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ABSTRACT
We consider continuous time stochastic hybrid systems with
no resets and continuous dynamics described by linear stochas-
tic differential equations – models also known as switching
diffusions. We show that for this class of models reacha-
bility (and dually, safety) properties can be studied on an
abstraction defined in terms of a discrete time and finite
space Markov chain (DTMC), with provable error bounds.
The technical contribution of the paper is a characterization
of the uniform convergence of the time discretization of such
stochastic processes with respect to safety properties. This
allows us to newly provide a complete and sound numeri-
cal procedure for reachability and safety computation over
switching diffusions.

Keywords
Switching diffusions; stochastic hybrid models; reachability
and safety analysis; finite abstractions; time and space dis-
cretisation; numerical computations

1. INTRODUCTION
Hybrid models are natural in the context of cyber-physical

systems applications, where continuous dynamics of physical
variables are interleaved with discrete updates of finite-state
models. Furthermore, in many engineering and natural sys-
tems, noise or uncertainty structured via probabilistic laws
are relevant, which leads to stochastic models. In this con-
text stochastic hybrid models encompass all these features,
and their properties have been recently investigated [17, 10,
18, 3].

In this work we consider switching diffusions [27, 38, 6],
models that are characterised by dynamics over a hybrid
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state space: continuous-time flows are determined by the so-
lution of a mode-dependent linear diffusion process, whereas
mode updates (over finitely many locations) hinge on events
triggered by Poisson processes, with rates that depend on
the continuous variables. As such, switching diffusions can
be regarded as special instances of stochastic hybrid mod-
els, the latter dealing also with probabilistic resets between
discrete-mode commutations. The models considered in this
work are also fully observable and not subject to any form
of non-determinism (such as control inputs, as discussed in
[27, 6]).

This contribution investigates the problem of reachabil-
ity analysis for switching diffusions, a central problem due
to the duality between reachability and safety problems,
and its role in the verification of many other specifications
(thanks to product constructions). Whilst this is a widely
investigated problem, contributions in the literature have
been limited to the characterisation of this problem, with
computational aspects that have been relegated to the use
of approximation techniques often resorting to state-space
gridding with no guarantees.

Contribution
This work provides a formal computational procedure for
the reachability analysis problem over switching diffusions.
As such, we address an open problem also for the special case
of linear stochastic differential equations. More precisely, we
provide approximation algorithms with certificates on their
precision, which reduce the problem to the computation over
a finite-state Markov chain. In other words, we show that
probabilistic reachability can be formally computed over fi-
nite abstractions, obtained by discretising the continuous
components of the models (time and space).

Related work
Stochastic hybrid models (SHS) are broadly discussed in [18,
10], and switching diffusions investigated in [27, 38, 1, 6].

The characterisation of probabilistic reachability for SHS
is elaborated in [13] by means of a number of techniques, but
not under the lens of computations. [13] leverages and ex-
tends theory developed for piece-wise deterministic Markov
processes in [20]. Further, [29] has characterised probabilis-



tic reachability for SHS as a solution of a PDE (HJI partial
differential equation), but only provided weak convergence
results for its computation, based on the approximation the-
ory in [30]. A similar approach has been pursued in [34], but
again with no numerical scheme with certifiable errors. It
appears that the application of numerical schemes for time
discretisation of SDE [28] are not of help. [22] has extended
the characterisation to constrained reachability problems.
In [11, 16, 12] numerical algorithms for verification of lin-
ear SDE, obtained for Markov population processes in the
limit of high population, have been given with just weak
convergence results.

On the other hand, for discrete-time stochastic hybrid
models probabilistic reachability (and safety) have been fully,
characterised [3], connected with verification procedures [2,
37], formally computed via software tools [23] leveraging fi-
nite abstractions, and indeed extended to general specifica-
tions [36].

An alternative approach towards formal, finite approxi-
mations of continuous-time stochastic models is discussed in
[40] and extended in [39] to switching diffusions. Notewor-
thy are also techniques and tools for verification of related
probabilistic models based on abstractions [41], measura-
bility conditions [24], and SMT technology [25] approaches.
These techniques, alongside that of this work, are clearly set
apart from statistical model checking approaches [15].

2. STOCHASTIC HYBRID PROCESSES
We consider the following class of continuous time stochas-

tic hybrid systems with no guards or resets, which are also
commonly denoted as switching diffusions. We refer the
reader to [10, 18] for technical details on the measure theo-
retical aspects underlying these processes.

Definition 1. A switching diffusion H is a tuple H =
(Q,K, F,G,W,Λ), where

• Q = {q1, ..., q|Q|} is the set of discrete modes

• K ⊆ Rm, for m > 0, is the state space of the contin-
uous dynamics. The hybrid state space is defined as
D = ∪q∈Q{q} ×K

• F : Q → Rm×m is the drift term for the continuous
dynamics

• G : Q → Rm×q is the diffusion associated to the con-
tinuous dynamics

• W is a q−dimensional Wiener process

• Λ : D × Q → R≥0 is an intensity function, where for
(qi, x) ∈ D, qj ∈ Q, we define Λ((qi, x), qj) = λi,j(x)

Let W be defined in the probability space (Ω,F , P ) with
filtration Ft, where a filtration is a family of σ−algebras
representing the information available at time t. Then, given
H and an initial condition y0 = (x0, q0) ∈ D, the stochastic
process Y = (X,α), defined on the hybrid state space D =
∪q∈Q{q} ×K is a solution of H if it satisfies

dX(t) = F (α(t)) ·X(t)dt+G(α(t)) · dW (t), (1)

and for i 6= j

P (α(t+ ∆t) = qj |Y (t) = (qi, x)) = λi,j(x)∆t+ o(∆t) (2)

with (X(0), α(0)) = (x0, q0).
The discrete dynamics of Y , described by variable α, evolves

as a jump process over the discrete state space Q, with jump
rate dependent on the continuous part. The continuous dy-
namics of Y evolves according to a linear diffusion. That is,
when the discrete system is in a particular state, X evolves
according to a linear SDE driven by a Wiener process. Then,
when the discrete systems hits a change in its state, X con-
tinues evolving according to a different SDE without reset-
ting its state.

Assumption 1. We introduce the following assumptions:

• λi,j(x) is a bounded and locally Lipschitz continuous
function in x, for all qi, qj ∈ Q

• |F (q)x| + |G(q)| ≤ C(1 + |x|) forall q ∈ Q, for some
constant C where |G(q)| =

∑
i,j |G(q)(i, j)|

• |F (q)x − F (q)x′| ≤ D|x − x′| forall q ∈ Q, for some
constant D

The first condition guarantees that over any finite time in-
terval, α almost surely jumps only a finite number of times,
thus excluding Zeno behaviours. The second and third con-
ditions guarantee that the continuous solution X exists and
is unique, and that it remains bounded over a finite time
interval [33].

Example 1. Consider the stochastic process X described
by the following SDE

dX(t) = F ·X(t)dt+G · dW (t) (3)

with initial condition X(0) = x0 ∈ Rm. That is, X is the
solution of a hybrid process H with a singleton discrete state
space (Q = {q}). It is well known that the evolution of the
probability distribution of the solution of a SDE over time
satisfies the following Fokker-Planck equation [26]

∂p(x, t)

∂t
=−

N∑
i=1

∂

∂xi
[(F (t) · x)ip(x, t)]

+
1

2

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj
[Dijp(x, t)] ,

with diffusion tensor Dij =
∑q
k=1 GikGjk.

The following lemma guarantees that X, process solution
of Equation 3 is a Gaussian process.

Lemma 1. [7, 35] Let X(0) be a normally distributed ran-
dom variable with expected value E[X(0)] = Ex0 and covari-
ance matrix CX(0) = E[X(0)X(0)] = Cx0 . Then, X, as
defined in (3), is a Gaussian Markov process with expected
value and covariance matrix given by{

dE[X(t)]
dt

= FE[X(t)]

E[X(0)] = Ex0 ,
(4)

{
dCX (t)
dt

= FCX(t) + CX(t)TF +G(GT )

dCX(0) = Cx0 .
(5)

Lemma 1 allows us to derive the analytical solution for the
expectation and variance of the solution of a linear SDE as

E[X(t)] = eFtEx0 ,

CX(t) = eFtCx0(eFt)T +

∫ t

0

(eF (t−s))GGT (eF (t−s))T ds.



3. PROBLEM DEFINITION
Given a stochastic process Y with state space D, a tar-

get set S ⊆ D, which is assumed to be measurable, and a
time interval I ⊆ R≥0, the reachability problem is defined as
the search for the characterisation and computation of the
probability that Y will reach S during I. This problem is
dual to the safety problem, that is, computing the probabil-
ity that the system will remain in a given, measurable safe
region, over a given time interval. The characterisation of
the two problems is thus interchangeable [2]. Reachability
analysis is one of the fundamental problems in the quanti-
tative analysis of models, and it is likewise key for the anal-
ysis of stochastic hybrid processes [14]. Model checking of
Continuous Stochastic Logic (CSL) [8] reduces in computing
reachability problems. Likewise for discrete-time stochastic
hybrid systems, reachability and safety play a pivotal role
for model checking PCTL formulae [31], and more complex
properties via the product construction [36].

Problem 1. (Probabilistic Reachability) Let H be a hy-
brid process, and Y = (X,α) its solution with state space
D. Let S ⊆ D be a measurable set and I = [t1, t2] a time
interval. The reachability probability for Y to reach S in I
is defined as

Preach(Y,S, I) = Prob{∃t ∈ I s.t.Y (t) ∈ S}. (6)

The safety problem is introduced as

Psafe(Y,S, I) = Prob{∀t ∈ I, Y (t) ∈ S}

and is the dual of the reachability problem, namely

Psafe(Y,S, I) = 1− Preach(Y,Sc, I)

where Sc is the complement of set S.

Analytic solutions of Problem 1 for the class of hybrid sys-
tems we consider are in general infeasible, as they would be
tantamount to viscosity solutions of systems of Hamilton-
Jacobi-Bellman equations [29]. In this work we instead in-
troduce a numerical algorithm that employs time- and space
discretization to solve Problem 1 – in particular the time dis-
cretisation part of the scheme is new. We further show that
for the class of processes considered in this paper, the safety
value computed on the discrete time and finite space Markov
chain (DTMC) abstraction, obtained from the overall pro-
cedure, converges uniformly to the safety value associated
to the given (continuous) switching diffusion as the discreti-
sation parameters become zero. We also offer explicit error
bounds quantifying this approximation level.

In the following illustrative example, we consider a simple
SDE model, for which analytical solutions to the probabilis-
tic safety problem exist.

Example 2. Consider the stochastic process X described
by the following SDE

dX(t) = GdW (t),

where W is a uni-dimensional Brownian motion and G ∈
R≥0. Assume there is no discrete switching (and a single
discrete location): then the probability density function of
process X can be described by the following diffusion equa-
tion

∂p(x, t | x0)

∂t
=
G2

2

∂2p(x, t | x0)

∂x2
,

with initial condition p(x, 0 | x0) = δ(x − x0). For x̄ ∈ R,
we consider the safe set SX̄ = {x ∈ R : x ≤ x̄}. In order
to solve Psafe(X,SX̄ , [0, 1]), we need to integrate p(x, t;x0)
with the boundary condition P (x̄, t) = 0: this leads to the
following density function for, x < x̄,

p(x, t;x0, x̄) =
1√

2πGt
(e−

(x−x0)2

2Gt − e−
(x−(2x̄−x0))2

2Gt ).

We then obtain

Psafe(X,SX̄ , [0, 1]) =

∫ x̄

−∞
p(x, 1;x0, x̄)dx = erf(

x̄− x0√
2G

),

where erf() is the Gaussian error function.

4. TIME DISCRETIZATION
Given a hibrid system H, its solution, Y = (X,α), is a

continuous time Markov process defined on the hybrid space
D = ∪q∈Q{q} ×K, where K ⊆ Rm,m > 0. By sampling Y
with a fixed interval h > 0, we obtain a discrete time Markov
process Ȳ = (X̄, ᾱ) defined on the same hybrid state space
D and such that Ȳ (k) = Y (h · k), k ∈ N.

Definition 2. The discrete time Markov process (DTMP)
(Ȳ (k) = (X̄(k), ᾱ(k)), k ∈ N is a time homogeneous hy-
brid model, uniquely defined by a quadruple (D, σ, T c, T d),
where (D, σ) is the measurable space inherited from H; T c :
A×D → [0, 1], for A ⊆ Rm, is a continuous transition ker-
nel; and T d : Q×D → [0, 1] is a discrete transition kernel.

T c and T d describe the probability that the continuous and
discrete components of the process transition onto a mea-
surable set at the next discrete step, given the current state
of the process. More precisely, for state (q, x) ∈ D and
Borel-measurable set (q′, A) ⊆ D , we have that

T c(A, x, q) = Prob(X̄(k + 1) ∈ A|X̄(k) = x, ᾱ(k) = q)

T d(q′, x, q) = Prob(ᾱ(k + 1) = q′|X̄(k) = x, ᾱ(k) = q).

T c and T d fully characterize Ȳ = (X̄, ᾱ). In the following
proposition we derive an analytical form for such kernels.
To keep the presentation simpler, only for the following the-
orem, we make the further simplification that the jump rates
do not depend on the continuous state x ∈ K: λij(x) = λij .
This assumption allows us to have a simpler form of the ker-
nel. To deal with more general rate functions, the simplest
way to proceed is to assume that they are piecewise constant
in each considered interval of time, fixing the value of λij to
the one in the initial state. As rate functions are locally
Lipschitz, the distance between the true rate and λij will be
bounded by a term of order O(h), which can be lifted at the
kernel level.

Theorem 1. Let H = (Q,K, F,G,W,Λ) be a hybrid pro-
cess and Y = (X,α) its solution. Assume the jump rates do
not depend on the continuous state. Let h > 0 be a sampling
time and Ȳ = (X̄, ᾱ) the resulting DTMP. Call N(x̄|E,C)
the normal distribution with mean E and covariance C. In-
troduce terms

Γ(i, t) =

∫ t

0

(eF (qi)(t−m))G(qi)G(qi)
T (eF (qi)(t−m))T dm,

Ωλi,λj ,t(s) = (λj − λi)
e(λjs−λjt−λis)

e(−λit) − e(−λjt)
,



and for x ∈ Rm define λi(x) =
∑
j 6=i λi,j(x). Then, given

(q, x) ∈ D and (q′, A) a measurable set, it holds that

T c(A, x, qi) =∫
A

N (x̄|eF (qi)·hx,Γ(i, h))dx̄ · e−λih +

∑
qj 6=qi

∫
A

(

∫ h

0

N (x̄|EHqi,x(s), CHqi,x(s)) · Ωλi,λj ,h(s)ds)·

λij
λi
· λih · e−λih dx̄+

ε

and

T d(qj , x, qi) =

{
e−λih + ε if qi = qj

λih · e−λih · λijλi + ε if qi 6= qj
,

where

EHqi,x(s) = eF (qi)seF (qi)(h−s)x,

CHqi,x,s = eF (qi)sΓ(i, s)(eF (qi)s)T + Γ(j, h− s),

0 ≤ ε ≤ 1− e−λih − λih · e−λih.

The full derivation of the continuous kernel, T c(A, x, qi), is
shown in the Appendix. Each integral over A quantifies the
probability that the continuous component of the model en-
ters set A, conditional on the discrete part of the process
performing either 0 or 1 jumps during the sampling interval
h. Assuming to be in the discrete location qi, the proba-
bility of these events is respectively e−λih and λih · e−λih
[19], where x is the state at time kh. If the discrete system
makes no jumps within [0, h], then, because of the memory-
less property of the SDE, during this interval X evolves ac-
cording to equations as in Lemma 1 and specific to location
qi. As a consequence, at time h, X is normally distributed,
with mean eF (qi)·hx and variance Γ(i, h). If instead the sys-
tem jumps once within [0, h], after marginalizing over the
jump time and the state where this event happens, we end
up with a linear Gaussian model [9]. This process is still
Gaussian with mean and covariance matrix that can be de-
rived from the equations in Lemma 1. Finally, parameter ε
takes into account the probability associated to paths with
more than one jump within [kh, (k+1)h]: based on the pro-
vided upper bound on ε, it is clear that the probability of
such event becomes negligible as h gets small enough.

The discrete kernel T d(qj , x, qi), has a much simpler deriva-
tion. If we assume that the system makes at most one jump
during h, then the probability that qj = qi amounts to the
probability that the system does not jump within [0, h]. In-
stead, for the condition qj 6= qi the resulting probability is
obtained as the probability of making a jump once, mul-
tiplied by the probability of jumping to the specific state
qj .

From T c and T d, for (x, qi) ∈ D and for a measurable set
(A, qj) ⊆ D, it is easy to calculate the following transition
kernel

T ((A,qj), (x, qi)) =

Prob(Y ((k + 1)h) ∈ (A, xj)|Y ((k)h) = (q, xi), k ∈ N).

In fact, from Theorem 1, we have

T ((A, qj), (x, qi)) =

∫
A
N (x̄|eF (qi)·hx,Γ(i, h))dx̄ · e−λih

if qi = qj∫
A

(
∫ h

0
N (x̄|EHqi,x(s), CHqi,x(s)) · Ωλi,λj ,h(s)ds)·

dx̄ · λij
λi
λihe

−λih

if qi 6= qj

Note that the derived kernels are time homogeneous: from a
numerical point of view this is a key property that facilitates
the practical computation of the resulting DTMP, which is
also time homogeneous.

4.1 Error Bounds for Time Discretization
In this section we quantify the approximation level in-

troduced by the discretisation procedure. More precisely,
we characterize the error associated to the computation of
reachability properties with the DTMP over a discrete set
of sampling points, with sampling time h > 0: by deriving
formal error bounds, we show uniform convergence as h→ 0.

Assumption 2. Assume that the target set S is inde-
pendent of the locations, namely select S ⊆ Rm so that
S = ∪q∈Q{q} × S.

Let H = (Q,K, F,G,W,Λ) be a hybrid system and Y =
(X,α) its solution. Let I ⊆ R≥0 be a finite time interval.
For any q ∈ Q, call Xq the solution of the SDE

dXq(t) = F (q)Xq(t)dt+G(q)dW (t).

In this section we assume that Xq is a uni-dimensional, zero
mean Gaussian process (GP). In the next subsection, we
show how to generalize the results derived here for general
GPs and multi-dimensional processes.
Xq is almost surely bounded within the interval I by As-

sumption 1. Set h = min{ 2−n

2
√

2K2Kd
, 2−n} and εn = 2−

n
2 ,

where n ∈ N, and Kd is a constant such that for any t1, t2 ∈
I,

max
q∈Q
{dq(t1, t2)} ≤ Kd · |t2 − t1|,

where dq is a pseudometric defined as

dq(t1, t2) =
√
E[(Xq(t2)−Xq(t1))2],

and K ≥ 12 is the universal constant in the Dudley’s met-
ric entropy integral [32]. It is possible to show that un-
der mild assumptions the almost sure bound for Xq guar-
antees that Kd is finite [5]. Fix a set of sampling times
Σ = {t1, ..., t|Σn|}, with step distance h. Call

Sεn = {x ∈ S : |x− ∂S| ≥ εn},

where ∂S is the boundary of S and | · | is the Euclidean
distance metrics between a point and a set. Define the events

An = {∀ti ∈ Σ, X(ti) ∈ Sεn}

and

B = {∃t ∈ [0, T ] s.t. X(t) 6∈ S}.

As S ⊆ R, we have that Psafe(Y,S, I) = Psafe(X,S, I),
where Psafe(X,S, I) is the probability that the continuous



component X of Y , stays in S during I. It is easy to see
that

Psafe(X,S, I) = lim
n→∞

P (An ∧ Bc).

For a finite n > 0, P (An∧Bc) is a lower bound for the safety
probability computed on S. This is because it requires the
systems to be inside Sεn ⊆ S at sampling times in Σ. Notice
that for n big enough S and Sεn become indistinguishable.
As a consequence, we can compute the reachability on Sεn

instead of S, as for n big enough the two sets becomes indis-
tinguishable. The dependence of Sεn from n is a key aspect
of our approach. Let us define as P (An) the reachability
probability computed considering only the discrete times in
Σ.

Theorem 2. Under Assumption 1, it holds that for n ≥ 3
and over a finite time interval I ⊆ R≥0

P (An) ≥ P (An ∧ Bc) ≥ P (An) · (1− I

h
exp−(2n−2

n
2 +1)),

where h = min{ 2−n

2
√

2K2Kd
, 2−n}.

Corollary 1. Under the Assumption 1, it holds that

lim
n→∞

P (An ∧ Bc) = lim
n→∞

P (An).

Theorem 2 guarantees that for any n ≥ 3, we obtain

|P (An)− P (An ∧ Bc)| ≤ I

h
exp−(2n−2

n
2 +1) .

This enables choosing, a priori, a sampling interval h that
guarantees meeting a chosen error on the precision. The
proof of Theorem 2 is given in the Appendix. Here, we
explain the main ideas. The proof of Theorem 2 is based on
the fact that, for any q ∈ Q, Xq is a Gaussian process, which
is almost surely bounded in T . It is possible to show that the
supremum of Xq is still distributed as a Gaussian [4]. Then,
the use of the entropy Dudley’s integral [21] allows to bound
the probability that each Xq stays in a εn−neighbourhood
between two sampling points. The fact that Sεn depends on
the sampling interval concludes the proof. Note that a key
feature enabling this approach is the absence of resets of the
continuous state upon mode change. As a consequence, we
can simply assume to find constants for the “worst behaving
Xq” in a particular interval, without worrying about the
discrete mode changes.

4.1.1 Discussion on the error and extensions
In the derivation of Theorem 2 we assumed that the con-

tinuous component of Y , solution of H, is zero mean and
uni-dimensional. This is not a limitation: Lemma 1 guaran-
tees that for any q ∈ Q, the variance of the solution Xq is
independent of the particular continuous location, depend-
ing exclusively on time. Moreover, given a set S ⊆ R and
h > 0, for E[X(0)] = x ∈ S from Equation 4, it is possible
to derive a constant Km

h,S such that

supq∈Q,t1,t2∈[0,h]{|E[Xq(t2)− E[Xq(t1)]]} ≤ Km
h,S · h.

Then, we can simply consider as target for the continuous
components the set S′ = S ∪ {x ∈ R − S : |x − ∂S| ≤
Km
h,S · h}. As such, the bound computed for X − E[X] on
S = ∪q∈Qq × S still holds for X on S ′ = ∪q∈Qq × S′.

One of the key properties of a multivariate Gaussian Pro-
cess (mGP) is that each of its components is itself a Gaussian

process. Moreover, the euclidean metric distance for X at
time t can be defined as

|X(t)| =

√√√√ m∑
i=1

|Xi(t)|2,

where Xi is the i− th component of X. As a consequence,

P (|X(t)| > ε) ≤ P (supi∈[1,n](|Xi(t)| <
√
ε2

n
)).

These observations allow us to derive the following theorem,
which generalize Theorem 2 to multi-dimensional continuous
components.

Theorem 3. Let H be a hybrid process and Y = (X,α)
its solution, with X m-dimensional process, for m > 0. De-
fine Kd,i the Kd constant relative to Xi as introduced in
Section 4.1. Then, it holds that for n ≥ 3 and over a finite
time interval I ⊆ R≥0

P (An) ≥ P (An ∧ Bc) ≥ P (An) · (1− I

h
exp−(2n−2

n
2 +1)),

where h = min{ 2−n

2
√

2K2K̄d
, 2−n}, for K ≥ 12 and K̄d =

supi∈1,...,m(Kd,i).

Observation 1. Consider an hybrid system H with so-
lution Y = (X,α), where X takes values in Rm, and α takes
values in a finite set of discrete states Q. Given a measur-
able set S = ∪qi∈Q(qi, Si) ⊆ D, we can define S′ = ∩qi∈QSi
and S ′ = ∪qi∈Q(qi, S

′. Then, we have that for a general
time interval I, Psafe(Y,S, I) ≥ Psafe(Y,S ′, I). That is, if
we need to compute probabilistic safety on a set that is dis-
crete mode dependent, then, we can always compute a lower
bound of this safety considering a location independent target
set.

As explained in Observation 1, Theorem 3 can still be used
to get lower bounds of cases where the target set is con-
tinuous mode dependent. However, the bounds we obtain
can be quite conservative if the target sets corresponding to
different modes greatly differs.

5. STATE SPACE DISCRETIZATION
In order to complete the procedure leading to a model

where we can numerically compute safety or reachability
properties, we introduce a numerical scheme inspired by the
results of [2, 23]. The numerical scheme is based on a Dis-
crete Time Markov Chain (DTMC) approximation of the
DTMP that results from the time discretization of the orig-
inal switching diffusion process H. We discuss convergence
results and relative error bounds both of this second (state
space) approximation step, and of the combined (time- and
state approximation) procedure.

Let S = ∪q∈Q{q} × Aq be the safe set, where Aq ⊆ Rm.
We assume S to be measurable and compact. Given dx ∈
R≥0, we define the grid Gdx = ∪q∈Q ∪i∈mq {q}×Ai,q, where
Ai,q are pairwise disjoint measurable sets, such that for
q ∈ Q ∪i∈mqAi,q = Aq, for i 6= j Ai,q ∩Aj,q = ∅, and Ai,q =
{x, x′ ∈ Aq : |x− x′| ≤ dx}. In other words, Gdx is a parti-
tion of S in sets of diameter dx. For each (q,Ai,q) ∈ Gdx, we
consider a representative point (q, xi) ∈ {q} ×Ai,q. The set
of representative points Sdx = {(q, xi), i ∈ {1, ...mq}, q ∈ Q}



makes up the finite state space of the DTMC, a discrete ver-
sion of the set S. Let us introduce ξ : S → Sdx, a map that
associates to any (q, x) ∈ S the corresponding representative
point. Similarly, the set-valued map Ξ : S → Gdx relates any
representative point to the concrete Ai,q partition.

We define the discrete state space Zdx = Sdx ∪ φ, where
φ is a discrete state modeling all the states outside S. Note
that the compactness of S guarantees that Z is finite. The
resulting DTMC is completely characterized by its transi-
tion kernel Tdx : Zdx × Zdx → R≥0, such that for z1 =
(x1, q1), z2 = (x2, q2) ∈ Zdx, Tdx(z1, z2) describes the prob-
ability of going in z1 in the next discrete step, being in z2 at
the current time. Tdx can be easily computed from kernel T
presented in Section 4 as

Tdx(z1, z2) =


T (z1, z2), if z1, z2 ∈ Sdx
1−

∑
zj∈Sdxr

T (z1,Ξ(zj)), if z1 ∈ Sdx, z2 ∈ φ
1, if z1, z2 ∈ φ
0, if z1 ∈ φ, z2 ∈ Sdx.

5.1 Error Bounds for Space Discretization
Let Ȳ the discrete time continuous space hybrid process

derived through time discretization of Y , solution of the hy-
brid processH, with initial condition (x, q) ∈ S. Call Y D the
approximated DTMC with state space Zdx and initial condi-
tion (xD, qD) = ξ((x, q)). We show that, for I ⊆ R≥0, under
Assumption 1, the propertyPsafe(Y

D,Sdx, I) converges uni-
formly to Psafe(Ȳ , S, I), which also allows us to derive uni-
form convergence on the original continuous time stochastic
process, and to derive error bounds on the global approxi-
mation procedure.

Definition 3. Let us introduce the following Lipschitz
constants h1, h2 ∈ R≥0, which are such that

|T d(q′, x1, q)− T d(q′, x2, q)| ≤ h1 · |x2 − x1|,
for all (q, x1), (q, x2) ∈ S, q′ ∈ Q,
|tc(x′, x1, q)− tc(x′, x2, q)| ≤ h2 · |x2 − x1|,
for all (q, x1), (q, x2) ∈ S, x′ ∈ K ∩ S,

where tc is the density function of the continuous kernel T c.

Theorem 4. [2] Let Ȳ be the discrete time continuous
space hybrid process with initial condition (x, q) ∈ S, where
S is a measurable set. Call Y D the approximated DTMC
with state space Zdx, where dx > 0 is the discretization pa-
rameter, and initial condition (xD, qD) = ξ(x, q). Then,
given [0, N ] ⊆ N, it holds that

|Psafe(Y D,Sdx, N)− Psafe(Ȳ ,S, N)| ≤ N · K · dx,

where K = mh1 + Lh2, with L the Lebesque measure of the
continuous set S, and m cardinality of the discrete set Q.

Notice that, as dx ↓ 0, the two probabilities collapse.

6. GLOBAL ALGORITHM AND ERRORS
Using the results in Theorem 4, we can derive the uniform

convergence between Psafe(Y
D,Sdx, N) and Psafe(Y, S, I)

for h, dx→ 0 and N discretized version of I.

Theorem 5. Let Y be the solution of a switching diffu-
sion process H with initial condition (x, q) ∈ S. Call Y D

Algorithm 1 Probabilistic safety computation by finite
DTMC abstraction

Require: Y = (X,α) solution of H with initial condition
(x, q), safe set S, finite time interval I = [0, t], and pa-

rameters dx, h = min{ 2−n

2
√

2K2Kd
, 2−n};

1: Select the partition Gdx = ∪q∈Q ∪i∈mq {q} ×Ai,q;
2: Select the set of representative points, leading to Sdx;
3: Define the DTMC Y D with state space Zdx = Sdx ∪ φ,

initial condition z0 equals to 1 for the entry correspond-
ing to ξ((x, q)) and 0 otherwise, and transition matrix
Pdx such that Pdx(i, j) = Tdx(zi, zj);

4: Compute zt = z0 · P
(d I
h
e)

dx ;
5: Return Psafe(Y,S, I) = 1− zt(φ) with error I

h
· (Kdx+

e−(2n−2
n
2 +1)).

the approximated DTMC, with h, dx > 0 time and space dis-
cretization parameters, and with initial condition (xD, qD) =
ξ((x, q)). Then, given I = [0, t] ⊆ R≥0, it holds that

|Psafe(Y D,Sdx, d
I

h
e)− Psafe(Y,S, I)| ≤

I

h
· (Kdx+ e−(2n−2

n
2 +1)),

where h = min{ 2−n

2
√

2K2K̄d
, 2−n} for n ≥ 3, with K ≥ 12 and

K̄d constant introduced in Section 4.

Proof. By triangular inequality we have

|Psafe(Y D,Sdx, d
I

h
e)− Psafe(Y,S, I)| ≤

|Psafe(Y D,Sdx, d
I

h
e)− Psafe(Ȳ ,S, d

I

h
e)|+

|Psafe(Ȳ ,S, I)− Psafe(Y, I, I)|.

The proof results from the application of Theorem 4 and
Theorem 2.

In Algorithm 1 we present a numerical routine to compute
safety properties over continuous time hybrid systems. The
inputs of the Algorithm are Y = (X,α), solution of the con-
tinuous time hybrid process H with a given initial condition,
a finite time interval I, the sampling time h, the grid param-
eter dx and the target set S. (In the case study presented in
the next section we consider parameters h = 0.1, dx = 0.2
and I = [0, 2].) Theorem 5 allows to compute a bound on
the error as a function of parameters dx and h. Moreover,
such parameters can be selected to meet a required precision
error. That is, given the maximum error that is tolerated,
Theorem 5 returns possible h and dx that guarantee such
error. In Lines 1, 2, 3 the algorithm computes the DTMC
abstraction from Y and S, as described in the previous sec-
tion: Pdx is the transition probability matrix of the resulting
DTMC [31], namely Pdx(i, j) describes the probability of go-
ing from the discrete state zi to the discrete state zj at the
next time step. Line 4 computes the transient evolution of
the DTMC Y D. This is done by multiplying the initial state
z0 for Pdx d Ihe times, where d I

h
e are the number of discrete

steps: Psafe(Y,S, I) is just the probability of not being in
the sink state φ. A bound on the error is computed using
Theorem 5.



7. CASE STUDY
We consider the continuous time switching diffusion pro-

cess studied in [1]. The discrete state space is composed
of two locations Q = {on, off}, and the continuous pro-
cess takes values in R2, so that the hybrid state space is
D = Q× R2. The drift is given by the following two matri-
ces

F (on) =

(
−0.6 0.3
−0.6 0.15

)
, F (off) =

(
−0.35 0

0.1 −0.25

)
.

The continuous dynamics are further affected by a 1−dimensional
Wiener process scaled by matrices

G(on) =

(
0.2
0.2

)
, G(off) =

(
0.3
0.3

)
.

The Poisson measures have rates λon,off = 0.41 and λoff,on =
0.38, respectively, both of which are independent of the con-
tinuous component of the process. We consider the Borel
sigma algebra over D and a measurable set A. As the
rates are independent of the continuous components, for
A ⊆ R2, qi, qj ∈ {on, off} with qi 6= qj , x ∈ R2 and h ∈ R≥0

small enough, we have the following transition kernels (see
Theorem 1):

T c(A, x, qi, k) =∫
A

N (x̄|eF (qi)·hx,Γ(i, h))dx̄ · e−λi,jh +∫
A

∫ h

0

N (x̄|eF (qi)·seF (qi)(h−s)x, eF (qi)·sΓ(i, s)(eF (qi)·s)T+

Γ(j, h− s)) · Ωi,j,h(s)ds · (λi,j h e−λi,jh)dx̄

T d(qj , x, qi, k) =

{
e−λi,jh if qi = qj

λi,jh · e−λi,jh if qi 6= qj

In order to choose h, we need to compute constantsKd, h1, h2.
As the rate coefficients are independent of the continuous
components we have h1 = 0. It can be further derived that

h2 ≤ maxx∈R2{ ∂t
c(x′|x,qi)
∂x

}, where tc is the density function

of the kernel TC . Further, K̄d can be computed as

K̄d = max
qi∈{on,off},j∈{1,2}

{
√

Γ(i, h)(j, j)},

where Γ(i, h)(j, j) is the component (j, j) of matrix Γ(i, h).
Note that Kd is also independent of the continuous compo-
nent of the process.

In order to show the soundness of our method we have
implemented in Matlab Algorithm 1, and compared the nu-
merical implementation with empirical results obtained by
simulations. We consider the following safe region

S = {x ∈ R2 s.t. for i ∈ {1, 2},−0.2 ≤ xi ≤ 1},

where xi is the i−th component of vector x. We select time
interval I = [0, 2]. Theorem 5 guarantees that for given h
and dx, respectively sampling time and space discretization
parameters, the difference between the safety computed on
the abstracted DTMC and the safety of the original switched
diffusion is smaller than a computable bound. Notice that
this bound can be conservative: for instance, for a choice
of h = 0.1 and dx = 0.2, the theoretical error is not signi-
ficative, whilst we have found a maximum empirical error
of 0.11. In the following table we have compare the out-
comes for x2 = 0.7 and different values of x1, obtained via

an abstract DTMC made up of 5184 states, and the empiri-
cal values. The empirical values are computed with respect
to 1000 stochastic simulations.

x1 Simulations h = 0.1, dx = 0.2
-0.2 0 0
-0.1 0.02 0.002
0.1 0.2 0.1
0.3 0.42 0.35
0.5 0.65 0.56
0.65 0.78 0.74
0.75 0.65 0.54

In order to increase the precision we can always decrease
h and dx at the price of more computational effort (a larger
DTMC abstraction). In order to guarantee a theoretical er-
ror ≤ 0.1, we could choose h = 0.03, which guarantees a
theoretical time discretization error ≤ 4 · 10−4. However,
for such small h, tc has very small variance, rendering h2

big. As a consequence, in order to keep the error small, we
would need dx < 10−3) and the resulting DTMC would be
composed of > 106 states. This dimensionality issue arises
mostly because we are considering a uniform grid (dx con-
stant). As a consequence, we use the same space resolution
both for states with no probability mass and for states with
probability mass, which are the great minority for h small.
In fact, as described in the next Section, the usage of adap-
tive grid techniques [23] would allow to meet the given preci-
sion with a much smaller resulting DTMC, and it is targeted
as future work.

8. CONCLUSIONS
We have presented a novel and formal approach to com-

pute probabilistic reachability (and dually safety) for con-
tinuous time hybrid processes with no guards and no resets,
and with continuous dynamics that can be described by lin-
ear stochastic differential equations. We have considered
an approach based on space and time discretization of the
original process, and derived uniform convergence of the al-
gorithm, as well as error bounds that can be used to tune
and control the approximation error.

The main contributions of the paper are the characteri-
zation of the kernels for the time discretizion of such pro-
cesses and the error bound for the time discretization pro-
cess. Finding formal bounds for the time discretization of
stochastic hybrid processes has been an open problem, and,
to our knowledge, only limited to results of weak conver-
gence of the approximation. We have first presented the
bound for uni-dimensional target sets, then have shown how
to extend it to multidimensional polytopes (intersections of
linear combinations of the components of the process). We
have also shown how the bound grows linearly with the size
of the target set.

For the space discretization we have considered an ap-
proach based on uniform gridding of the state space, insipred
by the work in [2]. Although formally correct, this approach
in combination with time discretization may result in large
DTMC abstractions. In fact, as shown in a case study, the
diameter of each grid location tends to grow as the sampling
time of the time discretization process decreases. A much
better solution would be to consider adaptive gridding tec-
niques [23]. These would be extremely beneficial, as, when
the sampling time is small, the distribution of the continu-
ous kernel has very small variance. As a consequence, only a



very small set of states has not negligible probability mass.
This is exactly the scenario where adaptive techniques per-
form better. As a future work, we plan to merge our time
discretization approach with adaptive gridding techniques
and to release a tool based on that. We also plan to include
in the error bound the error derived from treating rate func-
tions as piecewise constant in the computation of the kernel.
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APPENDIX
A. PROOFS

Theorem 3. Under Assumption 1, It holds that for any
n ∈ N

P (An) ≥ P (An ∧ Bc) ≥ P (An) · (1− I

h
exp−(2n−2

n
2 +1)),

where h = min{ 2−n

2
√

2K2Kd
, 2−n} and K ≥ 12.

Proof. For each q ∈ Q, Xq is a bounded and uniform
continuous GP in I, time interval of interest. Under some
mild assumptions, this guarantees the existence of a se-
quence {δn} with δn → 0 such that φ(δn) ≤ 2−n (see Theo-
rem 2.1.3 of [5]), where

φ(δn) = E[max
q∈Q
{ sup
s,s′∈I:|s′−s|≤δn

(X(s)−X(s′))}].

Set h = min{δn, 2−n}and εn = 2−
n
2 . For a set of a sampling

times Σ = {t1, ..., t|Σn|}, with step distance h > 0, call S ⊆
Rn the safe set and,

Sεn = {x ∈ S : |x− ∂S| ≥ εn},

where ∂S is the boundary of S, and | · | stands for euclidean
metric distance. Define the events

An = {∀ti ∈ Σn, . X(ti) ∈ Sεn}

and

B = {∃t ∈ I s.t. X(t) 6∈ S}.

Using the rules of probability we get

P (An ∧ Bc) = P (An) · (1− P (B|An))

By definition of probability we have

0 ≤ P (B|An) ≤ P (∃ti ∈ Σn s.t. sup
t∈[ti,ti+h]

(X(t)−X(i)) > εn) ≤

P (∃ti ∈ Σn s.t. sup
t∈[ti,ti+h]

(X(t)−X(i)) > εn)

≤
|Σn|∑
i=1

P ( sup
t∈[ti,ti+h]

(X(t)−X(i)) > εn)

In order to bound P (supt∈[ti,ti+h](X(t)−X(i)) > εn) we
need to take into account that during [ti, ti +h] the discrete
state may hit a transition. However, there is no reset for the
continuous components. As a consequence, it is enough to
assume that during [ti, ti + h] X always evolves accoridng
to the ”worst” behaving Xq. As a consequence, being Xq a
GP, we can make use of the Borell’s bound [4, 5]. Given an
interval I and a centered and bounded Guassian process Xq
with σI = supt∈I(σ(t)), supremum of the standard deviation
of the process, the Borrell’s bound guarantees that

Prob(sup
t∈I

Xq(t) > u) ≤ exp−(u−E[supt∈IXq(t)])2/(σ2
I )

Applying this result to our case for intervals of the type
[ti, ti + h], and for u = εn = 2−

n
2 , for n ≥ 3 we have

|Σn|∑
i

P ( sup
t∈[ti,ti+h]

(X(t)−X(ti)) > εn) ≤

|Σn| exp
− (2
−n

2 −2−n)2

2−2n ≤

|Σn| exp−(2n−2
n
2 +1)

At this point, the last, and non trivial, step in order to derive
our convergence results and relative error bounds is to show
that

lim
n→∞

|Σn| exp−(2n−2
n
2 +1) = 0.

In fact, as

0 ≤ P (B|An) ≤ |Σn| exp−(2n−2
n
2 +1),

this would guarantee that

Psafe(X,S, I) = lim
n→∞

P (An ∧ Bc) = lim
n→∞

P (An).

In order to do that, it is sufficient to show that h = 2−n

C
, for

some constant C. In fact, this implies |Σn| = I·C
2−n .

Recall that we chose h such that for all ti ∈ Σn,

E[ sup
t∈[ti,ti+h]

(X(t)−X(ti)) ≤ 2−n.



As a consequence, it is enough to take h as the greatest
interval smaller than 2−n such that this condition is verified.
For ti ∈ Σn call X̄i = X(t) − X(ti). We can now make
use of the Dudley’s integral (or entropy integral) [4], which
guarantees that for ti ∈ Σn,

E[ sup
t∈[ti,ti+h]

(X̄i)] ≤

K

∫ diam([ti,ti+h])
2

0

√
ln(N([ti, ti + h], d, ε))dε,

where K is a constant and d is a pseudo-metric defined as

d(t, t+ dt) =
√
E[(X(t+ dt)−X(t))2].

N([ti, ti + h], d, ε) represents the smallest number of balls of
radius ε, which covers [ti, ti+h], under metric d. diam([ti, ti+
h]) is defined as

diam([ti, ti + h]) = sups′,s∈[ti,ti+h]d(s′, s)

and with our assumptions, it is possible to show that there
exists a constant Kd such that

d(t, t+ h) ≤ Kd · h

Moreover, for T̄i = [ti, ti + h] ⊆ R≥0 we have

N(T̄i, d, ε) ≤
Kdh

2ε
+ 1,

This can be easily understood thinking at the geometry of
the problem. As a consequence, we have

E[sup
t∈T̄i

(X̄i(t))] ≤ K
∫ √2·2−n−1

0

√
ln(

Kdh

2ε
+ 1)) dε

Now, our property is satisfied if we chose h such that

K

∫ √2·2−n

0

√
ln(

Kdh

2ε
+ 1) dε ≤ 2−n.

The integral inequality we need to solve cannot be solved
analytically. However, as Kdh > 0, we can write

K

∫ √2·2−n

0

√
ln(

Kdh

2ε
+ 1) dε ≤ K

∫ √2·2−n

0

√
Kdh

2ε
dε =

K

√
Kdh

2

∫ √2·2−n

0

√
1

ε
dε = K

√
Kdh

2
2

√√
22−n.

Asking for this quantity to be smaller than 2−n, we obtain
the following bound for the sampling time h :

h ≤ min{ 2−n

2
√

2K2Kd

, 2−n}.

It is also possible to show that K ≥ 12 [].

Theorem 2. Let H = (Q,K, F,G,W,Λ) be a hybrid pro-
cess and Y = (X,α) its solution. Let h > 0 be a sampling
time and Ȳ = (X̄, ᾱ) the resulting DTMP. Call N(x̄|E,C)
the normal distribution with mean E and covariance C. In-
troduce terms

Γ(i, t) =

∫ t

0

(eF (qi)(t−m))G(qi)G(qi)
T (eF (qi)(t−m))T dm,

Ωλi,λj ,t(s) = (λj − λi)
e(λjs−λjt−λis)

e(−λit) − e(−λjt)
,

and for x ∈ Rn define λi(x) =
∑
j 6=i λi,j(x). Then, given

(q, x) ∈ D and (q′, A) a measurable set, it holds that

T c(A, x, qi) =∫
A

N (x̄|eF (qi)·hx,Γ(i, h))dx̄ · e−λih +

∑
qj 6=qi

∫
A

∫ h

0

N (x̄|eF (qi)·seF (qi)(h−s)x, eF (qi)·sΓ(i, s)(eF (qi)·s)T + Γ(j, h− s))·

Ωλi,λj ,h(s)ds · λij
λi
· λih · e−λih + ε)dx̄,

and

T d(qj , x, qi) =

{
e−λih + ε if qi = qj

λih · e−λih · λijλi + ε if qi 6= qj

where ε ≤ 1− e−λih − λih · e−λih.
Proof. We consider the continuous kernel, as the dis-

crete kernel can be derived similarly.

T c(A, x, qi) =

∫
A

tc(x̄|x, qi)dx̄

where tc(x̄|x, qi) is the density function of X(h), continuous
component of Y , assuming X(0) = x and α(0) = λi. Note
that the kernel is time homogeneous. By marginalizing with
respect to the number of time that α jumps during [0, h], we
have

T c(A, x, qi) =

∫
A

tc(x̄|x, qi)dx̄ =

∫
A

(tc(x̄|x, qi, 0 α firings)·

Prob(α does not fire in [0, h]|x, qi) +

tc(x̄|x, qi, 1 α firings |x,q ·

Prob(α fires once in [0, h]|x, qi))dx̄+ ε

where ε ≤ Prob(α fires more than once in [0, h]|x, qi) = 1−∑
i∈{0,1} Prob(α jumps i times in[0, h]|x, qi).
tc(x̄|x, qi0 α firings) is the normal distribution derived from

solving the linear SDE corresponding to mode qi from initial
condition x for the interval [0, h] because of the Markovian-
ity of SDE.

Because of the properties of Poisson processes we have
that Prob(α does not fire in [0, h]|x, qi) = e−λih, and Prob(α
fires once in [0, h]|x, qi) = λihe

−λih.
Marginalizing tc(x̄|x, qi, 1 α firings ) with respect to the

discrete location where we jump and respect the istant when
α jumps we get:∑
qj 6=qi

∫ h

0

tc(x̄|x, qi, 0 α firings, α jumps at time s in qj)·

f(s|x, qi, α jumps once in [0, h])Prob(α jumps in qj)ds

The first term can be shown to be a linear Gaussian model.
This class of models has been extensively studied in liter-
ature [9]. More specifically, it has a Gaussian distribution
whose variance and expectation can be derived from Lemma
3. As a conseqeunce, we have

tc(x̄|x, qi, 0 α firings, α jumps at time s in qj) =



N (x̄|eF (qi)·seF (qi)(h−s)x, eF (qi)·sΓ(i, s)(eF (qi)·s)T+Γ(j, h−s)

.
Prob(α jumps in qj) is the probability of jumping in qj at

the next jump. This is
λij
λi

.

f(s|x, q, αjumps once and in qj) is the density function of
the jumping time conditioned on the fact that we jump in
[0, h]. This can be derived from properties of Poisson pro-

cesses as Ωλi,λj ,h(s) = (λj − λi) e
(λjs−λjt−λis)

e(−λit)−e(−λjt)
.


