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Abstract

We explore formal approximation techniques for Markov chains based on state-
space reduction that aim at improving the scalability of the analysis, while
providing formal bounds on the approximation error. We first present a com-
prehensive survey of existing state-reduction techniques based on clustering or
truncation. Then, we extend existing frameworks for aggregation-based analysis
of Markov chains by allowing them to handle chains with an arbitrary structure
of the underlying state space – including continuous-time models – and improve
upon existing bounds on the approximation error. Finally, we introduce a new
hybrid scheme that utilises both aggregation and truncation of the state space
and provides the best available approach for approximating continuous-time
models. We conclude with a broad and detailed comparative evaluation of ex-
isting and new approximation techniques and investigate how different methods
handle various Markov models. The results also show that the introduced hybrid
scheme significantly outperforms existing approaches and provides a speedup of
the analysis up to a factor of 30 with the corresponding approximation error
bounded within 0.1%.

Keywords: Markov models, probabilistic model checking, approximation
techniques, adaptive aggregation

1. Introduction

Probability plays a prominent role in the design and modelling of systems
with unpredictable or unreliable behaviour. Markov chains are a class of such
probabilistic models that have been extensively used in many areas of Science
and Engineering, including the analysis of performance of computer networks5

and of reliability of communication and security protocols [1, 2], in the study of
various quantitative attributes of biochemical reaction networks [3, 4] or genet-
ics [5]. A Markov chain can be thought of as a collection of states accompanied
by a function that describes the probabilistic nature of transitions between any
pair of states. Depending on the type of model, these transitions can occur10
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in discrete or continuous time. The study of such chains is carried out either
analytically, or through exhaustive exploration of its execution paths, or by em-
ploying numerical schemes (usually by solving a system of equations providing
precise or approximate solutions of the chains). For the analysis of continuous-
time models, a typical method employed is uniformisation, which is based on a15

time-discretisation of the chain of interest [6]. Prominent tools allowing to anal-
yse and verify Markov models include PRISM [7], STORM [8], or MODEST [9].

Unfortunately, efficient analysis of Markov models is difficult to achieve in
practice due to the state explosion problem. In order to enable the handling
of larger state spaces, several model approximation techniques have been intro-20

duced. These techniques typically solve a smaller chain – one with a reduced
state space – and then interpret results in terms of the original model. State-
aggregation methods [10] construct this smaller chain by clustering (or lumping,
namely aggregating) the state space. State-space truncation methods [6], on the
other hand, work by dynamically neglecting states with insignificant transient25

probability (later we will define transient probability as the probability mass
at any given time). In both cases an approximation error must be quantified.
In practice, highly accurate probability approximations are crucial, for example
in reliability analysis of safety-critical systems or when checking satisfiability of
temporal logic formulae.30

1.1. Key contributions

In this work, we present a comprehensive survey of existing state-reduction
techniques for Markov chains and focus on the enhancement of a framework [10]
(by the same authors) for aggregation-based analysis. In particular, the new
improvements presented in this article include:35

• the design of more accurate bounds on the approximation error (Subsec-
tions 3.1-3.2)

• the development of an accurate and efficient clustering (aggregating) method
applicable to chains with an arbitrary structure of the underlying state
space (Subsections 3.4-3.5)40

• the integration of aggregation with uniformisation (i.e. time discretisation)
to enable the analysis of continuous-time models (Subsections 4.1-4.2)

• the design of a new hybrid scheme that utilises both aggregation and
truncation of the state space and provides the best available approach for
approximating continuous-time models (Subsection 4.3)45

• the first in-depth performance evaluation of all available reduction tech-
niques on a broad range of case studies (Section 5)

In order to perform a fair experimental evaluation of the presented approxi-
mation techniques, a total of eight methods for Markov chain analysis (5 existing
and 3 new ones) are implemented in the probabilistic model checker PRISM [7].50

First, we showcase the developed framework for the aggregation-based analysis,
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highlight its improvement in both precision and speedup as compared to [10],
and confirm that the resulting aggregating method can provide a valid model
approximation along with precise error bounds, both in discrete and continuous
time. Further, we perform the first in-depth performance evaluation of all avail-55

able reduction techniques using a broad range of case studies and investigate
how different methods handle various classes of models. Finally, we demon-
strate that a new hybrid method significantly outperforms existing approaches
and provides speedup of the analysis up to a factor of 30 with the corresponding
approximation error bounded within 0.1%.60

1.2. Related work

Lumping (i.e. state-space aggregation) is a widely studied approach to achieve
state-space reduction allowing to analyze large Markov Chains. Theoretical con-
cepts underlying lumpability have been first introduced in [11] and further de-
veloped e.g. in [12, 13] including extensions towards approximate notions such as65

quasi-lumpable [14] or nearly completely decomposable [15, 16] Markov chains
combined with a stochastic comparison approach [17]. The proposed algorithms
usually focus on approximating steady-state distribution of discrete-time chains.
Extensions towards the transient analysis and continuous-time are only dis-
cussed on a theoretical level. Another way to exploit a specific structure of70

the chain is to use clustering based on (bi-)simulation equivalence [18], which
uses symmetries of the concrete model and performs exact numerical computa-
tion. The common limitation of the aforementioned methods is that they can
be applied only to specific Markov chains.

To enable handling of models with a more general structure, advanced no-75

tions of approximate equivalence have been introduced [19], which have led to
new abstraction techniques for the numerical analysis of labelled Markov chains
with finite [20] as well as with uncountably infinite state spaces [21, 22]. The
work in [23] presents an algorithm to approximate probability distributions of a
Markov model forward in time, which inspired the adaptive scheme we proposed80

in [10] and further extended in this paper, where a formal error analysis steers
the adaptation. This use of derived error bounds allows far greater accuracy and
flexibility of the aggregation, as it accounts also for the history of the transient
probability within specific clusters.

Stochastic biochemical systems, in particular, have given rise to a number of85

specialised methods for approximate analysis. Such systems are described us-
ing the language of Chemical Reaction Networks (CRNs). The time-evolution
of CRNs is governed by the Chemical Master Equation (CME) [24] leading in
general to infinite-state continuous-time Markov chains. To enable the analy-
sis of networks exhibiting complex dynamics, various approximation techniques90

have been proposed. These include, for example, the Linear Noise Approxima-
tion [20], where a Gaussian process approximates a CME and describes the time
evolution of expectation and variance of the species in terms of a set of ordinary
differential equations (ODEs). Recently, an aggregation scheme over ODEs that
aims at understanding the dynamics of large CRNs has been proposed in [25].95

These deterministic approximations, however, cannot adequately capture the
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stochasticity of CRNs caused by low population species. In order to cope with
such systems, various hybrid models have been proposed [26, 27], where the
dynamics of low population species are encompassed by a discrete stochastic
process and the dynamics of large population species is approximated by a con-100

tinuous one. These methods, however, do not provide any formal guarantees
on the approximation error. In [28], a novel semi-quantitative framework for
the analysis of CRNs has been introduced. It leverages population-based ab-
straction and introduces accelerated transitions to adequately capture a chain
of the concrete transitions required to change the population level. The frame-105

work offers greater performance and scalability compared to existing techniques,
although a formal guarantee is missing.

An alternative numerical method to deal with large or even infinite state
spaces is truncation, which works by dynamically neglecting insignificant states
with a transient probability below a given threshold. This method provides110

under-approximation of the true probability distribution, where the probability
loss serves as an error bound. In the context of continuous-time chains, a combi-
nation of truncation with adaptive uniformisation [29] is a widely used technique
known as fast adaptive uniformisation (FAU) [6], where the adaptivity allows
to dynamically change the uniformisation rate: this significantly decreases the115

number of performed uniformisations on the chain. A reduction of the state
space is achieved since usually a significant percentage of the transient proba-
bility is concentrated in a small subset of states and a large fraction of the state
space can be thus truncated. However, when transient probability is spread over
a large number of states, these methods can result in small reduction – or poor120

precision if a larger probability threshold is used.
Simulation-based methods qualitatively analyse the behaviour of a Markov

chain by generating its trajectories: collecting the statistics from multiple reali-
sations then allows to estimate the transient probability distribution. Simulation-
based techniques include e.g. Gillespie’s Stochastic Simulation Algorithm [30] as125

well as its various modifications [31, 32, 33, 34]. These methods do not provide
formal bounds on the error and instead can give weak precision guarantees in
the form of confidence intervals. Furthermore, a large number of simulations is
required to provide precise results, which can be very time consuming. Nonethe-
less, these practical approaches are suitable for situations where highly accurate130

estimates of the transient probability distribution are not necessary.

1.3. Structure of the article

In Section 2 we present an overview of existing approximate techniques for
the analysis of Markov chains, namely, state-space aggregation and truncation,
and review the uniformisation technique, including its fast adaptive version.135

In Section 3 we redefine notion of a state-space aggregation of a discrete-time
Markov chain, introduce algorithms that allow us to approximate chains with
arbitrary structure of the state space, explore various aggregation strategies
and design a more precise approximation error bound. Then, in Section 4, we
combine these results with uniformisation techniques to enable the handling of140

continuous-time models and introduce a new hybrid scheme that utilises both
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aggregation and truncation of the state space. Finally, in Section 5 we discuss
experimental results.

2. Preliminaries

In this section, we review the necessary theory and introduce notation that145

will be used throughout the paper. First, we discuss discrete-time Markov
chains, describe state-space truncation and summarise aggregation approach
presented in [10]. Then we consider continuous-time models and describe the
uniformisation technique used for their analysis.

2.1. Discrete-time Markov chains150

Definition 1. A (time-homogeneous) discrete-time Markov chain (DTMC) is
a pair D = (S, P ), where

• S is the state space, and

• P : S × S → [0, 1],∀r ∈ S :
∑
s∈S P (r, s) = 1, is the transition probability

matrix.155

Unless stated otherwise, we assume that the state space S is finite. The
model is initialised via the probability distribution p0 : S → [0, 1],

∑
s∈S p0(s) =

1, and its transient probability distribution at time step k > 0 is

pk(s) =
∑
r∈S

pk−1(r) · P (r, s), (1)

or, using matrix notation, pk = pk−1 · P . The act of performing one such160

multiplication is called an iteration, a probability propagation, or a discrete-
time step. The problem of finding transient probability distribution pk at an
arbitrary time horizon k ≥ 0 is referred to as the transient analysis of the
chain. Transient analysis is a key procedure for the quantitative verification of
Markov chains against time-bounded specifications [7], where highly accurate165

approximations of probability distributions are crucial. Computing transient
probability distributions directly using (1) suffers from the state-space explosion
problem, and we are therefore interested in providing efficient and accurate
approximations.

2.2. State-space aggregation of DTMC170

In this subsection, we briefly describe the state-space aggregation method,
as it was presented in [10], from where we adopt the corresponding notation1.
We omit some technical details and discuss them later in Section 3, where the
generalised framework for state-space aggregation is developed.

1An alternative approach to construct aggregated chains and, in particular, aggregated
matrices, is via so-called distributor and collector matrices, as presented in [12]. In this
paper, we focus on more general aggregations that are not always expressible using this related
notation.

5



S0 S1

S2

1

11

(a)

{S0,S1} {S2}

1

0.5

0.5

(b)

Figure 1: In (a) we consider a simple DTMC with three states; in (b) we construct its aggre-
gation based on the partition Φ = {{s0, s1}, {s2}}, where the abstract transition matrix Π is
computed using (19) – notice that in this case Π is not stochastic.

Let D = (S, P ) be a DTMC initialised via the probability distribution p0,175

and assume that we are interested in approximating its transient probability
distribution pk, k > 0. Let Φ be a partition (clustering, aggregation) of the
state space S. We treat clusters in Φ as abstract states of a new aggregated
chain ∆ = (Φ,Π), where Π represents a suitable abstract transition probability
matrix Π: Φ×Φ→ R≥0, as Figure 1 illustrates. Note that we do not require the180

normalisation condition ∀ρ ∈ Φ:
∑
σ∈Φ Π(ρ, σ) = 1 to hold: in other words, the

obtained Π might not be a stochastic matrix and the abstract chain ∆ might
not necessarily be a DTMC, as per Definition 1: implications of this choice are
discussed later. Abstract chain ∆ is initialised using the (abstract) probability
distribution π0 : Φ→ R≥0, computed as185

π0(σ) =
∑
s∈σ

p0(s), (2)

i.e. the probability of residing in cluster σ is the sum of transient probabilities
for the concrete states in σ. We can now recursively compute abstract transient
probability distribution πk of ∆ using vector-matrix multiplications, similar
to (1), as:190

πk = πk−1 ·Π. (3)

Having obtained πk, i.e. the abstract probabilities of residing in individual clus-
ters at time k, the approximation p̃k : S → R≥0 of the transient probability
distribution pk is defined as

p̃k(s) =
πk(σ)

JσK
, s ∈ σ, (4)

195

where JσK denotes the cardinality of the set σ (namely the number of concrete
states comprising cluster σ). The intuition behind Equation (4) is that by
clustering several states into one abstract state σ, we no longer differentiate
between individual states, and therefore the probability of residing in cluster σ
is distributed uniformly among its concrete states.200
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If we select a partition Φ such that JΦK � JSK, working with the abstract
chain (Φ,Π) and performing vector-matrix multiplications (3) allows to approxi-
mate pk using πk, and to reduce the computational demands when compared to
performing the discrete steps in (1) with the concrete model. Let ek := p̃k−pk
denote an error vector associated with this approximation. We cannot compute205

this vector directly since we do not know the exact probabilities pk. However, we
can formally bound the L1-norm ‖ek‖1 of this vector. This norm is is efficiently
computable from the structure of (Φ,Π) and can be used in the point-wise esti-
mate of the transient probability. Namely, since |ek(s)| ≤ ‖ek‖1, then it holds
that pk(s) = p̃k(s)± ‖ek‖1. In order to estimate ‖ek‖1, introduce the quantity210

ε(ρ, σ) := max
s∈σ

∣∣∣∣∣Π(ρ, σ)− JσK
JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ (5)

and further denote ε(ρ) :=
∑
σ∈Φ ε(ρ, σ). Then for the L1-norm of the error

vector at time k > 0 it holds that

‖ek‖1 ≤ ‖ek−1‖1 +
∑
ρ∈Φ

πk−1(ρ) · ε(ρ), (6)

where215

‖e0‖1 =
∑
s∈S
|p0(s)− p̃0(s)|. (7)

The term ‖e0‖1 is called aggregation error and describes the inaccuracy intro-
duced when the exact p0 is replaced with p̃0. Additionally, during each discrete
step, a propagation error, associated with the use of the abstraction Π instead
of P , is produced and is captured by ε(·, ·): this quantity accounts for the max-220

imum difference, for a given pair of clusters, between the abstract transition
probability and (rescaled) incoming probability. The product πk−1(ρ) · ε(ρ)
provides an upper bound on the error generated from ρ; the sum over all ab-
stract states in (6) then yields the overall error. The reason for computing the
bound on the L1-norm of ek (and not ek itself) is that, as was already men-225

tioned, we want to reduce the computational complexity of the error estimation:
Equation (6) suggests that each step of this estimation is equivalent to perform-
ing a scalar product of two vectors in the aggregated setting (i.e. the one with
the reduced state space).

So far, we have ignored how the partition Φ of S and how the abstract230

transition probability matrix Π are computed. In [10], where this approach
is used to analyse biochemical processes, the aggregation is constructed based
on the known structure of the model and on the underlying physics. Later, in
Section 3, we will develop a generalized approach and describe how to aggregate
chains with an arbitrary structure of their state space – until then, assume that235

a specific clustering is given. Eventually we will see that, as we perform discrete
steps in the abstract setting, the probability distribution shifts, so adapting
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the clustering of the state space can reduce the error: an adaptive state-space
aggregation is therefore a method of using different clusterings sequentially in
time, where the quality of each clustering is quantified by (6). In particular,240

assume that during transient analysis with a time horizon K we use L different
clusterings, where the clustering l ∈ {1, . . . , L} is used for kl steps,

∑L
l=1 kl = K,

and the corresponding vector of error factors is εl. Similarly, let p̃lk,π
l
k or

elk denote the corresponding quantity during k-th step of the l-th clustering.

Let p1
0 = p0 denote the initial probability distribution and let pl+1

0 = p̃lkl245

denote the initial (approximate) probability distribution used before (l + 1)-th
clustering. The overall approximation error is the sum of errors obtained during
each clustering:

‖eK‖1 =

L∑
l=1

‖ekl‖1 ≤
L∑
l=1

∥∥∥pl0 − p̃l0∥∥∥
1︸ ︷︷ ︸

aggregation error

+

L∑
l=1

kl∑
k=1

∑
ρ∈Φ

πlk−1(ρ) · εl(ρ)︸ ︷︷ ︸
propagation error

(8)

Remark. As was previously mentioned, we do not require on an abstract ma-
trix Π the normalisation condition ∀ρ ∈ Φ:

∑
σ∈Φ Π(ρ, σ) = 1 to hold: the250

corresponding abstraction (Φ,Π) might not be an actual DTMC according to
Definition 1, see e.g. Figure 1. As a consequence, elements of the abstract ‘prob-
ability vectors’ πk might not sum to one. This, however, should not discourage
us from using such abstractions: function Π (respectively, πk) simply serves as
a high-level representative of function P (respectively, pk) on a new state space.255

Since we are able to estimate ‖ek‖1, these abstractions provide us with valid
approximations of their concrete counterparts, as will be confirmed in the ex-
periments presented in Section 5. As it will be argued later, in some situations
it might be helpful or necessary for these abstractions to satisfy the normalisa-
tion property: to avoid any confusion, we will reserve the term ‘stochastic’ for260

matrices and vectors that satisfy the normalisation condition.

2.3. State-space truncation of DTMC

State-space truncation [6] is yet another approximation technique that can
be applied to any Markov chain. Its transient probability distribution is com-
puted similarly to (1), however before each iteration, states with insignificant
transient probability, i.e. those with probability below some specified truncation
threshold δtru, are discarded. The effect of this truncation is twofold. First of
all, we are now able to propagate probability mass only from significant (also
called active) states, which leads to a speedup of the analysis. On the other
hand, each truncated state with a non-zero transient probability contributes to
the probability loss and the resulting transient probability distribution p̂k is
actually an under-approximation of the true distribution pk: the probability
mass that was truncated could have remained in a given state or might have
been transported to other ones. The total probability loss serves as an exact
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upper bound on the L1-norm of the error vector ek:

‖ek‖1 = ‖pk − p̂k‖1 = ‖pt‖1 − ‖p̂t‖1 = 1− ‖p̂t‖1 = 1−
∑
s∈S

p̂k(s). (9)

The truncation threshold δtru specifies a trade-off between performance and
accuracy: large values of δtru will discard a considerable number of states for265

the price of reduced precision, and vice versa. Note that this approach can also
be useful for chains with an infinite state space, because at each iteration we
can deal only with the (finite) set of active states. This technique fails, however,
for chains with slow dynamics of the transient probability: inactive states that
slowly receive small accruals of the probability mass never become active if the270

truncation threshold is not small enough, which can yield an enormous error.
In general, this does not happen with the state-space aggregation: working
with clusters preserves – at least to some extent – information about where the
residual transient probability is located. On the other hand, ε-terms might result
in rather conservative error bounds, when compared to the actual probability275

lost from the transitions.

2.4. Continuous-time Markov chains

Definition 2. A continuous-time Markov chain (CTMC) is a pair C = (S,R),
where

• S is the set of states, and280

• R : S × S → R≥0,∀s ∈ S : R(s, s) = 0, is the transition rate matrix.

Similar to DTMCs, we will implicitly assume that the set S is finite. R is a
function that for each pair of different states assigns a rate used as a parameter of
an exponential distribution when deriving a probability of transitioning between
these states within a continuous time window. The time spent in state r, before285

any such transition occurs, is exponentially distributed with parameter E(r) :=∑
s∈S R(r, s), which is called the exit rate of state r. An infinitesimal generator

matrix associated with C is a matrix Q : S×S → R defined as Q(s, s) = −E(s)
and Q(r, s) = R(r, s) for r 6= s.

Definition 3. Let C = (S,R) be a CTMC and Q be its infinitesimal generator290

matrix. Let q ≥ maxs∈S E(s) be a uniformisation rate. A uniformised DTMC
of C given uniformisation rate q is a DTMC (S,unifqQ) having its transition

probability matrix unifqQ defined as

unifqQ(r, s) =

{
1 + Q(r,s)

q , if r = s
Q(r,s)
q , otherwise.

A uniformised DTMC serves as a time-discretisation of a CTMC with respect
to the fastest event that can occur with rate q. Usually, we select q to be the295

maximum exit rate from states in S, which corresponds to the shortest mean

9



residence time of the model, although any value larger or equal to this rate is
also usable.

A CTMC is initialised via the probability distribution p0 : S → [0, 1]. The
transient probability distribution pt at an arbitrary time horizon t ∈ R≥0 can300

be obtained by employing a uniformisation technique. The main idea of this
method is to split a CTMC C = (S,R) into two independent stochastic processes
DC and BC : DC is a DTMC over the same state space S; BC is a CTMC (called
a birth process of C) having an infinite state space N0, such that

pt(s) =

∞∑
k=0

uk(s) · βt(k), (10)

305

where uk denotes the transient probability distribution of DC at time k and
βt(·) denotes the transient probability distribution of BC at time t. Intuitively,
Equation (10) invokes the total probability theorem on the number of discrete
‘jumps’ of C taking place up to time t: the quantity uk(s) represents the prob-
ability of residing in state s after exactly k discrete jumps, whereas βt(k) ex-310

presses the probability of actually performing these k jumps within a continuous
window of length t. Under this interpretation, DC keeps track of the current
state of C and BC keeps track – in a probabilistic sense – of whether time t has
elapsed.

2.5. Standard uniformisation of CTMC315

The choice ofDC and BC is key for the uniformisation procedure. A standard
uniformisation (SU) works by selecting a uniformisation rate q ≥ maxs∈S E(s),
and then choosing DC to be a uniformised DTMC (S, unifqQ) with rate q, and BC
to be a pure birth process with constant rate q (i.e. Poisson process with rate q),

for which the analytical solution is known to be βt(k) = e−qt (qt)k

k! =: ψqt(k),320

k ∈ N0. Finally, for a given precision (i.e. maximum error) εfg, the iterative
scheme of Fox and Glynn [35] can provide parameters kL, kR such that

1− εfg ≤
kR∑
k=kL

ψqt(k). (11)

We can then truncate the infinite sum in (10) to obtain an under-approximation p̂t
of the true probability distribution pt, as:

p̂t(s) =

kR∑
k=kL

uk(s) ·ψqt(k) ≤ pt(s). (12)

Combining (11) and (12), we arrive at

10



‖p̂t‖1 =
∑
s∈S

p̂t(s) =
∑
s∈S

kR∑
k=kL

uk(s) ·ψqt(k) =

kR∑
k=kL

∑
s∈S

uk(s) ·ψqt(k)

=

kR∑
k=kL

ψqt(k) ·
∑
s∈S

uk(s) =

kR∑
k=kL

ψqt(k) ≥ 1− εfg,

and therefore

‖et‖1 = ‖pt − p̂t‖1 = ‖pt‖1 − ‖p̂t‖1 = 1− ‖p̂t‖1 ≤ εfg,

325

as desired. In other words, we have a guarantee that the total probability loss
resulting from the truncation of the infinite sum in (10) will not exceed εfg.
Note that this proposition holds since the transient probabilities uk(s) sum to
one. The main drawback of SU is that for large uniformisation rates q the
mean of the Poisson distribution ψqt(·) is large and so is the upper truncation330

point kR. This implies that, in order to obtain p̂t, one must perform plenty of
iterations for the uniformised DTMC DC .

2.6. Adaptive uniformisation of CTMC

As an alternative to SU, adaptive uniformisation (AU) [29] allows the rates
of the birth process to change at each step, according to the following rules:335

• let q ≥ maxs∈S{E(s)} be a (global) uniformisation rate for the CTMC C;

• let q0, q1, ... be an infinite sequence of (local) uniformisation rates satisfying

q ≥ qi ≥ max{E(s) | s ∈ S, ui(s) > 0}; (13)

• let BC = (N0, RBC
) be a CTMC starting at state 0 and RBC

be defined
as

RBC
(i, j) =

{
qi, if j = i+ 1
0, otherwise;

• let DC = (S,unifqiQ) be a time-inhomogeneous DTMC with transition
probability matrix at step i to be a uniformisation of R with rate qi, and
where ui denotes its transient probability distribution at time step i.

The analysis of a CTMC C via adaptive uniformisation proceeds as follows.340

We start at a discrete time 0 with a subset of states in S that have non-zero initial
transient probability u0(·) – such states are called significant or active. The
largest exit rate among the states within this subset is the (local) uniformisation
rate q0. We then compute unifq0Q to be the transition probability matrix for the
process DC at (discrete) time 0, perform probability propagation and obtain345

u1(·). We then repeat the procedure of defining the subset of active states,

11



finding a (local) uniformisation rate, uniformizing the rate matrix according
to this rate and propagating the probability. This way we obtain a sequence
u0,u1, . . . , that will be used to compute pt according to (10), where βt(·) is
a solution to the birth process BC with rates q0, q1, . . . . In order to solve this350

CTMC, we apply SU using a (global) uniformisation rate q, since ∀i ∈ N0,
qi ≤ q. Together with the Fox-Glynn method for a given precision εfg, we can

compute an under-approximation β̂t of the transient probabilities βt at time t
of the birth process BC . The resulting under-approximation of the transient
probability distribution p̂t is then computed as355

p̂t(s) =

k′R∑
k=0

uk(s) · β̂t(k), (14)

where k′R is a time step for which
∑k′R
k=0 β̂t(k) ≥ 1 − εbp for a given precision

εbp < εfg. Both sum truncations – for uniformising C and uniformising the inner
birth process BC – lead to an under-approximation p̂t of the true probability
distribution pt, and the total error is given by the probability loss 1 − ‖p̂t‖1
with a bound εbp specified a-priori.360

The main advantage of AU is that uniformisation rates qi are ‘discovered’
as the probability propagates. As there is a chance that at any given time i,
qi will be substantially lower than q, this allows the birth process to jump at
lower rates, and therefore that k′R is substantially lower than the corresponding
upper Fox-Glynn limit kR in the case of SU. Numerically, this allows to perform365

much fewer vector-matrix multiplications to solve for DC and to obtain the
same result with the same precision as SU. One might argue that the varying
uniformisation rate qi complicates the computation of the transient probabilities
uk of the uniformised DTMC DC or the solution β̂t(k) of the birth process
BC : this is true only to a some degree. The birth process BC still has an370

extremely simple structure and thus computing β̂t(k) is almost trivial during
each iteration. Similarly, a rather simple form of the uniformised transition
matrix unifqiQ (see Definition 3) allows to avoid constructing the uniformised
DTMC and to perform vector-matrix multiplications directly with the use of
the infinitesimal generator Q.375

2.7. Beyond uniformisations of CTMC: combined approximations

State-space truncation (not to be confused with the sum truncation in (12)
or (14)) can be used with both SU or AU to solve for DC , although it is par-
ticularly favorable with AU since truncating the state space using threshold
δtru > 0 leads to smaller subsets of active states and the birth process BC can380

jump at even slower rates qi. In the sequel, we will refer to the combination
of SU with state-space truncation as fast SU (FSU), and to the combination of
AU with truncation as fast AU (FAU) [6]. In both of these cases, however, the
probability loss is the only way to compute the approximation error, since an
a-priori specified error bound cannot be guaranteed.385
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Finally, SU can be integrated with the state-space aggregation approach
while solving for uniformised DTMC. This idea was first outlined in [10], al-
though a rigorous formalisation is still missing and will be the focus of Sec-
tion 4. There we shall also explore combinations of aggregation and truncation
approaches (FAU+ hybrid scheme).390

3. State-Space Aggregation of DTMCs

In this section, we develop ideas presented in [10] and formalise a notion of a
general state-space aggregation for discrete-time Markov chains. This will allow
to explore various aggregation schemes as well as to obtain more precise bounds
on the approximation errors. Finally, we describe an aggregation procedure that395

is capable of handling arbitrary DTMCs. In Section 4 we will then apply these
ideas to enable the analysis of continuous-time models.

3.1. Approximate DTMCs

We wish to explore how altering the transition probability matrix of a DTMC
affects its transient behaviour. We will do so by introducing the concept of an400

approximate DTMC.

Definition 4. Let D = (S, P ) be a DTMC. Let P̃ : S × S → R be an ap-
proximation of P with the same dimensions. A pair (S, P̃ ) is referred to as an
approximation of the DTMC D.

Assume p0 and p̃0 are initial transient probability distributions of (S, P )405

and (S, P̃ ), respectively. Here we interpet p̃0 as an approximation of p0. We
can now compute the transient probability distribution p̃k of the approximate
DTMC (S, P̃ ) at any time k > 0 similarly to propagation Equation (1):

p̃k = p̃k−1 · P̃ . (15)

The transient probability distribution p̃k, k ≥ 0, serves as an approximation410

of the distribution pk. We are interested in computing an approximation er-
ror ek := p̃k − pk. First, observe that e0 captures the error associated with
approximating p0 by p̃0. For k > 0, it holds that

pk + ek = p̃k = p̃k−1 · P̃ = p̃k−1 ·
(
P̃ − P + P

)
= p̃k−1 · P + p̃k−1 ·

(
P̃ − P

)
= (pk−1 + ek−1) · P + p̃k−1 ·

(
P̃ − P

)
= pk−1 · P + ek−1 · P + p̃k−1 ·

(
P̃ − P

)
= pk + ek−1 · P + p̃k−1 ·

(
P̃ − P

)
,

which implies415
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ek = ek−1 · P + p̃k−1 ·
(
P̃ − P

)
.

This recursion provides insight into how an error is generated when we approx-
imate a DTMC. The first summand represents propagation of an existing error
as if we were using exact transitions P for probability propagation. On the

other hand, the term p̃k−1 ·
(
P̃ − P

)
captures an error that is generated at each420

step between each pair of states while using the approximation p̃k−1 for pk−1

and P̃ for P . Recall that we are interested in the L1-norm of the error vector
ek, namely:

‖ek‖1 =
∥∥∥ek−1 · P + p̃k−1 ·

(
P̃ − P

)∥∥∥
1

≤ ‖ek−1 · P‖1 +
∥∥∥p̃k−1 ·

(
P̃ − P

)∥∥∥
1
.

One can easily argue that ‖v ·A‖1 ≤ ‖v‖1 for any vector v and any stochastic425

matrix A, and therefore expression above becomes

‖ek‖1 ≤ ‖ek−1‖1 +
∥∥∥p̃k−1 ·

(
P̃ − P

)∥∥∥
1
. (16)

3.2. State-space aggregation of DTMCs

Let us now introduce a specific class of approximate DTMCs: we will re-
interpret the above derivation accordingly.

Definition 5. Let D = (S, P ) be a DTMC with initial probability distribution430

p0 and let Φ be a clustering of S. Recall that for a cluster σ ∈ Φ, JσK denotes
the cardinality of set σ, i.e. number of concrete states that comprise this clus-
ter. Let Π: Φ×Φ→ R be any real-valued matrix relating pairs of clusters and
let π0 : Φ → R be a row vector s.t. π0(σ) :=

∑
s∈σ p0(s). An approximation

(S, P̃ ) of the DTMC D, where P̃ (r, s) = Π(ρ, σ)/ JσK , r ∈ ρ, s ∈ σ, with initial435

distribution p̃0(s) = π0(σ)/ JσK, s ∈ σ, will be referred to as a state-space aggre-
gation of D given an abstract state space Φ and an abstract transition probability
function Π.

Notice that for each two states s, s′ ∈ σ, it holds that p̃0(s) = π0(σ)
JσK = p̃0(s′).

Similarly, for (r, r′ ∈ ρ) and (s, s′ ∈ σ) we have that P̃ (r, s) = Π(ρ,σ)
JσK = P̃ (r′, s′),440

i.e. matrix P̃ is lumpable [12], and therefore the update Equation (15) yields,
for all s, s′ ∈ σ,

p̃k(s) =
∑
r∈S

p̃k−1(r) · P̃ (r, s) =
∑
r∈S

p̃k−1(r) · P̃ (r, s′) = p̃k(s′).
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The three equalities above illustrate an important property of the aggregation:
any two states from two given clusters have the same approximate transition445

probability P̃ (·, ·) and any two states in a given cluster at any time step k ≥ 0
share the same approximate transient probability p̃k(·). Introduce the quantity
πk(σ) :=

∑
s∈σ p̃k(s), σ ∈ Φ, k > 0. From the argument above it follows that

p̃k(s) = πk(σ)/ JσK for any s ∈ σ. Intuitively, the quantity πk(σ) describes
probability of residing in one of the states in cluster σ at time step k, whereas450

Π(ρ, σ) captures the probability of transitioning into one of the states in cluster σ
given that the chain resides in one of the states in cluster ρ.

Finally, for k > 0, it holds that:

πk(σ) =
∑
s∈σ

p̃k(s) =
∑
s∈σ

∑
r∈S

p̃k−1(r) · P̃ (r, s) =
∑
s∈σ

∑
ρ∈Φ

∑
r∈ρ

p̃k−1(r) · P̃ (r, s)

=
∑
s∈σ

∑
ρ∈Φ

∑
r∈ρ

πk−1(ρ)

JρK
· Π(ρ, σ)

JσK
=
∑
ρ∈Φ

∑
s∈σ

∑
r∈ρ

πk−1(ρ)

JρK
· Π(ρ, σ)

JσK

=
∑
ρ∈Φ

πk−1(ρ) ·Π(ρ, σ) · 1

JρK · JσK

∑
s∈σ

∑
r∈ρ

1 =
∑
ρ∈Φ

πk−1(ρ) ·Π(ρ, σ),

or in matrix notation:455

πk = πk−1 ·Π,

which corresponds to Equation (3). Hence, instead of computing approximate
transient probabilities for each of the states, we can first aggregate the initial
probability distribution p0 into π0 according to the definition of the latter,
compute πk using (3) and then find p̃k(s) as πk(σ)/ JσK for any state s. A pair460

(Φ,Π) might be interpreted as a DTMC (where the transition matrix Π is not
necessarily stochastic) representing the aggregation of (S, P ) and providing the
approximation of its probability distribution. As to an error associated with
this approximation, we use properties of aggregation to rewrite (16) into (18):
the second term in (16) reads:465

∥∥∥p̃k−1 ·
(
P̃ − P

)∥∥∥
1

=
∑
s∈S

∣∣∣∣∣∑
r∈S

p̃k−1(r) ·
(
P̃ (r, s)− P (r, s)

)∣∣∣∣∣ .
Running both summations over clusters and then applying the observation above
concerning states within the same cluster yields
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∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Φ

∑
r∈ρ

p̃k−1(r) ·
(
P̃ (r, s)− P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Φ

∑
r∈ρ

πk−1(ρ)

JρK
·
(

Π(ρ, σ)

JσK
− P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Φ

πk−1(ρ)
∑
r∈ρ

(
Π(ρ, σ)

JρK · JσK
− 1

JρK
P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Φ

πk−1(ρ)

(
Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

)∣∣∣∣∣∣ .
The following are algebraic manipulations with summations and absolute values:470

∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Φ

πk−1(ρ)

(
Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

)∣∣∣∣∣∣
≤
∑
σ∈Φ

∑
s∈σ

∑
ρ∈Φ

πk−1(ρ)

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣
=
∑
ρ∈Φ

∑
σ∈Φ

∑
s∈σ

πk−1(ρ)

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣
=
∑
ρ∈Φ

πk−1(ρ)
∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ .
Based on the obtained formulation, let us now define

τ (ρ, σ) :=
∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ , (17)

and τ (ρ) :=
∑
σ∈Φ τ (ρ, σ). Then for the L1-norm of the error vector ek it holds

that

‖ek‖1 ≤ ‖ek−1‖1 +
∑
ρ∈Φ

πk−1(ρ) · τ (ρ). (18)

Note the similarity of the equation above with (6). Furthermore, observe that475
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τ (ρ, σ) =
∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ ≤ JσK ·max
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣
= max

s∈σ

∣∣∣∣∣Π(ρ, σ)− JσK
JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ = ε(ρ, σ),

and therefore the τ -terms in (18) provide a better error bound than that in (6)
based on ε-terms.

3.3. Specific forms of state-space aggregation

So far we have assumed nothing about the form of Π: error bound (18) allows480

arbitrary abstract transition probability matrices. Recall that the matrix Π
determines the structure of the approximate transition matrix P̃ . Therefore,
we wish to construct Π based on the knowledge of P so that the resulting
approximation P̃ is as precise as possible. Let us now be more specific and
describe three possible ways to define Π.485

3.3.1. State-space aggregation based on average incoming transition probabilities

The approximate transition matrix for this aggregation is defined as follows:

Πin(ρ, σ) =
1

JσK

∑
r∈ρ

∑
s∈σ

P (r, s). (19)

The intuition behind this equation is that it encompasses the average incoming
probability to cluster σ from cluster ρ. This shape of the transition matrix Π490

was previously introduced in [10] and the error bound (6) based on ε-terms was
derived accordingly.

3.3.2. State-space aggregation based on average outgoing transition probabilities

This scheme is similar to the previous one, except that now we utilise average
outgoing transition probabilities:495

Πout(ρ, σ) =
1

JρK

∑
r∈ρ

∑
s∈σ

P (r, s). (20)

Here we demonstrate that outgoing averaging (20) is a natural approach to
define transitions between clusters of states. Let Sk ∈ S be a random variable
describing the current state of the DTMC at time k ≥ 0. Likewise, let Ck ∈ Φ
be a random variable describing in which of the clusters the DTMC resides at500

time k. Note that, by definition, P (r, s) = P(Sk+1 = s | Sk = r) and that
Π(ρ, σ) = P(Ck+1 = σ | Ck = ρ). Also, recall that, given that the chain resides
in cluster σ, the probability of residing in any of the state s ∈ σ is uniformly
distributed between the states. We obtain
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Π(ρ, σ) = P(Ck+1 = σ | Ck = ρ) =
∑
r∈ρ

P(Ck+1 = σ, Sk = r | Ck = ρ)

=
∑
r∈ρ

P(Ck+1 = σ | Ck = ρ, Sk = r) · P(Sk = r | Ck = ρ)

=
∑
r∈ρ

P(Ck+1 = σ | Sk = r) · 1

JρK
=

1

JρK
·
∑
r∈ρ

P(Ck+1 = σ | Sk = r)

=
1

JρK
·
∑
r∈ρ

∑
s∈σ

P(Ck+1 = σ, Sk+1 = s | Sk = r)

=
1

JρK
·
∑
r∈ρ

∑
s∈σ

P(Sk+1 = s | Sk = r) =
1

JρK
·
∑
r∈ρ

∑
s∈σ

P (r, s),

505

which is Πout(ρ, σ). As a consequence, the transition probability function Πout

has another property, namely that, for each cluster ρ,

∑
σ∈Φ

Πout(ρ, σ) =
∑
σ∈Φ

1

JρK

∑
r∈ρ

∑
s∈σ

P (r, s) =
1

JρK

∑
r∈ρ

∑
σ∈Φ

∑
s∈σ

P (r, s)

=
1

JρK

∑
r∈ρ

∑
s∈S

P (r, s) =
1

JρK

∑
r∈ρ

1 = 1,

i.e. matrix Πout is stochastic, unlike general abstract matrices Π. Since p0 is
always a stochastic vector, then so is π0, by definition. This implies that all510

vectors πk and therefore all p̃k are stochastic as well. So, the abstract chain
(Φ,Πout) is actually a DTMC, as per Definition 1. This subtle difference has
two benefits. First, from the technical standpoint, this leads to a slightly better
approximation compared to the incoming-based scheme (19), as will be shown
later. Second, preserving stochasticity of p̃k will be the key to integrating515

aggregation technique with the uniformisation method (see Section 4), in order
to enable the aggregating analysis of CTMCs. Finally, observe that, if we use
outgoing averaging for the construction of the abstract transition matrix Π, then
from (17) it follows that τ (ρ, σ) = 0 whenever JσK = 1: this is favourable with
our partitioning approach (discussed in Subsection 3.4), which utilises singleton520

clusters for states having large transition probabilities.

3.3.3. Median-based state-space aggregation

This scheme is defined as follows:

Πmed(ρ, σ) =
JσK
JρK

med
s∈σ

{∑
r∈ρ

P (r, s)

}
. (21)

The median-based scheme was derived using the following argument. As-
sume a specific state-space clustering is given. We can arbitrarily define the525
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abstract transition probabilities Π(·, ·) and the approximation error accrual in
each iteration is captured by (18). In order to minimize this accrual, it is suffi-
cient to minimize each of the terms

τ (ρ, σ) =
∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣
by selecting a suitable Π(ρ, σ). We can pull JσK at the denominator out of the530

absolute value and equivalently minimize

∑
s∈σ

∣∣∣∣∣Π(ρ, σ)− JσK
JρK

∑
r∈ρ

P (r, s)

∣∣∣∣∣ .
We recognize this as a problem of minimizing the sum of the absolute deviations,
for which solution is known [36] to be

med
s∈σ

{
JσK
JρK

∑
r∈ρ

P (r, s)

}
=

JσK
JρK

med
s∈σ

{∑
r∈ρ

P (r, s)

}
= Πmed(ρ, σ).

535

As will be shown in the experimental evaluation, the median-based scheme
results in the most accurate error bound. Note that in this case Πmed might
not be stochastic.

3.4. Partitioning arbitrary DTMCs

Before we present our main aggregation algorithm, let us finally address the540

issue we have ignored so far – how to partition the state space of a DTMC.
Recall that previously, in [10], where the state-space aggregation is used to
analyse biochemical processes, the partition is constructed based on the known
structure of the model and on the underlying physics. Here we wish to establish
a procedure capable of handling models with arbitrary structure of their state545

space. To achieve this, let us view a Markov chain (S, P ) as a weighted directed
graph (S,E), where S is the set of its vertices, E ⊆ S × S is the set of its
non-zero transitions and P is the weighting function.

Recall during adaptive aggregation of a DTMC, we use different clusterings of
the state space sequentially in time, based on the current (approximate) proba-550

bility distribution. These clusterings are constructed based on the so-called pro-
totype clustering Φ, the computation of which is summarised in Algorithm 1,
where Φ1 denotes the set {{s} | s ∈ S} of singleton clusters. The procedure
employs the nearest-neighbour bottom-up clustering approach, where we start
with partition Φ = Φ1 containing only singletons, which are then sequentially555

merged so as not to violate the given maxClusterSize parameter. For merg-
ing, we prioritize clusters ρ and σ containing states r and s having the largest
transition weight, that is, the largest transition probability P (r, s), in the spirit
of the nearest-neighbour approach.
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Algorithm 1 Partitioning the DTMC

Input: DTMC as a directed graph (S,E) with weights P , parameter
maxClusterSize.

Output: Prototype partition Φ.

1: Φ← Φ1

2: Esorted ← sortDecreasing(E,P )
3: for (r, s) ∈ Esorted do
4: ρ← clusterOf(Φ, r)
5: σ ← clusterOf(Φ, s)
6: if (ρ 6= σ) ∧ (JσK + JρK ≤ maxClusterSize) then
7: Φ←

(
Φ \ {ρ, σ}

)
∪ {ρ ∪ σ}

8: return Φ

Now assume that we wish to aggregate a DTMC at some time k and let p̃k560

denote the current approximation of transient probabilities. Furthermore, let us
introduce the so-called aggregation threshold δagg. Then the resulting clustering
Φ is the minimum (in the number of clusters) partition of S for which ∀σ ∈ Φ:

(
σ ∈ Φ ∪ Φ1

)
∧

(∑
s∈σ

p̃k(s) ≤ δagg

)
.

In other words, if a cluster σ ∈ Φ) does not violate
∑
s∈σ p̃k(s) ≤ δagg, then

σ is used in the partition Φ, otherwise it is decomposed into singletons.565

This rather indirect clustering approach was designed to provide accurate yet
efficient approximations of a DTMC. To gauge the accuracy of the clustering,
we can use update Equation (18) for the error bound: the product of τ (·) and
πk(·) represents an error contributed by a cluster, and we should minimize τ (·)
for clusters that bear a significant probability mass. While experimenting with570

various partitions, we have often noticed that clusters of large size are typically
associated with large values of τ (·). This makes sense: having (a large amount
of) smaller and more refined clusters allows to track the probability mass more
accurately than using few large clusters. Figure 2 illustrates the behaviour of
both aggregation and propagation errors, with the latter being attributed to575

a phenomenon we call ‘probability forwarding’: when propagating probability
from cluster ρ to cluster σ, we are effectively pushing the probability mass (in
one step) to those states in σ that were previously unreachable (in one step)
from any of the states in ρ; conversely, we are pushing the probability to cluster
σ from those states in ρ that do not have any of the states in σ as their direct580

successor. By doing so, we effectively accelerate the model and incur an error.
It should now be clear how the developed clustering approach helps to mit-

igate this phenomenon. First, during the construction of the prototype clus-
tering, we assemble together states that are actually connected by a (highly
likely) transition. As a result, the constructed clusters are comprised of states585

that are adjacent (likely reachable in a short number of steps), and therefore
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Figure 2: In (a) we consider a simple DTMC that deterministically starts in the leftmost
state (numbers inside nodes denote current transient probabilities); in (b) we construct its
aggregation (here we use outgoing averaging to compute abstract transitions), notice how
the first (second) state has effectively lost (gained) some probability mass, resulting in an
aggregation error; in (c) we perform one iteration in the abstract model, observe that the
right-most state has effectively gained – due to ‘probability forwarding’ – some probability
mass, resulting in a propagation error: in the concrete model this state is unreachable until
the third iteration.

the probability forwarding has a lesser effect compared to a situation where the
target cluster σ contains states that are otherwise completely unrelated. Sec-
ond, if the probability

∑
s∈σ p̃k(s) = πk(σ) of a (potential) cluster σ exceeds

a given aggregation threshold δagg, then the product πk(σ) · τ (σ) would not590

be insignificant, and, therefore, it is appropriate to split cluster σ into smaller
ones – in our case, into singletons.

Finally, using clusters from either the prototype clustering Φ or the sin-
gleton partition Φ1 goes a long way in terms of computational complexity of
(re-)aggregation: a great deal of state-to-cluster and cluster-to-cluster data can595

be pre-computed in advance, allowing for a very efficient construction of the
abstract transition probability matrix Π as well as of τ -factors for the given
partition Φ, thus enabling more frequent reaggregations of the model, result-
ing in a more accurate approximation. Naturally, the choice of parameters
maxClusterSize and δagg influences the accuracy as well as efficiency of the pro-600

vided partitions – these will be discussed shortly, once we establish the adaptive
aggregation procedure.

3.5. Adaptive state-space aggregation procedure

Algorithm 2 demonstrates how the theoretical framework developed in the
previous subsections is applied to the aggregating analysis of a DTMC. First,605

we construct the prototype clustering Φ, which then used to construct our first
actual clustering Φ of the state space S (Line 3). Then, we directly apply
the corresponding definitions to compute abstract transient probabilities π0

(see (2)), abstract transition probabilities Π (using either (19), (20) or (21)),
error factors τ (see (17)) and the aggregation error ‖e0‖1. We proceed by610
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Algorithm 2 Adaptive state-space aggregation of DTMC

Input: DTMC (S, P ), initial probability distribution p0, time horizon k;
maximum cluster size maxClusterSize, aggregation threshold δagg, reaggrega-
tion threshold δreagg.

Output: Approximate probability distribution p̃k, error bound ‖ek‖1.

1: Φ← prototypeClustering(S, P,maxClusterSize) . using Alg. 1
2: p̃0 ← p0

3: Φ← partition(Φ, p̃0, δagg)
4: (π0,Π, τ , aggregationError)← aggregate(Φ, P, p̃0)
5: error0 ← aggregationError
6: for i← 1 to k do
7: errori ← errori−1 +

∑
ρ∈Φ πi−1(ρ) · τ (ρ)

8: πi ← πi−1 ·Π
9: if checkPartition(Φ,πi, δreagg) then

10: p̃i ← deaggregate(πi,Φ)
11: Φ← partition(Φ, p̃i, δagg)
12: (πi,Π, τ , aggregationError)← aggregate(Φ, P, p̃i)
13: errori ← errori + aggregationError

14: p̃k ← deaggregate(πk,Φ)
15: return p̃k, errork

carrying out vector-matrix multiplications in the abstract setting and updating
the error bound according to Equation (18). After several discrete steps, the
probability distribution πi might start to generate a large amount of error,
which is signalised by the checkPartition procedure (Line 9, described later),
and the re-partitioning of the state space takes place.615

From the computational standpoint, lines 7 and 8 represent the critical parts
of Algorithm 2 and are equivalent to computing a scalar product and a vector-
matrix multiplication in the abstract setting, i.e. with the reduced state space.
In the case where JΦK � |S|, we can achieve a considerable speedup over the
computation on the concrete chain, provided that reaggregations are performed620

not too often (yet not too rarely in order to keep the accrued error relatively
low). Intuitively, we want to re-aggregate the chain once the transient probabil-
ities have changed so much that the current clustering might yield a significant
error. The checkPartition procedure detects this by testing whether the current
partition Φ contains a composite cluster with a probability mass exceeding a625

predefined reaggregation threshold δreagg. After that, a new clustering respecting
current probability distribution is established.

The choice of parameters maxClusterSize, δagg and δreagg offers flexibility
and affects the trade-off between efficiency and accuracy. In particular, small
values of maxClusterSize will lead to a more refined prototype clustering, al-630

though the resulting aggregated state space can be large. Large values of aggre-
gation threshold δagg will preserve a lot of clusters for the actual partition and
lead to a greater state-space reduction at a price of decreased precision. Finally,
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a small value of reaggregation threshold δreagg usually implies frequent reaggre-
gations and offers greater precision; it is recommended to set this parameter a635

couple of orders of magnitude larger than the aggregation threshold δagg.

4. State-Space Aggregation of CTMCs

Having established an aggregation method for DTMCs, let us now combine
it with a uniformisation technique, in order to analyse continuous-time chains.
We begin with SU, where the uniformisation rate is fixed and the application of640

aggregation described in the previous section is straightforward: the approach
was already outlined in [10], although a rigorous formalisation is missing and is
offered in this section. We then proceed by combining aggregation with AU, and,
finally, we present a new hybrid method that combines the principles of both
state-space aggregation and truncation, and offers an unprecedented flexibility645

for analysing continuous-time chains.

4.1. State-space aggregation with standard uniformisation (SU)

Recall that SU works by constructing a uniformised DTMC from the rate
matrix using a single uniformisation rate q; it proceeds by computing transient
probabilities for the DTMC and then weighs them using a Poisson distribution650

ψqt(·). The Fox-Glynn algorithm provides bounds kL, kR that allow to truncate
the infinite sum and compute the overall result, as in (12). The error associated
with this truncation is the probability loss ‖pt‖1 − ‖p̂t‖1 = 1− ‖p̂t‖1 (9).

Now assume we use state-space aggregation to approximate transient proba-
bilities uk of the uniformised DTMC with the ũk and obtain an approximation655

˜̂pt of p̂t as:

˜̂pt(s) :=

kR∑
k=kL

ψqt(k) · ũk(s). (22)

Each ũk has an associated uncertainty ‖ek‖1 and each ũk is weighted with
ψqt(k), so the overall error associated with this approximation is

∥∥∥p̂t − ˜̂pt

∥∥∥
1

=

kR∑
k=kL

‖ek‖1 ·ψqt(k). (23)

660

We also lose some probability mass by truncating the infinite summation using
bounds kL and kR, and to quantify this loss we use the following lemma.

Lemma 1. Let {vk}k∈N0 be an infinite series of vectors and let v :=
∑∞
k=0 wk ·

vk, where wk are non-negative scalars for which
∑∞
k=0 wk = 1. If norms of vk

are bounded by some v∗, i.e. ∃v∗ ∀k ∈ N0 : ‖vk‖1 ≤ v∗, then ‖v‖1 ≤ v∗.665
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Proof.

‖v‖1 =

∥∥∥∥∥
∞∑
k=0

wk · uk

∥∥∥∥∥
1

≤
∞∑
k=0

wk · ‖uk‖1 ≤
∞∑
k=0

wk · v∗ = v∗
∞∑
k=0

wk = v∗.

Corollary 1. Let v̂ :=
∑kR
k=kL

wk ·vk be a truncation of v for arbitrary bounds
kL, kR, where {wk} and {vk} are consistent with Lemma 1. Then,

‖v‖1 − ‖v̂‖1 ≤ v
∗ − ‖v̂‖1 . (24)

This corollary asserts that for bounded vectors uk used in (12) (or for
bounded approximations ũk of uk used in (22)), we are able to compute the670

probability loss resulting from the truncation of the infinite sum. For SU, AU,
FSU or FAU, each of the ‖uk‖1 is bounded by 1 and so probability loss in (24)
takes the usual form 1 − ‖p̂t‖1. However, for general state-space aggregations,
there is no guarantee on the approximations ũk, because we do not require the
transition matrices Π to be stochastic. Therefore, in order to safely use ag-675

gregation techniques in combination with the Fox-Glynn scheme, it is crucial
to appeal to those abstractions for which {ũk} is consistent with Lemma 1.
An ideal candidate is the outgoing averaging approach (20) that preserves the
stochasticity of vectors ũk, i.e. ‖ũk‖1 = 1, and so the probability loss can be
computed analogously to SU/AU. As will be demonstrated on various case stud-680

ies, outgoing averaging is the most efficient aggregating scheme for the analysis
of discrete-time chains.

The rest of the algorithm remains conceptually the same: we work with the
abstraction of the uniformised DTMC, where the notions of state adjacency,
prototype partition, partition checking, etc. are analogous to those developed in685

the previous subsection. We compute approximate transient probability distri-
butions of this DTMC that are weighted by Poisson probabilities. The overall
error is the sum of the probability loss (similar to (9)) and an approximation
error for the uniformised DTMC (23), namely:

‖et‖1 ≤ 1−
∥∥∥˜̂pt

∥∥∥
1

+

kR∑
k=kL

‖ek‖1 ·ψqt(k). (25)

690

The combination of the state-space aggregation with SU is denoted SU+.

4.2. State-space aggregation with adaptive uniformisation (AU)

As mentioned earlier, introducing adaptivity to the uniformisation procedure
can greatly reduce the required number of discrete steps without any penalty in
precision. We wish to incorporate this principle to the aggregating method de-695

scribed above. We cannot apply adaptive uniformisation directly since we have
developed the aggregation scheme for (uniformised) DTMCs: we would have to

24



continuously recompute its transition probability matrix each time a uniformi-
sation rate qi changes (which might happen during each iteration), which is
impractical. Instead, we wish to define this matrix as a function of this uni-700

formisation rate. In other words, instead of aggregating uniformised DTMCs,
we would like to be able to aggregate the CTMC itself: this will allow us to use
AU (or FAU) normally, as it was defined in Subsection 2.6, but on a CTMC
with a reduced state space. This notion of an abstract CTMC is introduced in
the following definition.705

Definition 6. Let (S,R) be a CTMC with infinitesimal generator Q and let Φ
be the partition of S. An abstract infinitesimal generator Θ: Φ×Φ→ R is the
matrix defined as

Θ(ρ, σ) =
1

JρK

∑
r∈ρ

∑
s∈σ

Q(r, s).

Furthermore, the exit rate of the abstract state σ is defined as the maximum exit710

rate of states within this cluster: E(σ) := maxs∈σ E(s). The structure (Φ,Θ) is
called an abstract CTMC.

Let (S,R) be a CTMC and Q be the infinitesimal generator associated
with R. Assume a specific state-space aggregation Φ of S and a uniformisation
rate q are given. To see why Definition 6 can be applied during the aggregating715

analysis of a CTMC, it is sufficient to show that aggregation of the uniformised
CTMC unifqQ is exactly uniformisation unifqΘ of the aggregated CTMC from
Definition 6. To compute the former, we invoke outgoing averaging (20), since
we have already argued that it is the only aggregation strategy that can be
safely used for approximating CTMCs:720

Π(ρ, σ) =
1

JρK

∑
r∈ρ

∑
s∈σ

unifqQ(r, s), (26)

In the case where ρ 6= σ, we have ∀r ∈ ρ ∀s ∈ σ : r 6= s, so that unifqQ(r, s) =
Q(r,s)
q and therefore Equation (26) becomes

Π(ρ, σ) =
1

JρK

∑
r∈ρ

∑
s∈σ

Q(r, s)

q
=

1

q
· 1

JρK

∑
r∈ρ

∑
s∈σ

Q(r, s) =
1

q
·Θ(ρ, σ) = unifqΘ(ρ, σ).

On the other hand, if ρ = σ, we obtain:725
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Π(ρ, ρ) =
1

JρK

∑
r∈ρ

1 +
Q(r, r)

q
+

∑
s∈ρ,r 6=s

Q(r, s)

q

 =
1

JρK

∑
r∈ρ

[
1 +

∑
s∈ρ

Q(r, s)

q

]

=
1

JρK

[∑
r∈ρ

1 +
∑
r∈ρ

∑
s∈ρ

Q(r, s)

q

]
= 1 +

1

q
· 1

JρK

∑
r∈ρ

∑
s∈ρ

Q(r, s)

= 1 +
1

q
·Θ(ρ, ρ) = unifqΘ(ρ, ρ).

Overall, we have Π ≡ unifqΘ, which completes our proof. One can observe the
similarity between Definition 6 of abstract infinitesimal generator and Equa-
tion (20) defining the abstract transition probability matrix based on outgoing
probability averaging. To recapitulate, we can now avoid computing aggrega-730

tion P̃ of the uniformised CTMC as a uniformisation of the aggregated CTMC,
which does not need to be computed explicitly to propagate probability, as
was elaborated in Subsection 2.6. However, we still have to be able to com-
pute bound on the approximation error with similar efficiency. The following
proposition demonstrates that it is indeed possible.735

Proposition 1. For the error factors τ (·) associated with partition Φ and
abstract transition function Π (based on average outgoing probabilities) of the
aggregated uniformised CTMC, the following holds (notice how this expression
mirrors Equation (17) derived for the error factors in the discrete-time case):

τ (ρ, σ) =
1

q

∑
s∈σ

∣∣∣∣∣Θ(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

Q(r, s)

∣∣∣∣∣ .
Proof. Consider the case ρ 6= σ. Starting from Equation (17), we have:

τ (ρ, σ) =
∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

unifqQ(r, s)

∣∣∣∣∣
=
∑
s∈σ

∣∣∣∣∣ 1

JσK
Θ(ρ, σ)

q
− 1

JρK

∑
r∈ρ

Q(r, s)

q

∣∣∣∣∣ =
1

q

∑
s∈σ

∣∣∣∣∣Θ(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

Q(r, s)

∣∣∣∣∣ .
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If instead ρ = σ, we have:

τ (ρ, σ) =
∑
s∈σ

∣∣∣∣∣Π(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

unifqQ(r, s)

∣∣∣∣∣
=
∑
s∈σ

∣∣∣∣∣∣ 1

JσK

[
1 +

Θ(ρ, σ)

q

]
− 1

JρK

1 +
Q(r, r)

q
+

∑
s∈σ,r 6=s

Q(r, s)

q

∣∣∣∣∣∣
=
∑
s∈σ

∣∣∣∣∣ 1

JσK
+

1

JσK
Θ(ρ, σ)

q
− 1

JρK
− 1

JρK

∑
r∈ρ

Q(r, s)

q

∣∣∣∣∣
=

1

q

∑
s∈σ

∣∣∣∣∣Θ(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

Q(r, s)

∣∣∣∣∣ .

Let us now summarise the aggregating procedure for adaptive uniformisa-
tion. We begin by constructing a prototype partition Φ in the same manner as
for DTMCs, using Algorithm 1 but using transition rate matrix R as transition
weights. Next, we construct an actual partition Φ based on current probability
distribution p0. Using this partition Φ, we can now compute (1) the correspond-
ing abstract infinitesimal generator Θ, (2) abstract transition probabilities π0

and (3) for each cluster ρ ∈ Φ the value of∑
σ∈Φ

∑
s∈σ

∣∣∣∣∣Θ(ρ, σ)

JσK
− 1

JρK

∑
r∈ρ

Q(r, s)

∣∣∣∣∣ ,
which, according to Proposition 1, when divided by the current (local) uniformi-
sation rate qi, will yield the value of τ (ρ). We now treat (Φ,Θ) as a normal
CTMC, albeit with special exit rates, according to Definition 6:740

qi ≥ max
s∈S
{E(s) | ũi(s) > 0} = max

σ∈Φ
{E(σ) | πi(σ) > 0},

and pass this aggregated CTMC as an input to the adaptive uniformisation
procedure. AU unfolds the model while the partition checker ensures the cor-
rectness of the given partition and triggers reclusterings when necessary, using
the same heuristics as for DTMCs. The final transition probability as well as the745

approximation error are computed similarly to (22) and (25) in the case of SU,
but using the solution of the birth process as a weighting factor. The described
technique, integration of state-space aggregation and adaptive uniformisation,
will be denoted as AU+.

4.3. Combination of state-space aggregation with truncation750

Finally, we can combine the method above with the state-space truncation
where in each iteration we truncate insignificant clusters, i.e. those with tran-
sient probability smaller than the truncation threshold δtru, in order to obtain
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even smaller uniformisation rates. The resulting technique, denoted FAU+,
incorporates both state-space aggregation and state-space truncation. The ag-755

gregation threshold δagg that defines how much of the probability mass can
constitute a cluster, along with the truncation threshold δtru defining which ab-
stract states are to be considered insignificant, drive the overall behaviour of
the method and offer a great flexibility for handling various types of models,
as will be shown later. On a final note, notice that, when setting aggregation760

and truncation thresholds, we can categorise the approximation techniques as
in Table 1.

δagg δtru Resulting method
= 0 = 0 AU
= 0 > 0 FAU
> 0 = 0 AU+
> 0 > 0 FAU+

Table 1: Categorisation of the approximation techniques.

5. Experimental Evaluation

The goal of this section is to present an exhaustive experimental evaluation
of approximate methods for the analysis of DTMCs and CTMCs. We will765

start in a discrete-time setting, examine the behaviour of various aggregation
schemes, evaluate the quality of the theoretical bounds, and finally compare the
best aggregating strategy against a method based on state-space truncation.
Finally, we will explore how these methods – including the novel hybrid approach
(FAU+) – compare in the continuous-time setting.770

5.1. Experimental setup

All methods are implemented in PRISM 4.3 [7], a state-of-the-art proba-
bilistic model-checker. We employ its explicit engine, which provides the best
performance for models of moderate size (up to ≈ 107 states) that do not exhibit
regular or symmetric structures [7]. All the experiments are run on a Debian775

server with 8x Intel Core i7-3770K CPUs (4 cores at 3.5 GHz) and 32 GB RAM,
with all the algorithms being executed sequentially (1 thread).

The benchmark comprises four models2 from different application areas: the
Lotka-Volterra model [30], a prokaryotic gene expression [37] model, the model
of a workstation cluster [38], and the model of a two-component signalling path-780

way [39]. For the sake of generality and fairness, these models have been chosen
to cover the broad range of possible behaviours that a stochastic process can ex-
hibit. For instance, the signalling pathway is characterized by its wide spread of

2All these models are originally in continuous time; discrete-time models are obtained by
uniformisation, using the (global) uniformisation rate qunif = 1.02 ·maxs∈S E(s).
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probability distribution, which limits the reduction capabilities of approximate
methods. On the other hand, the workstation cluster model exhibits complex785

dynamics for the transient probability propagation. The Lotka-Volterra model,
despite being simple and predictable, has fast dynamics. We will discuss how
these differences impact the behaviour of individual approximate techniques,
where aggregation-based methods handle such models differently than those
based on state-space truncation.790

5.2. Aggregation of DTMCs

5.2.1. Precision of different aggregation strategies

In our first set of experiments, we will inspect the behaviour of individual
aggregation schemes in various scenarios for a DTMC. We are interested in the
obtained precision (or accuracy), both empirical (actual distance from the exact795

DTMC solution) and theoretical (derived upper bounds on the L1-norm of the
error vector). To eliminate any model bias, we perform experiments on two
different models with different sizes and exhibiting distinctive behaviours (see
Tables 2 and 3). We perform three different experiments, having the following
separate goals:800

• Experiment 1 (with outcomes E1(e), E1(t)): The goal of this experi-
ment is to compare a one-step behaviour of various abstract transition
functions. We evolve the model for 100 (concrete) steps, then perform the
first partitioning and compute abstract transition matrices using three
different approaches: based on average incoming (In) or outgoing (Out)805

transition probabilities and the median-based strategy (Med). Then we
perform a single step in the abstract model. In all cases we use the same
value of aggregation threshold and therefore each scheme will be work-
ing with exactly the same state space partition. We report empirical error
(E1(e)) and the theoretical error bound on the propagation error (E1(t)),810

i.e. ‖e101‖1 − ‖e100‖1 (that is, we do not take aggregation error ‖e100‖1
into account, as it would be same in all cases since each technique uses
the same state-space partition). The differences in the obtained values
arise only from using different abstract transition matrices. For the case
of average incoming probabilities (In), we compute the theoretical bound815

using the ε-factors (6), as presented in [10], as well as using newly derived
τ -terms (18), in order to investigate how the novel bound compares to the
existing one. As will be repeatedly demonstrated in the following experi-
ments, τ -factors offer an increase in precision of several orders of magni-
tude, confirming our theoretical conclusions from Subsection 3.2. There-820

fore, for outgoing averaging (Out) or median-based aggregation (Med),
we only report the theoretical bound computed using τ -terms.

• Experiment 2 (E2(e), E2(t)): The goal of this experiment is to demon-
strate the long-term behaviour of different aggregation approaches. It is
the same as E1(e) and E1(t), but after the initial aggregation we perform825

100 consecutive steps without reclusterings. The value reported in E2(t)
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is ‖e200‖1 − ‖e100‖1, i.e. the bound on the propagation error 100 steps
after the first aggregation.

• Experiment 3 (E3(e), E3(t)): The goal of this experiment is to investigate
the behaviour of various approximations under regular re-aggregations. It830

is the same as E2(e) and E2(t), but in the course of 100 steps after
the first aggregation we perform 10 additional reclusterings at fixed times
(after iteration 105, 115, 125 etc.). Since for each of the schemes the prob-
ability distributions during the corresponding times will be approximately
the same and, in this particular case, the aggregation error accounts for835

less than 1% of the overall error, in E3(t) we report only the bound on
the propagation error, see Equation (8).

In
Out Med

ε τ
E1(e) 2.07e-23 2.07e-23 2.51e-23 1.93e-23
E1(t) 1.31e-20 1.28e-23 1.65e-23 9.77e-24
E2(e) 3.58e-4 3.58e-4 6.40e-4 3.59e-4
E2(t) 1.33e-1 3.86e-4 8.95e-4 3.71e-4
E3(e) 2.01e-17 2.01e-17 2.85e-20 3.50e-4
E3(t) 7.17e-14 2.81e-17 2.04e-19 3.50e-4

Table 2: Precision of different aggregation schemes. Model: Lotka-Volterra, dimension of the
state space: 160k, aggregation threshold: 1e-25.

In
Out Med

ε τ
E1(e) 1.26e-9 1.26e-9 1.29e-9 1.24e-9
E1(t) 4.39e-6 1.07e-10 1.27e-10 8.09e-11
E2(e) 1.21e-7 1.21e-7 1.94e-7 1.25e-7
E2(t) 1.06e-2 1.52e-7 2.80e-7 1.40e-7
E3(e) 1.02e-7 1.02e-7 1.68e-8 1.27e-7
E3(t) 2.10e-4 1.11e-7 3.17e-8 1.27e-7

Table 3: Precision of different aggregation schemes. Model: Prokaryotic Gene Expression,
dimension of the state space: 700k, aggregation threshold: 1e-10.

The results for two different models (with different state-space sizes) are
shown in Tables 2 and 3. First, from all experiments we confirm that In(ε) �
In(τ ), i.e. the newly derived error bound (18) that utilises τ -terms provides840

several orders of magnitude better bounds than that based on ε-terms (6).
Second, Experiment 1 shows us that median-based aggregation exhibits the
best one-step behaviour, followed by that based on incoming probability, and
finally by that based on outgoing probability. Third, in Experiment 2 we see a
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clear decrease in precision over all the methods: the probability distribution has845

changed and in the absence of reclusterings we obtain a significant error. On the
other hand, in Experiment 3 we see that reclusterings can drastically improve
the precision of the approaches based on incoming and outgoing averaging, with
the latter showing an improvement of a couple of orders of magnitude. Finally,
from Experiments 2 and 3 we confirm that median-based aggregation indeed850

provides the most tight theoretical bound E(t) on the approximation error E(e),
although this error is notably larger than that for averaging-based approaches.

Remark. The difference in the obtained values arises from how individual schemes
handle the problem of probability forwarding into big clusters. Median-based
aggregation is very likely to select the median transition probability between855

clusters to be equal to zero, because a majority of states in a big target cluster
would be inaccessible in one step. Hence, no probability forwarding occurs at
all, and the error is generated by the opposite effect: states that are accessible
in one step will not get any probability at all. In the long run, it seems to
be ineffective because zero abstract transitions decelerate the model and reag-860

gregations cannot improve this. As a result, median-based aggregation leads
to a very poor approximation and results in a large empirical error, although
the theoretical bound remains very tight. Indeed, in the evaluation of large
models (see experiments presented later), this approach has failed to produce
any reasonable results. Therefore, in the remainder of this experimental eval-865

uation, we abandon the median-based strategy. On the other hand, strategies
based on averaging always propagate at least some probability mass, and the
incoming version seems to be advantageous because a large size of a successor
can alleviate abstract transition probability and probability forwarding is less
apparent as compared to outgoing. The latter, however, seems to yield more870

precise results under regular reclusterings.

5.2.2. Speedup of approximate methods

In the next set of experiments we investigate the speedup of individual ap-
proximation methods. The choice of the model is arbitrary, in the sense that,
in principle, none of the methods are more advantageous than others. We select875

a Lotka-Volterra model of 0.5M states, and compute an approximation of its
transient probability distribution at time 10000. For a given precision, ranging
from 1e-1 to 1e-5, each method is tasked with computing as fast as possible
while guaranteeing this precision; the precision of each method is computed us-
ing τ -factors (18) for outgoing (Out), using ε- and τ -factors for incoming (In)880

averaging, and using probability loss for the state-space truncation (Tru). To
ensure a fair comparison, since none of the approximate methods can guarantee
a given precision a priori, parameters for each of the methods in each of the
experiments are tuned individually, on a trial and error basis, in order to obtain
the best computation time w.r.t. a given precision. Results of this experiment885

are presented in Table 4 where we report the speedup with respect to a reference
computation (10000 usual multiplications of matrices of size 0.5M).

From Table 4, it is clear that Out > In(τ ) > In(ε). The second inequality
is due to the usage of better theoretical bounds, which means that incoming
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Precision
In

Out Tru
ε τ

1e-5 2.650 3.181 4.715 4.541
1e-4 2.785 3.201 4.789 4.541
1e-3 2.785 3.201 5.206 4.720
1e-2 2.935 4.059 5.712 4.944
1e-1 3.380 4.059 6.029 5.142

Table 4: Speedup (acceleration w.r.t. concrete computation for guaranteeing a given precision)
of various approximate techniques. Model: Lotka-Volterra, dimension of the state space: 0.5M
states, discrete time horizon: 10000 steps, execution time of concrete computation: ≈120s

.

averaging that utilised τ instead of ε can allow for a larger empirical error890

(by clustering more or reclustering less) to guarantee a certain precision. The
first inequality can be explained by the fact that, as we have seen previously,
outgoing averaging is more susceptible to reaggregations, and therefore fewer of
those are required to guarantee a certain precision. We thus confirm the results
from the first set of experiments. Also, we know that outgoing averaging is895

the only strategy that can be safely used for the analysis of CTMCs, so, from
now on, under adaptive aggregation we will mean the aggregation based on
outgoing averaging that utilises τ -terms to quantify the theoretical error - we
have now repeatedly seen that this approach that preserves the properties of
DTMCs indeed exhibits the best behaviour.900

What is new here is an illustration of a behaviour of the state space trun-
cation Tru, which seems to be inferior to outgoing averaging. To eliminate any
bias, let us further investigate this relationship by repeating the experiment
with different models of larger size and with different dynamics. As previously,
we investigate the speedup (acceleration w.r.t. the exact computation) for ag-905

gregation based on outgoing averaging (Out) and truncation (Tru), with both
guaranteeing a given precision. Table 5 presents the results for the workstation
cluster model, the uniformised prokaryotic gene expression model and the uni-
formised two-component signalling pathway. Also, in the third case, instead of
transient analysis, both techniques are applied for a model checking problem910

over the Markov chain model.
In all cases the state-space aggregation has performed considerably better

than truncation, demonstrating a two- to five-fold acceleration. In order to fur-
ther investigate why this is the case, let us run a similar experiment as the one
presented in Table 2, where we investigate the precision of the methods. We915

select the same Lotka-Volterra model of size 160k and evaluate it using aggre-
gation (Out) and truncation (Tru). The experiment goes as follows. First, we
perform 100 exact steps, then we start approximating using the same aggre-
gation/truncation threshold: with aggregation, states with probability below
this threshold are aggregated; with truncation, such states are truncated. This920

way we perform 1, 100, 300, 500, 700 or 900 discrete steps more (in the case
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Precision
(a) (b) (c)

Out Tru Out Tru Out Tru
1e-7 9.10 6.66 21.71 7.02 11.54 4.81
1e-6 10.56 7.55 28.40 9.16 14.97 5.76
1e-5 11.21 8.28 35.78 9.86 16.75 6.54
1e-4 16.55 8.86 40.16 10.97 18.74 7.37
1e-3 17.96 9.78 51.00 11.81 24.13 8.46

Table 5: Speedup (acceleration w.r.t. concrete computation for guaranteeing a given preci-
sion) comparison. Models: (a) workstation cluster, dimension of the state space: 1M, time
horizon: 10804, execution time of concrete computation: ≈300s; (b) uniformised prokaryotic
gene expression; dimension of the state space: 1.2M, time horizon: 10000, execution time of
concrete computation: ≈300s; (c) uniformised two-component signalling pathway, population
bounds [14,46]; property of interest is time-bounded specification with time horizon of 10000
steps; number of states after PCTL driven transformation: 1M, execution time of concrete
computation: ≈300s.

of aggregation, we also perform regular reclusterings, again at fixed times af-
ter 10 steps) and in each case we report empirical error (e) and theoretical (t)
bound for both methods (for state-space truncation both errors are equal to the
probability loss). The results are presented in Table 6. Recall that, contrary925

to experiments from Tables 4 and 5, both aggregation and truncation use the
same threshold.

Steps Out(e) Out(t) Tru
101 1.2e-8 1.4e-8 1.0e-8
200 2.1e-7 2.3e-6 5.2e-7
400 2.6e-7 7.7e-6 2.0e-6
600 3.1e-7 1.5e-5 4.1e-6
800 3.2e-7 2.0e-5 6.2e-6

1000 2.1e-7 2.4e-5 7.9e-6

Table 6: Adaptive aggregation versus state space truncation precision comparison. Model:
Lotka-Volterra, dimension of the state space: 160k, aggregation/truncation threshold: 1e-25.

One can see that aggregation gives a better empirical error, which confirms
the intuition that aggregating the state space and having at least an approxi-
mate idea where the residual probability is located is better than truncating the930

state space. On the other hand, truncation-based method provide an excellent
theoretical bound on the error that ultimately beats the approximation bounds
based on τ -terms. However, as Tables 4 and 5 suggest, this does not give trun-
cation an advantage: when allowed to tune parameters individually, outgoing
averaging is capable of striking a perfect balance between state-space reduction935

and number of reclusterings, in order to provide a significantly more efficient
approximation.
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5.3. Approximation of CTMCs

Now we wish to investigate both uniformisation techniques utilising state-
space truncation (FSU & FAU) and combinations of SU & FAU with the state-940

space aggregation (SU+ & FAU+). The comparison of precision for aggregation
versus truncation from the discrete-time case (Table 6) automatically translates
to SU+ versus FSU, since now we compute the same transient probabilities of
the uniformised model and only weigh them with Poisson probabilities after-
wards. The precision comparison involving FAU or FAU+ is trickier instead,945

because of varying uniformisation rates. However, AU differs from SU only in
the total number of iterations and not in the overall precision, so the conclusions
from Table 6 can also be applied when comparing SU+/FAU+ with FAU.

We evaluate the overall speedup of individual techniques on various case
studies, similarly to Tables 4 and 5. In Table 7, for each of the techniques we950

report the time acceleration (with respect to SU) to guarantee a given precision.

Model Precision FSU FAU SU+ FAU+

(a)

1e-7 4.96 5.06 9.88 9.98
1e-6 5.34 5.75 11.61 12.18
1e-5 5.20 6.08 11.61 14.94
1e-4 5.65 8.66 17.85 20.18
1e-3 5.79 8.67 21.70 29.58

(b)

1e-7 4.95 6.17 11.28 12.54
1e-6 5.07 6.63 12.16 13.77
1e-5 5.07 7.02 12.64 15.38
1e-4 5.22 7.31 13.72 16.52
1e-3 5.38 7.58 14.48 18.26

(c)

1e-7 3.23 5.55 4.69 5.00
1e-6 3.66 5.95 5.54 6.13
1e-5 4.31 6.80 6.54 7.29
1e-4 5.08 7.81 7.45 8.93
1e-3 6.07 9.08 9.12 11.86

Table 7: Speedup (acceleration w.r.t. SU for guaranteeing a given precision) comparison.
Models: (a) workstation cluster, dimension of the state space: 1M, upper Fox & Glynn bound:
10804, execution time of concrete computation: ≈300s; (b) Lotka-Volterra, dimension of the
state space: 1M, upper FG bound: 10117, execution time of concrete computation: ≈300s;
(c) signalling pathway, dimension of the state space: 1M, upper FG bound: 11013, execution
time of concrete computation: ≈300s

.

First, we observe that FSU is, without a doubt, inferior to both FAU and
SU+. This is consistent with our intuition: FAU is capable to perform fewer dis-
crete steps (approximately twice fewer) by varying the uniformisation rate; SU+
is better than FSU due to the same reasons why aggregation is generally favored955

against truncation for the DTMC analysis. Next, comparing FAU and SU+, we
notice that for workstation cluster and Lotka-Volterra models aggregation is
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clearly the preferable approach, while for the signalling pathway FAU slightly
outperforms aggregation. This example showcases how the model dynamics
can influence the behaviour of the approximation method. While investigating960

the differences between these models, we have observed that in the first two
cases – workstation cluster and Lotka-Volterra – a relatively small set of states
maintains the majority of the probability mass, as compared to the signalling
pathway where the probability distribution is “flatter”. This difference implies
that the state space of the first two models can be reduced much more, com-965

pared to the signalling pathway case (approximately 50x against 10x) and, as we
can see, aggregation can benefit from this reduction much more. This may be
attributed to the fact that the aggregation method initially operates on clusters
(and there are clearly fewer of those of concrete states), which are then being
adaptively deaggregated into singletons during the analysis. FAU, on the other970

hand, is capable of ‘discovering’ a newly active state (as opposed to newly ac-
tive clusters) during probability transition, which, intuitively, seems to be more
precise. However, for a small set of active states, as in the case of the worksta-
tion cluster of a Lotka-Volterra model, working with clusters to make use of the
greater state space reduction (and then reaggregate more frequently to compen-975

sate for a minor precision loss) gives SU+ a two-fold advantage over FAU.
With regards to the hybrid FAU+ method, we can see that, in general,

it manages to achieve balance between aggregation and truncation and, as a
result, it noticeably outperforms standalone methods. However, this flexibility
comes with a minor (but easily fixable) downside: the algorithm for this method980

is parametrized by variables (encompassing thresholds) associated with both
aggregation and truncation, and it may not be apparent how to combine them
to analyse a given method. The experimental evaluation of the method has
shown that an optimal solution is to set the aggregation threshold δagg to be one
to two orders of magnitude larger than the truncation threshold δtru. Indeed,985

we first aggregate states into clusters based on the first parameter and then
truncate those abstract states according to the second one. On the one hand,
if the truncation threshold δtru is considerably smaller than the aggregation
threshold δagg, the resulting method behaves more like AU+ (only clustering).
On the other hand, if both thresholds have close values, the resulting method990

closely resembles FAU (no clustering). In both cases, we give up the granularity
of the abstract state space and thus we lose the main benefit of the hybrid
approach.

6. Conclusions

The experimental evidence leads to several conclusions. First, we have ex-995

plored various aggregation schemes and shown that the newly derived theoretical
bound that utilises τ -factors provides a significant precision improvement over
the existing bounds based on ε-terms. As a result, we have obtained an ag-
gregation method that significantly outperforms truncation-based approach in
the discrete case. Equipped with this method, we have designed an analogous1000

aggregation technique for CTMCs and shown that it can provide an efficient
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approximation, both for transient analysis and for model checking problems.
Second, we have investigated approaches based on aggregation and truncation,
have observed how the model dynamics impacts the behaviour of the approx-
imate methods, and have managed to distinguish classes of models for which1005

aggregation-based methods are more appropriate than truncation-based, and
vice-versa. Finally, we have succeeded to integrate both approaches into a new
hybrid method (FAU+): its inherent flexibility handles models of arbitrary dy-
namics and, as a result, outmatches all existing methods.
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