocations of
other timed automata from their collection. During an invocation of a timed
automaton, our model permits passing the values of clocks using both pass-by-
value and pass-by-reference mechanisms. We study the natural reachability and
termination (reachability with empty invocation stack) problems for recursive
timed automata. We show that these problems are decidable (in many cases
with the same complexity as the reachability problem on timed automata)
for recursive timed automata satisfying the following condition: during each
invocation either all clocks are passed by reference or none is passed by
reference. Furthermore, we show that for recursive timed automata that violate
this condition reachability/termination problems are undecidable for automata
with as few as three clocks. We also establish similar results for two-player game
extension of our model against reachability/termination objective.

1 Introduction

Recursion is one of the central ideas in mathematics and computer science.
Informally, recursion is a process in which objects are defined in terms of other objects
of same type. For instance, recursive state machines [1] are defined as collection of
rather peculiar state machines whose states, in addition to being states in usual sense,
are allowed to be other state machines, including themselves; or in other words, some
states may correspond to potentially recursive invocation of other state machines.
Similarly, recursive Markov decision processes [14] are collection of special Markov
decision processes whose states may correspond to the invocation of other Markov
decision processes. Following this line of work, we define recursive extension of timed
automata [2] and study reachability and termination problems for this model.

Timed automata are finite automata—a finite set of locations and a finite set of
transitions—coupled with a finite set of continuous variables, called clocks, which
grow with uniform slope. Simple form of constraints on clocks are allowed to appear
as guards on the transitions and as location invariants. Syntax of timed automata also
permits resetting the clocks to zero. The reachability problem for timed automata with
at least three clocks is known to be PSPACE-complete, while the reachability problem
is NLOGSPACE-complete for timed automata with one clock.

Recursive timed automaton consists of finite number of components where each
component is a special form of timed automaton with specially marked entry and exit

2 Ashutosh Trivedi and Dominik Wojtczak

locations. Moreover components can also have special form of locations, called boxes,
that correspond to recursive invocation of other components. We allow passing the
values of clocks to the invoked component in the sense that the values of these clocks are
available to the invoked component, and passed clocks grow normally while the invoked
component is under execution. Moreover, the passed clocks can be used in guards and
location invariants inside the component, and transitions of the component may reset
these clocks to zero. We allow two different mechanisms of passing the clocks: 1) pass-
by-value, where upon returning from the invoked component clocks assume the value
prior to the invocation; and 2) pass-by-reference, where upon returning from the invoked
component their value is unaltered (it is as if a copy of these clocks is restored in the
calling component). We say that a clock is global if it is always passed by reference,
and it is local if it is always passed by value. Notice that, since there is no bound on
the depth of recursive calls in our model, we will need to be able to analyse potentially
infinitely many clocks, but at any point of the execution only a fixed number of them is
not stopped.

We study reachability and termination (reachability of one of the exits with the
empty calling context) problems on recursive timed automata. We show that the
reachability problem of recursive timed automata is decidable, and EXPTIME-complete,
if for every component, either all clocks of that component are passed by reference
or none is passed by reference. Moreover, we study reachability games on recursive
time automata, where the control state determines which of the two players picks the
action to be performed. The objective of one player is reaching a particular subset
of the control states, while the objective of the other player is complementary, i.e.
avoiding them forever throughout the run of the recursive time automaton. We show
that determining the winner of such games is in 2EXPTIME.

Applications. Much in the same way as recursive state machines can model Boolean
programs [4] (or more general software systems using predicate abstraction [16]),
it can be argued that recursive timed automata can model hard real-time software
systems [8]. The need to use the dense semantics of time is more pressing in the
case of real-time distributed software systems, i.e., computer programs that run on
multiple autonomous computers communicating through computer network. Even after
disallowing concurrency, verifying the correctness of real-time distributed software
is a fantastic challenge as each participating computer has its own physical clock of
varying frequency, while no global clock is available. Under such circumstances it is
impossible to model system using discrete semantics of time without knowing the clock
frequencies of participating computers. Hence it is natural to study these systems with
dense semantics of time.

In [9], the authors study the problem of automatic generation of an optimal
controller for an oil pump by defining this model as a 2-player game played on a time
automaton. The actual controller used in practice for controlling this oil pump was
a 400 lines long C program. Most C programs, apart from the simplest ones, make
use of functions and recursive invocations of one function by another. Parameters to
such functions are either passed by value or by reference (which in C language is done
explicitly by passing a pointer). These kind of controllers operate on variables that
are constantly growing in real-time, e.g. total time, oil pressure, temperature etc. The

Recursive Timed Automata 3

natural model to study correctness of such a system is a game played on recursive
timed automaton with a safety critical objective, i.e. the aim for the controller is to
avoid a certain set of bad states, while the aim of the other player, the “malicious
environment”, is trying to reach one of these states. If the controller has a winning
strategy, i.e. no matter what how the environment behaves, none of the unsafe states
will ever be reached, then the implementation of the controller is correct.

Related work. All the work with pushdown timed automata, see e.g. [10,11], has
considered only global clocks. Bouajjani, Echahed, and Robbana [5] studied linear
hybrid automata with pushdown stack and counters, and showed decidability of
reachability in pushdown timed systems. Emmi and Majumdar [13] showed the
decidability of language inclusion for implementation as timed pushdown automata
and specification as timed automata with one clock; however they proved that it is
undecidable when the specification is visibly pushdown timed automata even with
one clock [13]. The work on timed automata with counters [7] studies extending time
automata with multiple counters. The reachability problem for such systems is already
undecidable without clocks, so the authors study several decidable subclasses of this
model. Context-Free Timed Systems, studied in [6], are less expressive than our model,
and [6] shows decidability of various verification problems for context-free timed
systems with linear-hybrid observers (a variable that cannot be used in the constraints
used on any edge, similar to prices/cost variables in timed automata).

The paper is organised as follows. In the next section we set definitions of key
concepts like labelled transition systems, games, and recursive state machines. In
Section 3 we introduce our model and define problems studied in this paper. In Section 4
we prove the undecidability of termination problem and games on the general model,
while in Section 5 we discuss decidable subclasses and give complexity results.

2 Definitions

2.1 Preliminaries

Notation. We assume, the sets N of non-negative integers, R of reals and R⊕ of
non-negative reals. For n ∈ N, let JnKN and JnKR denote the sets {0, 1, . . . , n}, and
{r ∈ R | 0≤r≤n} respectively.

Labelled Transition System. A labelled transition system (LTS) is a tuple L =
(S,A,X) where S is the set of states, A is the set of actions, and X : S × A → S
is the transition function. We say that an LTS L is finite (discrete) if both S and A are
finite (countable). We write A(s) for the set of actions available at s ∈ S, i.e., the set of
actions a ∈ A for which X(s, a) is non-empty.

We say that (s, a, s′) ∈ S × A × S is a transition of L if s′ = X(s, a) and a
run of L is a sequence 〈s0, a1, s1, . . .〉 ∈ S×(A×S)∗ such that (si, ai+1, si+1) is a
transition of L for all i ≥ 0. We write RunsL (FRunsL) for the sets of infinite (finite)
runs and RunsL(s) (FRunsL(s)) for the sets of infinite (finite) runs starting from state s.
For a finite run r=〈s0, a1, . . . , sn〉 we write last(r)=sn for the last state of the run. A
strategy in L is a function σ : FRunsL → A such that for all runs r ∈ FRuns we
have that σ(r) ∈ A(last(r)). We write ΣL for the set of strategies in L. For a state

4 Ashutosh Trivedi and Dominik Wojtczak

s ∈ S and a strategy σ ∈ ΣL, we write Run(s, σ) for the unique run 〈s0, a1, s1, . . .〉 ∈
RunsL(s) such that s0 = s and for every i ≥ 0 we have that σ(rn) = an+1, where
rn = 〈s0, a1, . . . , sn〉 (here r0 = 〈s0〉). For a set F ⊆ S and a run r = 〈s0, a1, . . .〉 we
define Stop(F)(r) = inf {i ∈ N : si ∈ F}.

Given a state s ∈ S and a set of final states F ⊆ S we say that a final state is
reachable from s0 if there is a strategy σ ∈ ΣL such that Stop(F)(Run(s, σ)) <∞. A
reachability problem is to decide whether in a given LTS a final state is reachable from
a given initial state.

Games on Labelled Transition Systems. A game arena G is a tuple (L, SAch, STor),
where L = (S,A,X) is an LTS, SAch ⊆ S is the set of states controlled by player
Achilles, and STor ⊆ S is the set of states controlled by player Tortoise. Moreover, sets
SAch and STor form a partition of the set S.

A strategy of player Achilles is a partial function α : FRunsL → A such that for a
run r ∈ FRunsL we have that α(r) is defined if last(r) ∈ SAch, and α(r) ∈ A(last(r))
for every such r. A strategy of player Tortoise is defined analogously. Let ΣLAch and
ΣLTor be the set of strategies of player Achilles and Tortoise, respectively. The unique
run Run(s, α, τ) from a state s when players use strategies α ∈ ΣLAch and τ ∈ ΣLTor is
defined in a straightforward manner.

In a reachability game on G, rational players Achilles and Tortoise take turns to
move a token along the states of L. The decision to choose the successor state is made
by the player controlling the current state. The objective of Achilles is to eventually
reach certain states, while the objective of Tortoise is to avoid them forever. For an
initial state s and a set of final states F , the lower value ValLF (s) of the reachability
game is defined as the upper bound on the number of transitions that Tortoise can
ensure before the game visits a state in F irrespective of the strategy of Achilles,
and is equal to supτ∈ΣLTor

infα∈ΣLAch
Stop(F)(Run(s, α, τ)). The concept of upper value

is Val
L
F (s) is analogous and defined as infα∈ΣLAch

supτ∈ΣLTor
Stop(F)(Run(s, α, τ)). If

ValLF (s) = Val
L
F (s) then we say that the reachability game is determined, or the value

ValLF (s) of the reachability game exists and it is such that ValLF (s) = ValLF (s) = Val
L
F (s).

We say that Achilles wins the reachability game if ValLF (s) <∞. A reachability game
problem is to decide whether in a given game arenaG, an initial state s and a set of final
states F , player Achilles has a strategy to win the reachability game.

2.2 Recursive State Machines

Recursive state machines (RSMs) generalise LTSs, and can be used to model
systems exhibiting recursion and non-deterministic behaviour.

Definition 1 ([1]). A recursive state machineM = (M1,M2, . . . ,Mk) is a tuple of
components, where for each 1 ≤ i ≤ k componentMi = (Ni, Eni, Exi, Bi, Yi, Ai, Xi)
consists of:

– a finite set Ni of nodes, including the set Eni of entry nodes and the (disjoint from
Eni) set Exi of exit nodes.

– a finite set Bi of boxes.

Recursive Timed Automata 5

M1

u1

u2

u4

b1 : M2

b2 : M3 u3

M2

v1

v2

v3

v4

c1 : M2

c2 : M3

M3

w1 w2

d : M1

Fig. 1. Example recursive state machine taken from [1]

– boxes-to-components mapping Yi : Bi → {1, 2, . . . , k} that assigns every box to a
component. To each box b ∈ Bi we associate a set of call ports Call(b), and a set
of return ports Ret(b):

Call(b) =
{
(b, en) : en ∈ EnYi(b)

}
, and Ret(b) =

{
(b, ex) : ex ∈ ExYi(b)

}
.

Let Calli = ∪b∈Bi
Call(b) and Reti = ∪b∈Bi

Ret(b) be the set of call and return
ports of component Mi. We write Qi = Ni ∪ Calli ∪ Reti for the union of the
set of nodes, call ports and return ports, and we collectively refer to them as the
vertices of the componentMi.

– a finite set Ai of actions.
– a transition function Xi : Qi×Ai → Qi with a condition that call ports and exit

nodes do not have any outgoing transitions.

For the sake of simplicity, we assume that the set of boxes B1, . . . , Bk and set of
nodes N1, N2, . . . , Nk are mutually disjoint. We use symbols N,B,A,Q,X , etc. to
denote the union of the corresponding symbols over all components. For example,
N = ∪ki=1Ni.

Example 2. The visual presentation of a finite recursive state machine with three
components M1,M2, and M3 is depicted in Figure 1. Components are shown as
thinly framed rectangles with their labels written close to upper right corner, e.g. see
component M1. Nodes of the components are shown as circles with their labels written
inside them, e.g. see node u1. Entry nodes of a component appear on the left of the
component (see u1), while exit nodes appear on the right (see u4). Boxes are shown
as thickly framed rectangles inside components labelled b : M , where b is the label
of the box and M is the component it is mapped to. Call ports of boxes are drawn as
small circles on the left of the box, while return ports are on the right. We omit labelling
the call and return ports as these labels are clear from their position on the boxes. For
example, call port (b1, v1) is the top small circle on the left-hand side of box b1, since
box b1 is mapped to M2 and v1 is the top node on its left-hand side.

Intuitively, a run of an RSM starts at one of the entries of its components and proceeds
via the edges from one state to another until it reaches an entry port of a box or an exit
of the current component. In the former, this box is pushed onto the stack of pending
(recursive) calls and the run starts from the corresponding entry of the component this
box is mapped to. In the latter, if the stack of pending calls is empty then the run
terminates; otherwise, it pops the box from the top of the stack and jumps to the exit
port (of the just popped box) corresponding to the just reached exit of the component.

Formally, the semantics of a recursive state machine is given by a discrete LTS,
whose states are pairs consisting of a sequence of boxes, called the context, and a vertex.

6 Ashutosh Trivedi and Dominik Wojtczak

The context corresponds to the sequence of unreturned component calls, and the vertex
is a vertex of the current component.

Definition 3 (RSM semantics). LetM = (M1,M2, . . . ,Mk) be an RSM where the
componentMi is (Ni, Eni, Exi, Bi, Yi, Ai, Xi). The semantics ofM is the countable
labelled transition system [[M]] = (SM, AM, XM) where:

– SM ⊆ B∗ ×Q is the set of states;
– AM = ∪ki=1Ai is the set of actions;
– XM : SM×AM → SM is the transition function such that for s = (〈κ〉, q) ∈ SM

and a ∈ AM, we have that s′ = XM(s, a) if and only if one of the following holds:
1. the vertex q is a call port, i.e. q = (b, en) ∈ Call, and s′ = (〈κ, b〉, en);
2. the vertex q is an exit node, i.e. q = ex ∈ Ex and s′ = (〈κ′〉, (b, ex)) where

(b, ex) ∈ Ret(b) and κ = (κ′, b);
3. the vertex q is any other kind of vertex, and s′ = (〈κ〉, q′) and q′ ∈ X(q, a).

A given M and a subset Q′ ⊆ Q of its nodes we define the set [[Q′]]M as the set
{(〈κ〉, v′) : κ ∈ B∗ and v′ ∈ Q′}. We also define the set of terminal configurations
TermM as the set {(〈ε〉, ex) : ex ∈ Ex}.

Given a recursive state machine M, an initial node v, and a set of final vertices
F ⊆ Q the reachability problem on M is defined as the reachability problem on the
LTS [[M]] with the initial state (〈ε〉, v) and the set of final states [[F]]. We also define
termination problem as the reachability problem of one of the exits with the empty
context. Hence, given a recursive state machineM and an initial node v, the termination
problem onM is defined as the reachability problem on LTS [[M]] with the initial state
(〈ε〉, v) and the set of final states TermM. It is easy to show that the reachability problem
is at least as hard as the termination problem. We can see this on the example in Figure 1:
if we can decide whether state u3 is reachable from (〈ε〉, u2), we will also know whether
it is possible to terminate from (〈ε〉, w1) (simply because it is impossible to reach node
u3 from (〈ε〉, w1)). Hence, all the complexity upper bounds for the reachability problem
in this paper apply also to the termination problem, and all the complexity lower bounds
for the termination problem apply also to the reachability problem.

Games on Recursive State Machines. A partition (QAch, QTor) of vertices Q of an
RSM M (between players Achilles and Tortoise) gives rise to recursive game arena
G = (M, QAch, QTor). Given an initial state, v, and a set of final states, F , the
reachability game on M is defined as the reachability game on the game arena
([[M]], [[QAch]]M, [[QTor]]M) with the initial state (〈ε〉, v) and the set of final states
[[F]]M. Also, the termination game M is defined as the reachability game on the
game arena ([[M]], [[QAch]]M, [[QTor]]M) with the initial state (〈ε〉, v) and the set of final
states TermM. It is a well known result (see, e.g. [22,15]) that reachability games and
termination games on RSMs are determined.

Complexity results for RSMs and their subclasses. The two most natural subclasses of
RSMs are 1-box RSMs and 1-exit RSMs. 1-box RSMs are these RSMs that have just
a single component and a single box inside of it (this box of course has to be mapped
to that single component). On the other hand, an RSM is a 1-exit RSM iff each of its
components has just one exit (and hence also all of its boxes), i.e. Exi is a singleton for

Recursive Timed Automata 7

Players 1-box RSMs 1-exit RSMs multi-exit RSMs

1 NLOGSPACE-complete [12] PTIME-complete [3] PTIME-complete [3]

2 PSPACE-complete [20,17] PTIME-complete [22,15] EXPTIME-complete [22]

Table 1. Complexity results for reachability objective for RSMs

all possible i-s. The general class of RSMs is sometimes referred to as multi-exit RSMs.
Table 1 summarises some key results for RSMs and their subclasses.

The results for 1-box RSMs are derived from the corresponding results for one-
counter automata (for their definition, see, e.g. [18]), due to their exact correspondence:
the counter value is equal to the number of boxes in the calling context, calling a box
results in increasing the counter by 1, while reaching an exit corresponds to decreasing
the counter by 1.

3 Recursive Timed Automata

Recursive timed automata (RTAs) extend classical timed automata [2] (TAs) with
recursion feature similar to RSMs. Instead of defining TAs explicitly, we directly define
RTAs whose degenerate case corresponds to TAs. Just as a TA is a finite automaton
with a finite set of clocks (continuous variables), a recursive timed automaton is an
RSM with a finite set of clocks which can be passed to components during invocation
either by value or by reference. Before formally defining the syntax and semantics of
RTA we need to introduce the concept of clock valuations, regions and zones.

3.1 Clocks, clock valuations, regions and zones.

Let C be a finite set of clocks. In the definition of recursive timed automata (and
timed automata [2]) constraints on clocks may appear in the guards on the transitions,
where a clock or the difference of two clocks can be compared against natural numbers
(in general with rational numbers). Let K be the largest such number. The set of clock
constraints over C is the set of conjunctions of simple constraints, which are constraints
of the form c ./ i or c−c′ ./ i, where c, c′ ∈ C, i ∈ JKKN, and ./ ∈ {<,>,=,≤,≥}.
Let SCC be the finite set of simple clock constraints.

A clock valuation on C is a function ν : C → R⊕ and we write V for the set
of clock valuations. For a clock valuation ν ∈ V and delay t ∈ R⊕ we write ν+t
for the clock valuation defined by (ν+t)(c) = ν(c)+t, for all c ∈ C. For a subset
of clocks C ⊆ C and a clock valuation ν′ ∈ V , we write ν[C:=ν′] for the clock
valuation where ν[C:=ν′](c) = ν′(c) if c ∈ C, and ν[C:=ν′](c) = ν(c) otherwise.
Clock valuation 0 ∈ V is a special valuation such that 0(c) = 0 for all c ∈ C. Hence,
for C ⊆ C, we write ν[C:=0] for the clock valuation where ν[C:=0](c) = 0 if c ∈ C,
and ν[C:=0](c) = ν(c) otherwise.

A clock region is a maximal set ζ ⊆ V , such that SCC(ν)=SCC(ν′) for all
ν, ν′ ∈ ζ. We write R for the finite set of clock regions. Every clock region is an
equivalence class of the indistinguishability-by-clock-constraints relation, and vice
versa. Note that ν and ν′ are in the same clock region if and only if the integer parts
of the clocks and the partial orders of the clocks, determined by their fractional parts,
are the same in ν and ν′. We write [ν] for the clock region of ν. For a clock region
ζ, a subset of clocks C ⊆ C, and a clock valuation ν, we write ζ[C:=ν] for the set

8 Ashutosh Trivedi and Dominik Wojtczak

M1

u1

u2

u3b1 : M2(x)

x=1

x<1

x=0

M2

v1 v2

b2 : M2
x=1

x<1, {x}

Fig. 2. Example recursive timed automaton

{[ν′[C:=ν]] : ν′ ∈ ζ}. Observe that if ν = 0 then the set ζ[C:=0] is a singleton, and
we sometimes abuse the notation to write ζ[C:=0] for the unique region.

A clock zone is a convex set of clock valuations, which is a union of a set of clock
regions. We write Z for the set of clock zones. A set of clock valuations is a clock zone
if and only if it is definable by a clock constraint.

3.2 Syntax

Definition 4 (Syntax). A recursive timed automaton T = (C, (T1, T2, . . . , Tk)) is a
pair made of a set of clocks C and a collection of components (T1, T2, . . . , Tk). Each
component Ti = (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi) consists of:

– a finite set Ni of nodes, including the set Eni of entry nodes and the (disjoint from
Eni) set Exi of exit nodes;

– a finite set Bi of boxes;
– boxes-to-components mapping Yi : Bi → {1, 2, . . . , k} that assigns every box to a

component; (Call ports Call(b) and return ports Ret(b) of a box b ∈ Bi, and call
ports Calli and return ports Reti of a component Ti are defined as before. We set
Qi = Ni ∪ Calli ∪Reti and refer to this set as the set of vertices of Ti.)

– a finite set Ai of actions;
– the transition function Xi : Qi×Ai → Qi is with the condition that call ports and

exit nodes do not have any outgoing transitions;
– pass-by-value mapping Pi : Bi → 2C that assigns every box the set of clocks that

are passed by value to the component mapped to the box; (The rest of the clocks
are assumed to be passed by reference.)

– the invariant condition Inv i : Qi → Z;
– the action enabledness function Ei : Qi×Ai → Z; and
– the clock reset function ρi : Ai → 2C .

We assume that the sets of boxes, nodes, etc. are mutually disjoint and we use symbols
(N,B, Y,Q, P,X , etc.) without a subscript, to denote the union of the corresponding
objects over all components. When we consider an RTA as an input of an algorithm,
its size should be understood as the sum of the sizes of encodings of Q, C, Inv , A, E,
and X . Analogously as for RSMs, we define special subclasses of RTAs: 1-exit RTAs,
for which each component is allowed to have just one exit, and 1-box RTAs, that just
consist of a single component with a single box inside of them.

We say that a recursive timed automaton is glitch-free if for every box either all
clocks are passed by value or none is passed by value, i.e. for each b ∈ B we have that
either P (b) = C or P (b) = ∅. Any general recursive timed automaton with one clock is
trivially glitch-free.

Recursive Timed Automata 9

Example 5. The visual presentation of a recursive timed automaton with two compo-
nents M1 and M2, and one clock x is shown in Figure 2. The visual representation is
similar to that in RSMs. However, each transition is labelled with a guard and the clocks
to be reset, (e.g. transition from node v1 to v2 can be taken only when clock x<1, and
after taking this transition, clock x is reset), and a box is labelled as b : M(C) to denote
that box b is mapped to M and all the clocks in the set C are passed by value, and the
rest of the clocks are passed by reference. When the set C is empty, we just write b : M
for b : M(∅).

3.3 Semantics

A configuration of an RTA T is a tuple (〈κ〉, q, ν), where κ ∈ (B×V)∗ is (possibly
empty) sequence of pairs of boxes and clock valuations, q ∈ Q is a vertex and ν ∈ V is
a clock valuation over C such that ν ∈ Inv(q). The sequence 〈κ〉 ∈ (B × V)∗ denotes
the stack of pending recursive calls and the valuation of all the clocks at the moment
that call was made, and we refer to this sequence as the context of the configuration.
Technically, it suffices to store the valuation of clocks passed by value, because other
clocks retain their value after returning from a call to a box, but storing all of them
simplifies the notation. We denote the the empty context by 〈ε〉. For any t ∈ R, we
let (〈κ〉, q, ν)+t equal the configuration (〈κ〉, q, ν+t). Informally, the behaviour of an
RTA is as follows. In configuration (〈κ〉, q, ν) time passes before an available action
is triggered, after which a discrete transition occurs. Time passage is available only if
the invariant condition Inv(q) is satisfied while time elapses, and an action a can be
chosen after time t elapses only if it is enabled after time elapse, i.e., if ν+t ∈ E(q, a).
If the action a is chosen then the successor state is (〈κ〉, q′, ν′) where q′ ∈ δ(q, a) and
ν′ = (ν + t)[ρ(a) := 0]. Formally, the semantics of an RTA is given by an LTS which
has both an uncountably infinite number of states and transitions.

Definition 6 (RTA semantics). Let T = (C, (T1, T2, . . . , Tk)) be an RTA where each
component is of the form Ti = (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi). The
semantics of T is a labelled transition system [[T]] = (ST , AT , XT) where:

– ST ⊆ (B × V)∗ × Q × V , the set of states, is such that (〈κ〉, q, ν) ∈ ST if
ν ∈ Inv(q).

– AT = R⊕×A is the set of timed actions;
– XT : ST × AT → ST is the transition function such that for (〈κ〉, q, ν) ∈ ST

and (t, a) ∈ AT , we have (〈κ′〉, q′, ν′) = XT ((〈κ〉, q, ν), (t, a)) if and only if the
following condition holds:

1. if the vertex q is a call port, i.e. q = (b, en) ∈ Call then t = 0, the context
〈κ′〉 = 〈κ, (b, ν)〉, q′ = en, and ν′ = ν.

2. if the vertex q is an exit node, i.e. q = ex ∈ Ex, 〈κ〉 = 〈κ′′, (b, ν′′)〉,
and let (b, ex) ∈ Ret(b), then t = 0; 〈κ′〉 = 〈κ′′〉; q′ = (b, ex); and
ν′ = ν[P (b):=ν′′].

3. if vertex q is any other kind of vertex, then ν+t′ ∈ Inv(q) for all t′ ∈ [0, t];
ν+t ∈ E(q, a); and 〈κ′〉 = 〈κ〉, q′ ∈ X(q, a), and ν′ = (ν + t)[ρ(a) := 0].

10 Ashutosh Trivedi and Dominik Wojtczak

3.4 Reachability (Termination) Problems and Games

For a subset Q′ ⊆ Q of states of recursive timed automaton T we define the
set [[Q′]]T as the set {(〈κ〉, q, ν) ∈ ST : q ∈ Q′}. We also define the set of terminal
configuration TermT as the set TermT = {(〈ε〉, q, ν) ∈ ST : q ∈ Ex}.

Given a recursive timed automaton T , an initial node q and valuation ν ∈ V , and a
set of final vertices F ⊆ Q, the reachability problem on T is defined as the reachability
problem on LTS [[T]] with the initial state (〈ε〉, q, ν) and the set of final states [[F]]T . As
with RSMs, we also define termination problem as reachability of one of the exits with
the empty context. Hence, given an RTA T and an initial node q and a valuation ν ∈ V ,
the termination problem on T is defined as the reachability problem on LTS [[T]] with
the initial state (〈ε〉, q, ν) and the set of final states TermT .

Example 7. Consider the RTA shown in Figure 2. From the vertex u1 of M1 there is no
path that visits the exit node u3 with the empty calling context, as the only transition
available form u1 is to wait until clock x = 1, and then invoking component M2 which
recursively calls itself forever if the value of clock x = 1. On the other hand, from
node u2 there are infinitely many paths that reach u3 with the empty context. Notice
that termination at u3 is possible only when delay at u2 is 0 time-units, as upon exiting
box b clock x is tested against 0. Since clock x was passed by value to component M2,
the current value of clock x is the one before the invocation of M2, and hence the clock
reset inside M2 does not help.

A partition (QAch, QTor) of vertices Q of an RTA T gives rise to a recursive timed
game arena Γ = (T , QAch, QTor). Given an initial vertex q, a valuation ν ∈ V and a
set of final states F , the reachability game on Γ is defined as the reachability game on
the game arena ([[T]], [[QAch]]T , [[QTor]]T) with the initial state (〈ε〉, (q, ν)) and the set of
final states [[F]]T . Also, termination game on T is defined as the reachability game on
the game arena ([[T]], [[QAch]]T , [[QTor]]T) with the initial state (〈ε〉, (q, ν)) and the set of
final states TermT .

4 Undecidability Results

The following is one of the key results of this paper.

Theorem 8. Termination problem is undecidable for recursive timed automata with at
least three clocks. Moreover, termination game problem is undecidable for recursive
timed automata with at least two clocks.

For the undecidability proofs we use reduction from the halting problem of two-
counter Minsky machines [19]. A Minsky machine A is a tuple (L,C,D) where:
L = {`0, `1, . . . , `n} is the set of states including the distinguished terminal state `n;
C = {c1, c2} is the set of two counters;D = {δ0, δ1, . . . , δn−1} is the set of transitions
of the following type:

1. (increment c) δi : c := c+ 1; goto `k,
2. (test-and-decrement c) δi : if (c > 0) then (c := c− 1; goto `k) else goto `m,

where c ∈ C, δi ∈ D and `k, `m ∈ L.

Recursive Timed Automata 11

A configuration of a Minsky machine is a tuple (`, c, d) where ` ∈ L and c, d are
natural numbers that specify the value of counters c1 and c2, respectively. The initial
configuration is (`0, 0, 0). A run of Minsky machine is a (finite or infinite) sequence
of configurations 〈s0, s1, . . .〉 where s0 is the initial configuration, and the relation
between subsequent configurations is governed by transitions at their respective states.
The run is a finite sequence if and only if the last configuration is the terminal state `n.
Note that a Minsky machine has only one run starting from the initial configuration.
Termination problem for a Minsky machine asks whether its unique run is finite. It is
well known ([19]) that the termination problem for a two-counter Minsky machine is
undecidable. In the rest of the section we show a reduction from the halting problem of
Minsky machines to the termination games on RTA with two clocks. The reduction to
the termination problem for (1-player) RTAs with three clocks is in the technical report
version of this paper [21].

We fix the clocks set C = {x, y}, and we describe the construction of the
central component HALTA with nodes `0, `1, . . . , `n with the entry node `0 and the
exit node `n. A configuration (`i, c, d) of a Minsky machine corresponds to the
configuration (〈ε〉, `i, ν) such that ν(x) = 2−c · 3−d and ν(y) = 0. Decrementing
and incrementing counter c is simulated by doubling and halving, resp., of the clock
x, while decrementing and incrementing the counter d is simulated by tripling, and
thirding1, resp., the value of clock x. Testing counter c (resp. d) against 0 can be
simulated by multiplying clock x by some power of 3 (resp., 2) and then comparing
it against 3 (resp. 2). The components for doubling (DB) and halving (HF) the value
of clock x, and testing whether the value of clock x is of the form 2−i or 3−i (P2O or
P3O, resp.) are given in Figure 3. Due to space constraints, we omit the description of
components for tripling, TR, and thirding, TH, of clock x. However such components
are very similar to components DB and HF. All components function as intended only
when upon entering them, the value of clock y is 0. The vertices of these components
are partitioned between Achilles and Tortoise: the only vertex controlled by Tortoise
(shown as black squares) is the return port (B8, ex9) in componentM8. The component
DB′, invoked from inside the component M8, is similar to gadget DB, however it
doubles the value of clock y, while assuming that clock x is set to 0. We assume that
the node labelled _̈ has no outgoing transitions. The behaviour of components P2O
and P3O is as follows: if clock x is of the form 2−i and 3−i, resp., a run starting at that
component’s entry will terminate at its bottom exit and if clock x is not of that form then
such a run will terminate at that component’s top exit. Since the precise construction
of HALTA is straightforward, we just present in Figure 3 a schema that simulates the
test-and-decrement c operation: δi : if (c > 0) then (c := c− 1; goto `k) else goto `m.
Whenever a run reaches node `i inside HALTA, a box mapped to P3O is called that
tests whether the value of counter c is zero. After returning from P3O both clocks are
restored and the exit port indicates whether clock c is zero or not. If clock c is zero then
the run proceeds straight to node `m; otherwise the value of the counter c is decremented
by 1 by multiplying clock x by two using component DB and the run proceeds to node
`k. It should be easy to see now how to encode the increment c operation and how to
combine them all into the HALTA component.

1 dividing by three

12 Ashutosh Trivedi and Dominik Wojtczak

DB

en1 ex1B1 : M2

y=0 y=2

{y}

M2

en2 ex2B2 : M3(x)
y=0 x=1

{x}

M3

en3 ex3
x=1

HF

en7

¨̂

ex7B7 : M8(x)
u1

_̈

y=0
x=1

{x}
y=1

{y}
x=yx6=y

en8

ex8

ex′8

B8 : M9

M8

B′
8 : DB′

y=0

x=0

x=0
x=0

M9

en9 ex9

{x}
`i P3O(x, y)

HALTA

DB `k

`m

y=0

y=0

y=0

y=0

P2O

en12

ex12

ex′12

B12 : DB
y=0

y=0 ∧ x>2

y=0 ∧ x = 2
y=0 ∧ x<2

P3O

en13

ex13

ex′13

B13 : TR
y=0

y=0 ∧ x>3

y=0 ∧ x = 3
y=0 ∧ x<3

Fig. 3. Components for doubling DB and halving HF the value of clock x, and checking
whether x is of the form 2−i and 3−i.

To make the proofs more comprehensible, we show a run in an RTA using three

different forms of transitions s
g,C−−→t s

′, s s′, and s
M(C)−−−−→∗ s′ defined in the

following way.

1. The transitions of form s
g,C−−→t s

′, where s = (〈κ〉, n, ν), s′ = (〈κ〉, n′, ν′) are
configurations of an RTA, g is a clock constraint, C is a set of clocks, and t is a real
number, holds if there is a transition in the RTA from vertex n to n′ with guard g
and clock reset set C, moreover ν′ = (ν + t)[C := 0].

2. The transitions of the form s s′, where s = (〈κ〉, n, ν), s′ = (〈κ′〉, n′, ν′),
correspond to the following cases:
(a) transitions from a call port to an entry node, i.e. , n = (b, en) for some box

b ∈ B and κ′ = 〈κ, (b, ν)〉 and n′ = en ∈ En, while ν′ = ν.
(b) transition from an exit node to a return port (which also restore the value of

clocks passed by value), i.e. 〈κ〉 = 〈κ′′, (b, ν′′)〉, n = ex ∈ Ex, and n′ =
(b, ex) ∈ Ret(b) and κ′ = κ′′, while ν′ = ν[P (b) = ν′′].

3. The transitions of the form s
M(C)−−−−→∗ s′, called summary edges, where s =

(〈κ〉, n, ν)), s′ = (〈κ′〉, n′, ν′) are such that n = (b, en) and n′ = (b, ex) are
call and return ports, resp., of a box b mapped to M which passes by value to M
the clocks in C.

Recursive Timed Automata 13

For the sake of simplicity, in this section instead of presenting the context information in
the form (b, ν) ∈ B×V , we write (b, (ν(x), ν(y))) if some clock is passed by value to b,
else we just write b. We also write a configuration (〈κ〉, n, ν) as (〈κ〉, n, (ν(x), ν(y))).

Proposition 9. For any context κ ∈ (B×V)∗, any box b ∈ B, and x0 ∈ [0, 1] we have

that (〈κ〉, (b, en1), (x0, 0)) DB−−→∗ (〈κ〉, (b, ex1), (2 · x0, 0)).

Proof. Component DB, shown in Figure 3, uses components M2 and M3. The
following is the unique run starting from the configuration (〈κ〉, (b, en1), (x0, 0))
terminating at the configuration (〈κ〉, (b, ex1), (2 · x0, 0)).

(〈κ〉, (b, en1), (x0, 0)) (〈κ, b〉, en1, (x0, 0))
y=0−−→0 (〈κ, b〉, (B1, en2), (x0, 0)) (〈κ, b,B1〉, en2, (x0, 0))
y=0−−→0 (〈κ, b,B1〉, (B2, en3), (x0, 0)) (〈κ, b,B1, B2(x0, 0)〉, en3, (x0, 0))

x=1−−→(1−x0) (〈κ, b,B1, B2(x0, 0)〉, ex3, (1, 1− x0)) (〈κ, b,B1〉, (B2, ex3), (x0, 1− x0))
x=1,{x}−−−−−→(1−x0) (〈κ, b,B1〉, ex2, (0, 2− 2 · x0)) (〈κ, b〉, (B1, ex2), (0, 2− 2 · x0))
y=2,{y}−−−−−→(2·x0) (〈κ, b〉, ex1, (2 · x0, 0)).

The intermediate steps of this sequence of transitions can be easily verified. ut

Proposition 10. For any context κ ∈ (B × V)∗, any box b ∈ B, and x0 ∈ [0, 1], there
exists a unique strategy of Achilles such that

either (〈κ〉, (b, en7), (x0, 0)) HF−−→∗ (〈κ〉, (b, ex7), (
x0

2
, 0)),

or (〈κ〉, (b, en7), (x0, 0)) HF−−→∗ (〈κ〉, (b, ¨̂), (x0, x0))).

Moreover, for other strategies of Achilles there exists a strategy of Tortoise such that
component HF does not terminate.

Proof. The main observation here is that, in component HF, starting from the configu-
ration (〈κ〉, (b, en7), (x0, 0)) Achilles has a strategy to terminate only if he chooses to
delay the time by x0

2 in component M9 (called via box B8). The evolution of the run
from (〈κ〉, (b, en7), (x0, 0)) to (〈κ, b,B7(x0, 0), B8〉, en9, (x0, 0)) is straightforward.
Now, in component M9 Achilles can wait for an arbitrary amount of time before taking
a transition to ex9 and resetting clock x. Let us assume that he waits for t time units, and
hence (〈κ, b,B7(x0, 0)〉, (B8, ex9), (0, t)) is reached which is controlled by Tortoise.
Now Tortoise has a choice between making a transition to ex8 (believing that t = x0

2)
or invoking the component B′8 (when suspecting that t 6= x0

2).
If Tortoise believes that t = x0

2 then he makes a transition to ex8 and thus the
system reaches the configuration (〈κ, b〉, (B7, ex8), (x0, t)) giving rise to the following
run:

(〈κ, b〉, (B7, ex8), (x0, t))
x=1,{x}−−−−−→(1−x0) (〈κ, b〉, u1, (0, 1− x0 + t))

y=1,{y}−−−−−→(x0−t) (〈κ, b〉, ex7, (x0 − t, 0)) (〈κ〉, (b, ex7), (x0 − t, 0)).

14 Ashutosh Trivedi and Dominik Wojtczak

Hence if t = x0
2 then the run terminates at configuration (〈ε〉, ex7, (x0

2 , 0)).
On the other hand if Tortoise believes that t 6= x0

2 , then he invokes the component
DB′ to double the value of clock y (while keeping the value of clock x equal to 0), and
makes a transition, via exit ex′8, to the configuration (〈κ, b,B7(x0, 0)〉, ex′8, (0, 2 · t)).
Since x0 was passed by value, it is restored upon exiting from box B7 and the
configuration reached is (〈κ, b〉, (B7, ex

′
8), (x0, 2 · t)). If Tortoise’s suspicion was right

and t 6= x0
2 then the only transition available to Achilles is to move to the _̈

vertex which never terminates. Otherwise Achilles can only move to configuration
(〈κ〉, (b, ¨̂), (x0, x0)) and terminate. Hence, it is clear that the only winning strategy
for Achilles is to choose t = x0

2 . ut

Proposition 11. For any context κ ∈ (B×V)∗, any box b ∈ B, and x0 ∈ [0, 1] we have
that starting from configuration (〈κ〉, (b, en12), (x0, 0)) the component P2O terminates
at (〈κ〉, (b, ex′12), (x0, 0)) only when x0 = 2−i for some i ∈ N and otherwise it
terminates at (〈κ〉, (b, ex12), (x0, 0)).

From Propositions 9, 10, and 11 (and similar results related to other components) it
follows that Achilles has a strategy to terminate at `n in component HALTA if and only
if the Minsky machine A terminates.

5 Decidability Results

5.1 Region Abstraction

For every RTA T we define regional equivalence relation ER ⊆ ST × ST in the
following way: For configurations s = (〈κ〉, q, ν) and s′ = (〈κ′〉, q′, ν′) we have
that s, s′ ∈ ER, or equivalently we write [s] = [s′], if q = q′, [ν] = [ν′], and
κ = (b1, ν1), (b2, ν2), . . . , (bn, νn) and κ′ = (b′1, ν

′
1), (b

′
2, ν
′
2), . . . , (b

′
n, ν
′
n) are such

that for every 1 ≤ i ≤ n we have [νi] = [ν′i] and bi = b′i.
A relation B ⊆ ST × ST defined over the set of configurations ST of a recursive

timed automaton is a time-abstract bisimulation if for every pair of configurations
s1, s2 ∈ ST such that (s1, s2) ∈ B, for every timed action (t, a) ∈ AT such
that XT (s1, (t, a)) = s′1, there exists a timed action (t′, a) ∈ AT such that
XT (s2, (t′, a)) = s′2 and (s′1, s

′
2) ∈ B.

Proposition 12. Regional equivalence relation for glitch-free recursive timed automata
is a time-abstract bisimulation.

Proof. Let us fix configurations s = (〈κ〉, q, ν) and s′ = (〈κ′〉, q′, ν′) such that [s] =
[s′], timed action (t, a) ∈ XT such that XT (s, (t, a)) = sa(= (κa, (qa, νa))). We need
to find (t′, a) such that XT (s′, (t′, a)) = s′a(= (κ′a, (q

′
a, ν
′
a))) and [sa] = [s′a]. There

are following three cases.

1. The vertex q is a call port, i.e. q = (b, en) ∈ Call. In this case t = 0, the context
〈κa〉 = 〈κ, (b, ν)〉, qa = en, and νa = ν. Since q′ = q(= (b, en)) is then also a
call port, we have that t′ = 0, and 〈κ′a〉 = 〈κ′, (b, ν′)〉, q′a = en, and ν′a = νa. It is
trivial to show that [sa] = [s′a].

2. The vertex q is an exit node, i.e. q = ex ∈ Ex, and let 〈κ〉 = 〈κ∗, (b, ν∗)〉 and
(b, ex) ∈ Ret(b). In this case t = 0; context 〈κa〉 = 〈κ∗〉; qa = (b, ex); and

Recursive Timed Automata 15

νa = ν[P (b):=ν∗]. Let the context 〈κ′〉 be 〈κ′∗, (b, ν′∗)〉. Since again q′ = q(= ex)
is also an exit node we have that t′ = 0, 〈κ′a〉 = 〈κ′∗〉 and ν′a = ν′[P (b):=ν′∗]. We
need to show that [νa] = [ν′a]. Notice that for glitch-free RTAs there are exactly
two cases to consider:

– P (b) = C. In this case νa = ν∗ and ν′a = ν′∗, and since [ν∗] = [ν′∗] we get that
[νa] = [ν′a].

– P (b) = ∅. In this case νa = ν and ν′a = ν′, and since [ν] = [ν′] we get that
[νa] = [ν′a].

3. if vertex q is of any other kind, then the result follows by classical region
equivalence relation.

The proof is now complete. ut

The following proposition follows from the 2nd case in the proof of Proposition 12.

Proposition 13. For general (non glitch-free) RTA with two clocks the successors of
regionally equivalent configurations are not necessarily regionally equivalent.

By using two boxes mapped to DB in a sequence, one is able to construct a new
component D1 that multiplies the value of clock x by 2 · 2 = 220 · 220

= 221
= 4.

(See, e.g. how component DB is exploited in component P2O in Figure 3.) In general,
by using two boxes mapped to Di, one is able to construct a new component Di+1 that
multiplies the value of clock x by 22i · 22i

= 22i+1
. So, to solve reachability problem

for general RTA with two clocks, one needs to consider doubly-exponentially many (in
the size of the RTA) partitions of a region.

Proposition 12 allows us to extend the concept of region abstraction in the setting of
glitch-free RTA. Before we introduce the abstraction, we need to define some notations.

For ζ, ζ ′ ∈ R, we say that clock region ζ ′ is in the future of clock region ζ, or that
ζ is in the past of ζ ′, if there are ν ∈ ζ, ν′ ∈ ζ ′ and delay d ∈ R⊕ such that ν′ = ν+d;
we then write ζ −→∗ ζ ′. We say that ζ ′ is the time successor of ζ if ζ −→∗ ζ ′, ζ 6=ζ ′, and
ζ −→∗ ζ ′′ −→∗ ζ ′ implies ζ ′′=ζ or ζ ′′=ζ ′ and write ζ −→ ζ ′ and ζ ′ ←− ζ. Time successor
definition is extended to n-th time successor in a natural way: we say that ζ ′ is the n-th
successor of ζ, and write ζ −→+n ζ

′, if there is a sequence of regions 〈ζ1, ζ2, . . . , ζn〉
such that ζ1=ζ, ζn=ζ ′ and ζi −→ ζi+1 for every 1≤i<n. In this case we also write
[ζ1, ζn] for the union of regions ζ1, . . . ζn.

Definition 14 (Region Abstraction). Let T = (C, (T1, T2, . . . , Tk)) be a glitch-free
RTA, where each Ti is the tuple (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi). The
region abstraction of T is a finite RSM T RG = (T1RG, T2RG, . . . , TkRG) where for each
1 ≤ i ≤ k, component TiRG = (NiRG, Eni

RG, Exi
RG, Bi

RG, Yi
RG, Ai

RG, Xi
RG) consists of :

– a finite set NiRG ⊆ (Ni × R) of nodes such that (n, ζ) ∈ Ni
RG if ζ ∈ Inv(n).

Moreover, NiRG includes the sets of entry nodes EniRG ⊆ Eni ×R and exit nodes
Exi

RG ⊆ Exi ×R;
– a finite set BiRG = Bi ×R of boxes;
– boxes-to-components mapping YiRG : BiRG → {1, 2, . . . , k} is such that YiRG(b, ζ) =
Yi(b). To each box (b, ζ) ∈ BiRG we associate a set of call ports CallRG(b, ζ), and

16 Ashutosh Trivedi and Dominik Wojtczak

a set of return ports RetRG(b, ζ):

CallRG(b, ζ) =
{
(((b, ζ), en), ζ ′) : ζ ′ ∈ R and en ∈ EnYi(b)

}
, and

RetRG(b, ζ) =
{
(((b, ζ), ex), ζ ′) : ζ ′ ∈ R and ex ∈ ExYi(b)

}
.

Let Calli
RG and RetiRG be the set of call and return ports of component TiRG. We

write QiRG = Ni
RG ∪ CalliRG ∪RetiRG for the vertices of the component TiRG.

– Ai
RG ⊆ N×Ai is the set of actions, such that if (h, a) ∈ AiRG (here h is number

of region hops before taking a) then h ≤ (2·|C|)K , where K ∈ N is the largest
constant that appears in one of the clock constraints in E or Inv ;

– a transition function Xi
RG : QiRG×AiRG → Qi

RG with the natural condition that
call ports and exit nodes do not have any outgoing transitions. Moreover, for
q, q′ ∈ QiRG, (h, a) ∈ AiRG we have that q′ = Xi

RG(q, (h, a)) if one of the following
conditions holds:
1. q = (n, ζ) ∈ Ni

RG, there exists a region ζa such that ζ −→+h ζa, [ζ, ζa] ⊆
Inv i(n), ζa ∈ Ei(n, a), and
• if q′ = (n′, ζ ′) then ζ ′ = ζa[ρi(a) := 0] and Xi(n, a) = n′.
• if q′ = (((b, ζ ′), en), ζ ′′) then ζ ′ = ζ ′′ = ζa[ρi(a) := 0] and Xi(n, a) =

(b, en).
2. q = (((b, ζSaved), ex), ζCurr) is a return port of TiRG. Let ζ = ζSaved if Pi(b) = C

and ζ = ζCurr otherwise. There exists a region ζa such that ζ −→+h ζa, and
[ζ, ζa] ⊆ Inv i((b, ex)), ζa ∈ Ei((b, ex), a), and
• if q′ = (n′, ζ ′) then ζ ′ = ζa[ρi(a) := 0] and Xi(n, a) = n′.
• if q′ = (((b, ζ ′), en), ζ ′′) then ζ ′ = ζ ′′ = ζa[ρi(a) := 0] and Xi(n, a) =

(b, en).

The following proposition is a direct consequence of Proposition 12 and the
definition of region abstraction.

Proposition 15. Reachability (termination) problems and games on glitch-free RTA T
can be reduced to solving reachability (termination) problems and games, respectively,
on the corresponding region abstraction T RG.

5.2 Computational complexity

All the results stated here concern glitch-free recursive timed automata only and
their formal proofs can be found in [21]. First, we summarise the complexity results for
the reachability problem for glitch-free RTAs in Table 2.

Players RTAs with 1 clock RTAs with at least 2 clocks

1 PTIME-complete EXPTIME-complete

2 EXPTIME-complete 2EXPTIME

Table 2. Complexity results for glitch-free RTAs

By examining the reduction of RTAs to the corresponding RSMs via region
abstraction in the previous section, it can be observed that in the case where all the
clocks are passed by reference (i.e. they are global) only the number of internal nodes

Recursive Timed Automata 17

and exits grows exponentially, not the number of boxes. It is simply because the clocks
values are never being restored to the value they had before the box was called and
hence the valuation of the clocks does not have to be stored at the boxes in the region
abstraction. This observation allows us to provide better complexity upper and lower
bounds for the reachability problem and games on 1-box RTAs with global clocks,
summarised in Table 3, because 1-box RSMs can be analysed a lot more efficiently
than multi-exit RSMs. Since the number of exits can grow arbitrarily large after region
abstraction is applied to a 1-exit RTA with just a single global clock, no similar
improvement can be obtained for 1-exit RSMs with only global clocks.

Players 1-box RTAs with 1 global clock 1-box RTAs with at least 2 global clocks

1 PTIME-complete PSPACE (PSPACE-complete for 3+ clocks)

2 PSPACE-complete EXPSPACE (and EXPTIME-hard)

Table 3. Complexity results for 1-box RTAs with only global clocks

On the other hand, if all clocks are local then only the number of boxes grows
exponentially, not the number of control states (in particular the number of exit ports of
each box does not increase). This allows us to provide a much better complexity upper
and lower bounds for 1-exit RTAs with only local clocks. We summarise the results for
the reachability problem for this subclass of RTAs in Table 4. Again, even if there is
only one single local clock, the number of boxes can grow arbitrarily large after the
region abstraction is applied to such a system, hence no similar improvements can be
achieved when restricting the model to 1-box RTAs with local clocks.

Players 1-exit RTAs with 1 local clock 1-exit RTAs with at least 2 local clocks

1 PTIME-complete EXPTIME-complete

2 PTIME-complete EXPTIME-complete

Table 4. Complexity results for 1-exit RTAs with only local clocks

6 Conclusion

We defined a natural extension of boolean programs with real-time clocks. These
clocks, among others, may either correspond to physical time or other continuous values
read from sensors. Just like in any advanced imperative programming language, we
allow to pass these clocks by value or by reference. We showed that unfortunately
arbitrary mixing of these two kinds of variable passing leads to undecidability. On
the other hand, if we disallow it, the model becomes decidable and for many special
subclasses of this model, the computational complexity is not higher than PSPACE for
1 player setting and EXPTIME for 2 players setting, which is the same as the respective
reachability analysis of ordinary finite-state timed automata.

Acknowledgment

The authors are supported in part by EPSRC grants EP/F001096 and EP/G050112/1.

18 Ashutosh Trivedi and Dominik Wojtczak

References

1. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis
of recursive state machines. ACM Transactions on Programming Languages and Systems,
27:786–818, July 2005.

2. R. Alur and D. Dill. A theory of timed automata. In Theor. Comput. Sci., volume 126, 1994.
3. Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state machines. In

ACM SIGSOFT’98, pages 175–188, 1998.
4. T. Ball and S. Rajamani. The slam toolkit. In International Conference on Computer Aided

Verification, CAV 2001, pages 260–264, 2001.
5. A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems with

continuous variables and unbounded discrete data structures. In Hybrid Systems II, volume
999 of LNCS, pages 64–85, 1995.

6. Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. Verification of context-free timed
systems using linear hybrid observers. In International Conference on Computer-Aided
Verification, CAV’94, pages 118–131, 1994.

7. F. Bouchy, A. Finkel, and A. Sangnier. Reachability in timed counter systems. Electronic
Notes in Theoretical Computer Science, 239:167 – 178, 2009. Proc. of 8th, 9th, and 10th
Intl. Workshops on Verification of Infinite-State Systems (INFINITY 06, 07, 08).

8. Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling
Algorithms And Applications. Springer-Verlag, Santa Clara, CA, USA, 2004.

9. Franck Cassez, Jan J. Jessen, Kim G. Larsen, Jean-François Raskin, and Pierre-Alain
Reynier. Automatic synthesis of robust and optimal controllers — an industrial case study.
In HSCC ’09, pages 90–104. Springer-Verlag, 2009.

10. Z. Dang. Binary reachability analysis of pushdown timed automata with dense clocks. In
International Conference on Computer Aided Verification, CAV 2001, volume 2102 of LNCS,
pages 506–517. Springer, 2001.

11. Z. Dang. Pushdown timed automata: a binary reachability characterization and safety
verification. Theor. Comput. Sci., 302(1-3):93–121, 2003.

12. Stephane Demri and Regis Gascon. The Effects of Bounding Syntactic Resources on
Presburger LTL. J. Logic Computation, 19(6):1541–1575, 2009.

13. M. Emmi and R. Majumdar. Decision problems for the verification of real-time software. In
Hybrid Systems: Computation and Control, pages 200–211, 2006.

14. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. ICALP’05, pages 891–903, 2005.

15. Kousha Etessami. Analysis of recursive game graphs using data flow equations. In
VMCAI’04, pages 282–296, 2004.

16. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV’97, pages
72–83, 1997.

17. Petr Jancar and Zdenek Sawa. A note on emptiness for alternating finite automata with a
one-letter alphabet. Inf. Process. Lett., 104(5):164–167, 2007.

18. Dominik Wojtczak Kousha Etessami and Mihalis Yannakakis. Quasi-Birth-Death processes,
Tree-like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems. Performance
Evaluation, 67(9):837 – 857, 2010. Special Issue of QEST 2008.

19. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
20. Olivier Serre. Parity games played on transition graphs of one-counter processes. In

FoSSaCS’06, pages 337–351, 2006.
21. Ashutosh Trivedi and Dominik Wojtczak. Recursive timed automata. Oxford University

Computing Laboratory technical report, RR-10-09, 2010.
22. Igor Walukiewicz. Pushdown processes: Games and model checking. In International

Conference on Computer Aided Verification, CAV 1996, pages 62–74, 1996.

	Recursive Timed Automata
	Ashutosh Trivedi and Dominik Wojtczak

