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Abstract

Concavely-priced probabilistic timed automata, an extension of probabilistic timed au-
tomata, are introduced. In this paper we consider expected reachability, discounted, and
average price problems for concavely-priced probabilistic timed automata for arbitrary ini-
tial states. We prove that these problems are EXPTIME-complete for probabilistic timed
automata with two or more clocks and PTIME-complete for automata with one clock. Previ-
ous work on expected price problems for probabilistic timed automata was restricted to ex-
pected reachability for linearly-priced automata and integer valued initial states. This work
uses the boundary region graph introduced by Jurdziriski and Trivedi to analyse properties of
concavely-priced (non-probabilistic) timed automata.

1 Introduction

Markov decision processes [27] (MDPs) extend finite automata by providing a probability dis-
tribution over successor states for each transition. Timed automata [[1]] extend finite automata by
providing a mechanism to constrain the transitions with real-time. Probabilistic timed automata
(PTAs) [20L 15} 3]] generalise both timed automata and MDPs by allowing both probabilistic and
real-time behaviour.

Priced timed automata are timed automata with (time-dependent) prices attached to loca-
tions. Optimisation problems on priced timed automata are fundamental to the verification of
(quantitative timing) properties of systems modelled as timed automata. In linearly-priced timed
automata [2,24]] the price information is given by a real-valued function over locations which re-
turns the price to be paid for each time-unit spent in the location. Jurdziniski and Trivedi [[18]] have
recently proposed a generalisation to concave prices, where the price of remaining in a location
is a concave function over time, and demonstrated that, for such prices, a number of optimi-
sation problems including reachability-price, discounted-price, and average-price are PSPACE-
complete.

In this paper we present concavely-priced probabilistic timed automata, that is, probabilistic
timed automata with concave prices. Concave functions appear frequently in many modelling
scenarios such as in economics when representing resource utilization, sales or productivity. Ex-
amples include:

1. when renting equipment the rental rate decreases as the rental duration increases [[11];

2. the expenditure by vacation travellers in an airport is typically a concave function of the
waiting time [28];

3. the price of perishable products with fixed stock over a finite time period is usually a con-
cave function of time [12], e.g., the price of a low-fare air-ticket as a function of the time
remaining before the departure date.

Contribution. We show that finite-horizon expected total price, and infinite-horizon expected
reachability, discounted price and average price objectives on concavely-priced PTAs are de-
cidable. We also show that the complexity of solving expected reachability price, expected dis-
counted price and expected average price problems are EXPTIME-complete for concavely-priced



PTAs with two or more clocks and PTIME-complete for concavely-priced PTAs with one clock.
An important contribution of this paper are the proof techniques which complement the tech-
niques of [18]. We extend the boundary region graph construction for timed automata [18] to
PTAs and demonstrate that all the optimisation problems considered can be reduced to similar
problems on the boundary region graph. We characterise the values of the optimisation problems
by optimality equations and prove the correctness of the reduction by analysing the solutions
of the optimality equations on the boundary region graph. This allows us to obtain an efficient
algorithm matching the EXPTIME lower bound for the problems. This is a the technical report
version of the paper [[16]].

Related Work. For a review of work on optimisation problems for (non-probabilistic) timed
automata we refer the reader to [18]]. For priced probabilistic timed automata work has been lim-
ited to considering linearly-priced PTAs. Based on the digital clocks approach [13]], Kwiatkowska
et. al. [19]] present a method for solving infinite-horizon expected reachability problems for a sub-
class of probabilistic timed automata. In [6] an algorithm for calculating the maximal probability
of reaching some goal location within a given cost (and time) bound is presented. The algorithm
is shown to be partially correct in that if it terminates it terminates with the correct value. Follow-
ing this, [S] demonstrates the undecidability of this problem. We also mention the approaches for
analysing unpriced probabilistic timed automata against temporal logic specifications based on
the region graph [20, [15] and either forwards [20] or backwards [21] reachability. The complexity
of performing such verification is studied in [23} [17].

2 Preliminaries

We assume, wherever appropriate, sets N of non-negative integers, R of reals and Rg of non-
negative reals. For n € N, let [n]y and [n]r denote the sets {0, 1,...,n}, and {r € R|0<r<n}
respectively. A discrete probability distribution over a countable set () is a function p : @ —
[0, 1] such that >~ u(g)=1. For a possible uncountable set @', we define D(Q’) to be the set

of functions 11 : Q' — [0, 1] such that the set supp(p)={q € Q | 1(¢)>0} is countable and, over
the domain supp (), 1 is a distribution. We say that i € D(Q) is a point distribution if u(q)=1
for some ¢ € Q.

Aset D C R" is convex if 0-x + (1—0)-y € D forall z,y € D and 6 € [0,1]. A function
f : R™ — R is concave (on its domain dom(f) C R™), if dom(f) C R™ is a convex set and
f(0-z4+(1-0)-y) > 6-f(x)+(1—-0)-f(y) for all z,y € dom(f) and § € [0, 1]. We require the
following well known [8] properties of concave functions.

Lemma 2.1. L Iffi,..., fx : R" — Rare concave and wy, . . . ,w, € Ry, then Zle w;- fi
R™ — R is concave on the domain ﬂle dom( f;).

2. If f : R™ — Ris concave and g : R™ — R" linear, then x — f(g(x)) is concave.

3. If fi,... fx : R® — R are concave, then x — minle fi(z) is concave on the domain

N, dom(f;).



4. If f; : R™ — Ris concave for i € N, then x — lim; . f;(x) is concave.

Lemma 2.2. If f : (a,b) — R is a concave function and f is the (unique) continuous extension
of [ to the closure of the interval (a,b), then inf ¢, ) f(x) = min{ f(a), f(b)}.

A function f : R®™ — R™ is Lipschitz continuous on its domain, if there exists a constant
K >0, called a Lipschitz constant of f, such that ||f(z)—f(y)|lcc < K||z—yl||co for all z,y €
dom( f); we then also say that f is K -Lipschitz continuous.

3 Markov Decision Processes

In this section we introduce Markov decision processes (MDPs), a form of transition systems
which exhibit both probabilistic and nondeterministic behaviour.

Definition 3.1. A priced Markov decision process is a tuple M = (S, A, p, 7) where:

S is the set of states;

A is the set of actions;

p: S x A— D(S) is a partial function called the probabilistic transition function;

o 7 : S5 x A — Risabounded and measurable price function assigning real-values to
State-action pairs.

We write A(s) for the set of actions available at s, i.e., the set of actions a for which p(s, a)
is defined. For technical convenience we assume that A(s) is nonempty for all s € S. We say M
is finite, if the sets S and A are finite.

In the priced MDP M, if the current state is s, then a strategy chooses an action a € A(s)

after which a probabilistic transition is made according to the distribution p(s,a), i.e., state
def

s’ € S is reached with probability p(s’|s,a) = p(s,a)(s’). We say that (s,a,s’) is a transi-
tion of M if p(s'|s,a)>0 and a run of M is a sequence (sg,a1,s1,...) € SX(AxS)* such
that (s;, a;11,5;11) is a transition for all >0. We write Runs™ (Runs]é‘,f) for the sets of infinite
(finite) runs and Runs™ (s) (Runsﬁ\;‘ (s)) for the sets of infinite (finite) runs starting from state s.
For a finite run r={(sg, a1, ..., s,) we write last(r)=s,, for the last state of the run. Furthermore,
let X; and Y; denote the random variables corresponding to i state and action of a run.

A strategy in M is a function o : Runsj%f — D(A) such that supp(o(r)) C A(last(r)) for
all r € Runsjé‘,f. Let Runs)!(s) denote the subset of Runs™ (s) which correspond to the strategy
o when starting in state s. Let X x4 be the set of all strategies in M. We say that a strategy o is
pure if o(r) is a point distribution for all r € Runsj{i\;‘. We say that a strategy o is stationary if
last(r)=last(r") implies o (r)=c(r') for all r, 7’ € Runs]{i\f. A strategy o is positional if it is both
pure and stationary. To analyse the behaviour of an MDP M under a strategy o, for each state s
of M, we define a probability space (Runs'(s), F, RunsM(s)» Probg ) over the set of infinite runs of
o with s as the initial state. For details on this construction see, for example, [27]]. Given a real-
valued random variable over the set of infinite runs f : Runs™' — R, using standard techniques
from probability theory, we can define the expectation of this variable EZ{ f} with respect to o
when starting in s.



3.0.1 Performance objectives.

For a priced MDP M = (S, A, p, ), under any strategy o and starting from any state s, there is
a sequence of random prices {7(X;_1,Y;) }i>1. Depending on the problem under study there are
a number of different performance objectives that can be studied. Below are the objectives most
often used.

1. Expected Reachability Price (with target set F):
EReach v (F)(s, o) & B {Z?jﬁ‘{"'xfeﬂw(xi_l, Y,-)} .
2. Expected Total Price (with horizon N):
ETotal v (N)(s, o) & B9 {Zfilw(Xi_l, Yi)} .
3. Expected Discounted Price (with discount factor X € (0,1)):
EDisctaq(\)(s,0) £ EJ {(1-N) 32 N (X1, Y5) )
4. Expected Average Price:

of 1. 1
EAvg, (s, 0) < lim sup —EJ SOor m(Xio, Y) )

n—oo N

For an objective ECosta and state s we let ECost)y((s) = infsex,, ECostaq(s, o). A strategy o
of M is optimal for ECosty, if ECosta,(s, o) = ECost))(s) for all s € S. Note that an optimal
strategy need not exist, and in such cases one can consider, for each £>0, a s-optimal strategy,
that is, a strategy o such that ECost},(s) > ECosta(s,o)—¢ for all s € S. For technical
convenience we make the follows assumptions for reachability objectives [9].

Assumption 3.2. If s € F, then s is absorbing and price free, i.e. p(s|s,a)=1 and 7(s,a)=0 for
all a € A(s).

Assumption 3.3. Forall o0 € ¥ and s € S we have lim;_,o, Prob?(X; € F') = 1.
Optimality Equations. We now review optimality equations for determining the objectives

given above.

1. Let P: S — Rand F C S; we write P |= Opth (M), and we say that P is a solution of
optimality equations Optk (M) if, for all s € S, we have:

P(s) = 0 ifse F
T infaeag) {7(s,a) + X cgp(ss,a) - P(s')}  otherwise.



2. Let Tp, ..., Ty : S — R; we say that <Ti>f\io is a solution of optimality equations
OpthY (M) if, for all s € S, we have:

0 ift=0
TZ(S) =19. / / i
inf e aes) {m(s,a) + X yegp(s']s,a) - Tic1(s')}  otherwise.

3. Let D : S — R; we write D = Opt),(M), and we say that D is a solution of optimality
equations Opt), (M) if, for all s € S, we have:

D)= inf {(1-3) - (s.a) + A Cyesp(s]s.0) - DIs")}.

4. LetG: S — Rand B : S — R; we write (G, B) = Opta(M), and we say that (G, B) is
a solution of optimality equation Opta (M), if for all s € S, we have:

Gls) = inf {Tespls'lsa)- G}
Bls) = inf {w(s.0) = G(s) + Tyeop(s]s.a) - B(s")

The proof of the following proposition is routine and for details see, for example, [[10]].
Proposition 3.4. Let M be a priced MDP.
1. If PEOpth (M), then P(s)=EReach’ ((F)(s) forall s € S.

2. If (T)N ,=0pt (M), then T;(s)=ETotal’}(i)(s) forall i < N and s € S.
3. If DEOpt), (M) and D is bounded, then D(s)=EDisct}((\)(s) forall s € S.

4. If (G, B)EOpta(M) and G, B are bounded, then G(s)=EAvg ((s) forall s € S.

Notice that, for each objective, if, for every state s € S, the infimum is attained in the
optimality equations, then there exists an optimal positional strategy. An important class of MDPs
with this property are finite MDPs, which gives us the following proposition.

Proposition 3.5. For every finite MDP, the existence of a solution of the optimality equations
for the expected reachability, discounted and average price implies the existence of a positional
optimal strategy for the corresponding objective.

For a finite MDP M a solution of optimality equations for expected reachability, total, dis-
counted, and average price objectives can be obtained by value iteration or strategy improvement
algorithms [27].

Proposition 3.6. For every finite MDP, there exist solutions of the optimality equations for ex-
pected reachability, total, discounted, and average price objectives.

!These optimality equations are slightly different from Howard’s optimality equations for expected average price,
and correspond to Puterman’s [27]] modified optimality equations.



Proposition [3.5] together with Proposition [3.6] provide a proof of the following well-known
result for priced MDPs [27]).

Theorem 3.7. For a finite priced MDP the reachability, discounted, and average price objectives
each have an optimal positional strategy.

Notice that the total price objective need not have an optimal positional strategy since, unlike
the other objectives, it is a finite horizon problem. However, for this reason, its analysis concerns
only finitely many strategies.

4 Concavely-Priced Probabilistic Timed Automata

In this section we introduce concavely-priced probabilistic timed automata and begin by defining
clocks, clock valuations, clock regions and zones.

4.1 Clocks, clock valuations, regions and zones.

We fix a constant £ € N and finite set of clocks C. A (k-bounded) clock valuation is a function
v : C — [k]r and we write V' for the set of clock valuations.

Assumption 4.1. Although clocks in (probabilistic) timed automata are usually allowed to take
arbitrary non-negative values, we have restricted the values of clocks to be bounded by some
constant k. More precisely, we have assumed the models we consider are bounded probabilistic
timed automata. This standard restriction [7)] is for technical convenience and comes without
significant loss of generality.

If v € V and t € Ry then we write v+t for the clock valuation defined by (v+t)(c) =
v(c)+t, forall c € C. For C C C and v € V, we write v[C:=0] for the clock valuation where
v[C:=0](c) = 0if c € C, and v[C:=0](c) = v(c) otherwise.

For a clock valuation v we define its fractional signature { v § to be the sequence ( fo, f1,- .., fm)s
such that fo = 0, f; < fjif ¢ < j,forall¢,5 < m, and fi, f2,..., f, are all the non-zero frac-
tional parts of clock values in the clock valuation v. In other words, for every ¢ > 1, there is a
clock ¢, such that (v(c)§ = fi, and for every clock ¢ € C, there is ¢ < m, such that {v(c){ = f;.
For a nonnegative integer k£ < m we define the k-shift of a fractional signature (fo, f1,..., fm)
as the fractional signature (f7,, fi_ 1, -+, [y, f05 - - -5 fr_1) such that for all nonnegative integers
i < m we have f/ = |f; + 1 — fi§. We say that a fractional signature (f}, f1,...,f,) is a
subsequence of another fractional signature ( fo, f1,..., fm) if

e n<mand fj < fi  foralli <n;
e for any i < n there exists j < m such that f/ = f;.

The set of clock constraints over C is the set of conjunctions of simple constraints, which are
constraints of the form ¢ > i or c—¢’ < 4, where ¢, ¢ € C, i € [k]n, and < € {<, >, =, <, >}
For every v € V, let SCC(v) be the set of simple constraints which hold in v. A clock region
is a maximal set ¢ C V/, such that SCC(v)=SCC(v') for all v, € (. Every clock region is an



equivalence class of the indistinguishability-by-clock-constraints relation, and vice versa. Note
that v and ¢/ are in the same clock region if and only if the integer parts of the clocks and the
partial orders of the clocks, determined by their fractional parts, are the same in v and /. We
write [v] for the clock region of v and, if (=[v], write {[C:=0] for the clock region [v[C:=0]].

A clock zone is a convex set of clock valuations, which is a union of a set of clock regions.
We write Z for the set of clock zones. For any clock zone W and clock valuation v, we use the
notation v < W to denote that [v] € W. A set of clock valuations is a clock zone if and only if
it is definable by a clock constraint. For W C V, we write W for the smallest closed set in V'
containing 1. Observe that, for every clock zone W, the set W is also a clock zone.

4.2 Probabilistic timed automata

We are now in a position to introduce probabilistic timed automata.
Definition 4.2. A probabilistic timed automaton T = (L, C, inv, Act, E, 0) consists of:
e « finite set of locations L;
e a finite set of clocks C;
e an invariant condition nv : L — Z;
e a finite set of actions Act;
e an action enabledness function E : Lx Act — Z;
e a transition probability function § : (Lx Act) — D(2°x L).

When we consider a probabilistic timed automaton as an input of an algorithm, its size should
be understood as the sum of the sizes of encodings of L, C, inv, Act, E, and §. A configuration
of a probabilistic timed automaton T is a pair (¢,v), where ¢ € L is a location and v € V
is a clock valuation over C such that v < inv(¢). For any ¢t € R, we let (¢,v)+t equal the
configuration (¢, v+t). Informally, the behaviour of a probabilistic timed automaton is as follows.
In configuration (¢, v) time passes before an available action is triggered, after which a discrete
probabilistic transition occurs. Time passage is available only if the invariant condition inv(¢) is
satisfied while time elapses, and the action a can be chosen after time ¢ if the action is enabled
in the location /, i.e., if v+t < E(¢,a). Both the amount of time and the action chosen are
nondeterministic. If the action a is chosen, then the probability of moving to the location ¢’ and
resetting all of the clocks in C to 0 is given by d[¢, a](C, ¢').

Formally, the semantics of a probabilistic timed automaton is given by an MDP which has
both an infinite number of states and an infinite number of transitions.

Definition 4.3. Let T = (L, C, inv, Act, E, 0) be a probabilistic timed automaton. The semantics
of T is the MDP [T] = (ST, A1, pt) where

o ST C LxV suchthat (¢,v) € St if and only if v < inv({);

[ AT = R@XACt,'



o for ({,v) € St and (t,a) € A1, we have pt((¢,v), (t,a)) = p if and only if

- v+t <inv(l) for all t' € [0, t];
- v+t< E(l,a);
= pll', V") =3 ccenwncmomy 06, al(C 1) for all (¢',v") € S.

We assume the following—standard and easy to syntactically verify—restriction on PTAs
which ensures time divergent behaviour.

Assumption 4.4. We restrict attention to structurally non-Zeno probabilistic timed automata [29
17]. A PTA is structurally non-Zeno if, for any run (So, (t1,a1), ..., Sn), such that so=(£g, 1p),
Sn=ln, V) and bo=L,, (i.e., the run forms a cycle in the finite graph of the locations and transi-
tions of the automaton) we have y ;| t; > 1.

4.3 Priced probabilistic timed automata

We now introduce priced probabilistic timed automata which extend probabilistic timed automata
with price functions over state and time-action pairs.

Definition 4.5. A priced probabilistic timed automaton 7 = (T, 7) consists of a probabilistic
timed automaton T and a price function 7 : (LXV') x (RgxAct) — R.

The semantics of a priced PTA 7 is the priced MDP [7] = ([T],n) where = (s, (t,a)) is
the price of taking the action (¢, a) from state s in [T]. In a linearly-priced PTA [19], the price
function is represented as a function r : L U Act — R, which gives a price rate to every location
¢, and a price to every action a; the price of taking the timed move (a, t) from state (¢, ) is then
defined by 7((¢,v), (t,a)) = r(£)-t+r(a).

In this paper we restrict attention to concave price functions requiring that for any location
¢ € L and action a € Act the function 7((¢,), (-,a)) : VxRg—R is concave. From Assump-
tion 4.1 it follows that any such price function 7 is also K -Lipschitz continuous for some K € N.
However, the results in this paper for PTAs with more than 1 clock, also hold for the more gen-
eral region-wise concave price functions of [[18]. Notice that every linearly-priced PTA is also
concavely-priced.

Considering the optimisation problems introduced for priced MDPs in Section 3] the follow-
ing is the main result of the paper.

Theorem 4.6. The minimisation problems for reachability, total, discounted, and average cost
functions for concavely-priced PTAs are decidable.

In the next section we introduce the boundary region graph, an abstraction whose size is ex-
ponential in the size of PTA. In Section [6] we show that to solve the above mentioned optimisation
problems on concavely-priced PTAs, it is sufficient to solve them on the corresponding boundary
region graph.

5 Boundary Region Graph Construction

Before introducing the boundary region graph we review the standard region graph construction
for timed automata [1]] extended in [20] to probabilistic timed automata.



5.1 The region graph

A region is a pair (¢, (), where ¢ is a location and ( is a clock region such that { C inv(¢). For
any s=(¢, ), we write [s] for the region (¢, [¢]) and R for the set of regions. A set Z C LxV is
a zone if, for every ¢ € L, there is a clock zone Wy (possibly empty), such that Z = {(¢,v) | £ €
L Av<aW,}. For aregion R=(¢,() € R, we write R for the zone {(¢,v) |v € (}, recall { is the
smallest closed set in V' containing (.

For R, R' € R, we say that R’ is in the future of R, or that R is in the past of R’, if there
iss € R, s € R andt € Rg such that s = s+t; we then write R —, R’. We say that R’ is
the time successor of Rif R —, R/, R#R/,and R —, R" —, R’ implies R"=R or R"=R’
and write R —,1 R’ and R’ <1 R. Similarly we say that R’ is the n™ successor of R and
write R —,, R/, if there is a sequence of regions (Ry, Ry, ..., R;,) such that Ry=R, R,=R’
and R; —4;1 Riy; for every 0<i<n.

The region graph is an MDP with both a finite number of states and transitions.

Definition 5.1. Let T = (L,C, inv, Act, E, ) be a probabilistic timed automaton. The region
graph of T is the MDP Ty = (Ske, Ars, Pra) Where:

o S =R
o Aws C NxAct such that if (n,a) € Agg thenn < (2:|C|)¥;
o for (£,() € Sge and (n,a) € Agg we have pr((¢, (), (n,a)) = p if and only if

- (£7 C) —+n (ev Cn)’
- (B, a);

= ull',¢") =Y ccencaic—oj=c 06, al(C 1) for all (€', (") € Sge.

Since the region graph abstracts away the precise timing information, it can not be used
to solve expected reachability, total, discounted, and average price problems for the original
probabilistic timed automaton. In the next section, we define a new abstraction of probabilistic
timed automata, called the boundary region graph, which retains sufficient timing information to
solve these performance objectives.

5.2 The boundary region graph

We say that a region R € R is thin if [s| # [s+¢] for every s € R and £>0; other regions are
called thick. We write Ry, and Rnick for the sets of thin and thick regions, respectively. Note
that if R € Rnick then, for every s € R, there is an € > 0, such that [s] = [s+&]|. Observe that
the time successor of a thin region is thick, and vice versa.

We say (£,v) € LxV is in the closure of the region (£,(), and we write (£,v) € (£, (), if
ve (. Foranyv € V,b e [k]yand ¢ € C such that v(c)<b, we let time(v, (b, c)) = b—v(c).
Intuitively, time(v, (b, c)) returns the amount of time that must elapse in v before the clock ¢
reaches the integer value b. Note that, for any (¢,v) € LxV and a € Act, if t = time(v, (b, ¢))

is defined, then (¢, [v+t]) € Rerhin and supp(pt(- | (¢,v), (t,a))) C Rrhin- Observe that, for



every R’ € Rehin, there is a number b € [k]n and a clock ¢ € C, such that, for every R € R in
the past of R’, we have that s € R implies (s+(b—s(c)) € R’; and we write R —, . R'.

The motivation for the boundary region graph is the following. Let a € A, s = (¢,v) and
R=(¢({) —« R =(¢,{')such that s € Rand R' < E({,a).

o If R’ € Rrnick, then there are infinitely many ¢ € Rg, such that s+t € R’. One of the main
results that we establish is that in the state s, amongst all such ¢’s, for one of the boundaries
of ¢, the closer v+t is to this boundary, the ‘better’ the timed action (¢, a) becomes for each
performance objective. However, since R’ is a thick region, the set {t € Rg, | s+t € R'} is
an open interval, and hence does not contain its boundary values. Observe that the infimum
equals b_—v(c_) where R —, . R_ —4; R’ and the supremum equals by —v(cy )
where R —_ .. R4 <41 R'. In the boundary region graph we include these ‘best’ timed
action through the actions ((b_,c_,a), R') and ((b4,c4,a), R').

o If R’ € Renin, then there exists a unique ¢ € Rg, such that (¢, v+t) € R’. Moreover since
R’ is a thin region there exists a clock ¢ € C and a number b € N such that R —be R
and t = b—r(c). In the boundary region graph we summarize this ‘best’ timed action from
region R via region R’ through the action ((b, ¢, a), R').

With this intuition in mind, let us present the definition of a boundary region graph.

Definition 5.2. Let T = (L,C, inv, A, E, ) be a probabilistic timed automaton. The boundary
region graph of T is defined as the MDP Ty = (Sgra, Asra, Pera) SUch that:

® Sara = {((L,v), (L.O)[(6,0) eRAvV € (Y
o Aprc C ([E]nxCxAct)xR;

e for any state (({,v),({,()) € Sgrc and action ((b,c,a),(¢,(,)) € Agrc we have that
pBRG((£7 V)7 (67 C)7 ((b7 C7 CL), (67 CGL))) = :u’ Ucand Ol’lly lf

,u((élv 1/)7 (€/7 CI)) = ZCQC/\VQ [C:=0]=V'A(q [C::O]:(’é[& a’] (07 ll)
Jor all (¢',v"),(¢',{") € Sgre where v, = v+time(v, (b, c)) and one of the following
conditions holds:
= (€,¢) = (¢,Ga) and (o < E(L, a)
- (Ea C) —b,c (ﬂ, C—) 41 (67 Ca)for some (£7 C—) and CCL < E(& a)
- (Ea C) —b,c (Ea ng) 1 (67 Ca)fOl” some (ga C+) and Ca < E(£7 a)'

Although the boundary region graph is infinite, for a fixed initial state we can restrict attention
to a finite state subgraph, thanks to the following observation [[18].

Proposition 5.3. For every state s € Sgpg of a boundary region graph Tggg, the reachable sub-
graph Ty is a finite MDP.

Proposition 54. If s = (({,v),(¢,()) € Sere is such that v is an integer valuation, then the
MDP T3, is equivalent to the digital clock semantics [19] of T and extends the corner point
abstraction of [[7] to the probabilistic setting.
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Definition 5.5. Let 7 = (T, ) be a priced probabilistic timed automaton. The priced boundary
region graph of T equals the priced MDP Tare = (Tere, Tera) Where for any state ((¢,v), (£,()) €
Sera and action ((b, c,a), (¢,(")) € Agg available in the state:

7[-BRG(((& U)a (ﬁ’ C))a ((ba Gy a’)v (f, </))) = 7[-((67 V)v (time(y, (ba C))a a)) .

6 Correctness of the Reduction to Boundary Region Automata

For the remainder of this section we fix a concavely-priced PTA 7. Proposition [5.3|together with
Proposition [3.6] yield the following important result.

Proposition 6.1. For the priced MDP Ty there exist solutions of the optimality equations for
expected reachability, total, discounted, and average price objectives.

We say that a function f : Sgrg — R is regionally concave if for all (¢, () € R the function
f(, €, Q) :{(¢,v)|v e {} — Ris concave.

Lemma 6.2. Assume that P = Opth(Tuxe), (T3)N, | Opth (Turc), and D = Opt),(Tes) We
have that P, T'n, and D are regionally concave.

Proof. (Sketch.) Using an elementary, but notationally involved, inductive proof we can show
that Ty is regionally concave. The proof uses closure properties of concave functions (see
Lemmal[2.1)), along with the fact that price functions 7 are concave. The concavity of P and D fol-
lows from the observation that they can be characterised as the limit (concave due to Lemma [2.T))
of certain optimal expected total price objectives. O

For any function f : Sgrg — R, we define f : St — Rby f(£,v) = f((4,v), (4, [V])).
Lemma 6.3. If P |= Opth(Tyxe), then P = Opth([T]).

Proof. Assuming P |= Opth(Zske), to prove this proposition it is sufficient to show that for any
s=(¢,v) € St we have:

P(s)= inf {rn(s,(t,@)+ 3 68[6,a)(Cl)-P( (v+1)[C:=0])}. (1)
(t,a)€A(s) (C)E2C X L

We therefore fix a state s=(¢, v) € St for the remainder of the proof. For any a € Act, let R},
and R, denote the set of thin and think regions respectively that are successors of [/] and are
subsets of E' (¢, a). Considering the RHS of (1)) we have:

RHS of = arélilrgt{TThin(Sa a), Trick (s, @) }, (2

where Trhin (s, @) (Thick (S, @)) is the infimum of the RHS of (1)) over all actions (¢, a) such that

11



[v+t] € Riyin ([+t] € Riyici)- For the first term we have:

Trn(s,a) =  min  inf { 7(s,(t,a)) + §[0,a)(C.0)-P(¢ vt
Thin(8,@) (Z,QG%MV@&{ (s,(t,a)) (C’Z/)EZZ%[ [(C.0)-P(Cve)

e mln lnf s 87 t)a —|.— 56701 C’E/ P El,l/t ,El,
B T T A P )

= ek {“S’(t“‘%am ) w,a]<c,e’>~P<<f’,uéZ’“>,<e’,<0>>}

(.0)ERTyin (C')€2€ X L

where v, denote the clock valuation (v+t)[C:=0], (<) the time to reach the region R from s
and (“ the region ¢[C:=0]. Considering the second term of (2) we have

Trhick(s,a) = min inf < w(s,(t,a)) + S[t,al(Cl P vt
k(5.0 (wemmytﬁ&{ )+ 5 tdC Pt

= omin - inf qm(s,(fa)) + 5[0,a)(C.)-P((€' W), (¢ ¢C
(e,c)enghickjﬂg&{ (s,(t,a)) (C,é')eZ2CxL[ (CO)-P((ve),(¢C7))

= min inf (s (ta) + > 8[6al(C0)-P((Ew6),(¢¢9)
(K’C)E,R’%hick ti{_ <t<t}€3+ { (C’,é’)GQC x L ¢

RH+1R_

R— 1R+
From Lemmawe have that P((¢,-), (¢',¢%)) is concave and, from Lemma since v/}, is an
affine mapping and 6[¢,a](C,¢')>0 for all 2€ x L, the weighted sum over (C, ') of the functions
P((¢',v5), (¢,¢Y)) is concave on the domain {t | v+t € ¢}. From the concavity assumption of
price functions, 7(s, (+,a)) is concave over the domain {¢ | v+t € (}, and therefore, again using
Lemma[2.1] we have that the function:

w(s, (ba)+ X 6[,a)(C0)-P((C,v5), (¢, ¢Y))
(Ce1)e2€ x I,

is concave over {t | v+t € (}. Therefore using Lemma 2.2 we have T'rick (s, a) equals

(Z:C)GR%hick t:t}g%_ 7t??,+ (C’,f’)EQC x L
(6.Q)¢—+1R-
Q)= +1R4

min min {W(Sa(tva)H > 5[&@](C,E')'P((5’7V3)7(5’7CC))}

Substituting the values of Ty (s, a) and Trpick (S, @) into and observing that for any thin
region (¢,() € Ry, there exist b € Z and ¢ € C such that v+(b—v/(c)) € (, it follows from
Definition [5.2] that RHS of (I)) equals:

min {WBRG((&[S]),(%R)) + 32 Para((,R)|(5,[s]), (aaR))'P(slvR/)}

(Q,R)EABRG(Sv[S]) (s’,R/)GSBRG

which by definition equals ]5(3) as required. O
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Lemma 6.4. If (T;)V; = Opty (Tyxc), then (T;)X |= Opt} ([T]).
Lemma 6.5. If D |= Opt},(Zyxo), then D |= Opt),([T]).

Since it is not known to us whether there exists a solution (G, B) = Opta(7Zse) such that
both G and B are regionally concave, we can not show that (G, B) = Opta(Zgks), implies
(G, B) = Opta([7]). Instead, we use the following result to reduce the average price problem
on PTA to that over the corresponding boundary region graph.

Lemma 6.6. If (G, B) = Opta(Toa), then G = EAvgi ;.
The proof of this result follows from Lemma[6.8]and Corollary below.

Lemma 6.7. For an arbitrary priced MDP M = (S, A,p, ) and state s € S, the following
inequality holds:

1
inf hmsup— EZ {0 m(X;-1,Y;)} > limsup inf —-EJ {37 7(X;-1,Y;)}

AN M mn—00 n—oo oEX M n
Lemma 6.8. For every state s € St we have EAngTH (s) > EAvgr (s, [s]).

Proof. Consider any s € ST, using Lemma[6.7| we have:

EAvgrri(s) > limsup inf — IE"{ZZ (T(Xio1,Y5)}

n—oo CEX[T] M

1 " *
= hrILIL solép . ETotal7(n)(s) by definition of ETotalyr(n)
1
> limsup — - ETotalz, . (n)((s, [s])) by Lemmal6.4] and Proposition
n—oo N
1
= limsup — mf E (s s {2oim m(Xi-1, Y5) by definition

n—oo N JGZ

= inf hmsup— E%s 1) S0 m(Xio, Y} since [Tyxg, (8, [s])] is finite

UGETBRG n—oo

= EAvgr . (s,[s]) asrequired  [J

Using the Lipschitz continuity of price functions and a slight variant of Lemma 3 of [[7] we show
that the following proposition and corollary hold.

Proposition 6.9. There exists 6>0 such that for any € < 9, 0 € Y, and s € ST, there exists
0. € X7 such that | ETotal gy, (N)((s, [s]),0) — ETotalj7)(N)(s,0:) | < N-e forall N € N.

Corollary 6.10. For every e>0 and s € St we have EAvgrr (s) < EAvgr (s, [s])+e

13



7 Complexity

To show EXPTIME-hardness we present a reduction to the EXPTIME-complete problem of solv-
ing countdown games [[17]. The lemma concerns only expected reachability price problem as
similar reductions follow for the other problems.

Lemma 7.1. The expected reachability problem is EXPTIME-hard for concavely-priced PTA
with two or more clocks.

Proof. LetG = (N, M, g, ng, Bo) be a countdown game. N is a finite set of nodes; M C N x N
is a set of moves; mg : M — N assigns a positive integer to every move; (ng, Bg) € NxNy is
the initial configuration. From (n, B) € N xN,, a move consists of player 1 choosing k € N,
such that k<B and mg(n,n’)=Fk for some (n,n’) € M, then player 2 choosing (n,n”) € M such
that wg(n,n”)=k; the new configuration is (n”, B—k). Player 1 wins if a configuration of the
form (n, 0) is reached, and loses when a configuration (n, B) is reached such that 7g(n,n’)>B
forall (n,n’) € M.

Given a countdown game G we define the PTA Tg = (L,C, inv, Act, E,§) where L =
{*}UNUN, where Ny, = {n,|n € N};C = {b,c}; inv(n) = {v|0<v(b)<ByAO<v(c)<By}
and inv(ny) = {v|v(c)=0} forany n € N; Act = {x,u} U {k|3Im € M.ng(m)=k}; for any
¢e€ Landa € Act:

{v|3n' € N.(ng(¢,n")=k Av(c)=k)} if¢ € N and a=k € N,

_ {v|v(b)=DBy} if ¢ € Nyanda =
E(t,a) = {v|v(c) =0} if¢{ € Nyanda = u
0 otherwise

and forany n € N,a € Act(n),C CCand ¥ € L:

5(n a)(C, Z/) _ [ \Wc(z,n”):a}\ ifa € N.,., C:{c}, V= n{l and Wg(n,n’):a
’ 0 otherwise
1 ifC=0,{=nanda=nu
§(nu,a)(C,0)y=< 1 ifC=0,{=xanda =x*
0 otherwise.

An example of a reduction is shown in Figure |I} For the price function mg(s, (t,a)) = t, it
routine to verify that the optimal expected reachability price for target ' = {x}xV equals By
when starting from (n, (0, 0)) in the concavely-priced PTA (Tg, 7g) if and only if player 1 has
a winning strategy in the countdown game G. O

On the other hand, we can solve each problem in EXPTIME because:

e we can reduce each problem on probabilistic timed automata to a similar problem on the
boundary region graph (see Lemmas [6.3H6.6));

e the boundary region graph has exponential-size and can be constructed in exponential time
in the size of the PTA;

14



(a) Game G (b) PTA Tg

Figure 1: Countdown Game and the corresponding probabilistic timed automata

e on the boundary region graph (a finite state MDP) we can solve each minimisation problem
using a polynomial-time algorithm (see, e.g., [27]) in the size of the graph.

For one clock concavely-priced PTAs expected reachability, discounted, and average-price prob-
lems are PTIME-hard as these problems are PTIME-complete [26] even for finite MDPs (i.e.
PTAs with no clocks). To show PTIME-membership one can adapt the construction of [22]—
which shows the NLOGSPACE-membership of the reachability problem for one clock timed
automata—to obtain an abstraction similar to the boundary region graph whose size is polyno-
mial in the size of probabilistic timed automata, and then run polynomial-time algorithms to solve
this finite MDP.

Theorem 7.2. The exact complexity of solving expected reachability, discounted and average
price problems is EXPTIME-complete for concavely-priced PTA with two or more clocks and
PTIME-complete for concavely-priced PTA with one clock.

8 Conclusion

We presented a probabilistic extension of the boundary region graph originally defined in the
case of timed automata for PTAs. We characterize expected total (finite horizon), reachability,
discounted and average price using optimality equations. By analysing properties of the solu-
tions of these optimality equations on boundary region graphs, we demonstrated that solutions
on the boundary region graph are also solutions to the corresponding optimality equations on the
original priced PTA. Using this reduction, we then showed that the exact complexity of solving
expected reachability, discounted, and average optimisation problems on concavely-priced PTAs
is EXPTIME-complete.

Although the computational complexity is very high, we feel motivated by the success of
quantitative analysis tools like UPPAAL [4] and PRISM [14]. We wish to develop more efficient
symbolic zone-based algorithms for the problems considered in this paper. Another direction
for future work is to consider more involved objectives like price-per-reward average [7, [18] and
multi-objective optimisation [25]].

Acknowledgments. The authors are supported in part by EPSRC grants EP/D076625 and EP/FO001096.
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A Proof of Proposition 3.4

The proof of Proposition[3.4]follows from Propositions[A.THA 4] given below in which we assume
a fixed priced MDP M.

Proposition A.1. If Pl=Opth (M), then P(s) = EReach’,(F)(s) forall s € S.

Proof. The proof is in two parts. In the first part we show that P(s) < EReach(F')(s, o) for
allc € ¥y and s € S\ F, while the second part we show that for any £>0 there exists a pure
strategy 0. € 3 such that P(s) > EReachp(F')(s,0)+e foralls € S\ F.

1. Leto € Y. Since P = Opth (M), forany s € S\ F and a € A(s), we have
P(s) <m(s,a) + > cgp(s']s,a)-P(s")
and hence, using Assumption [3.2] it follows by induction that for any n > 1:
P(s) <EZ {2 2 (X0 ) b+ D p Probg(X,=s)-P(s) ()
From Assumption [3.3| we have that

lim ZS,ES\F PrObg(Xn:S/) =0.

n—oo

Therefore, taking the limit in (3)) we get the desired inequality:

P(s) < EZ{Xm N n(xi v}
= EReachp(F)(s,0).

2. Consider any € > 0 and let 0. be the pure strategy where if r is a run of length n, then
oc(r) € last(r) is such that

m(last(r), 0-(r)) + Y g cg p(s'|last(r), o-(r))-P(s") < P(last(r)) + e/2" 1,
Using a similar analysis to the first part, it is straightforward to verify that
P(s) > EReachp(F)(s,0:) + ¢

which completes the proof.
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O

noindent The proof of the following two propositions follow similarly to that of Proposi-
tion and hence their proofs are omitted.

Proposition A.2. If (T;) Y o [=Optl (M), then T;(s) = ETotal’y,(i)(s) foralli < N and s € S.
Proposition A.3. [f D=0pt},(M) and D is bounded, then D(s)=EDisct’((\)(s) forall s € S.

Proposition A.4. If (G, B)=0pta(M) and G, B are bounded, then G(s)=EAvg}(s) for all
se€’.

Proof. The proof is in two parts. In the first part we show that G(s) < EAvg,,(s,o) for all
0 € ¥p and s € S, while in the second part we show that for € > 0 there exists a pure strategy
0. € X such that G(s) > EAvg (s,0)+¢ forall s € S.

1. Let o € ¥ . Since (G, B) |= Opta(M), for any s € S and a € A(s), we have that
G(s) < yesp(s']s,a) - G(5)

By induction, it follows that G(s) < EJ{G(X,,)} for all n>0. Since (G, B) = Opta(M)
we also have that

B(s) <m(s,a) = G(s) + Y gecgp(s']s,a) - B(s')

forall s € S and a € A(s). By induction it follows that for any n > 1

B(s) < B {3 0 m(Xim1, Yi)} — ES {320, G(Xi1)} + EZ(B(Xn)).
Substiuting the fact that G(s) < E7{G(X,,)} for any n>1 we have:

B(s) < EZ{>L,m(Xi1,Yi)} —EI {311, G(s)} + BS{B(Xn)}

= EZ {305 m(Xi1, Ya)} = 200, G(s) + EZ{B(Xn)}
and therefore, rearranging terms:
G(s) < & B {0y m(Xima, YO} + - (B{B(X.)} — B(s)

Since B is bounded, the second term on the right hand side vanishes as n — oo, and hence
taking limit supremum both sides:

G(s) < limsup,,_, (% CE7 >0 m( X, Y,)}) = EAvg,,(s,0).
Consider any € > 0. Let o by the pure strategy where if 7 is a run of length n, then

2wes P(s'llast(r), 0:(r)-G(s) < Glasi(r))+zuer

w(last(r), oo (1)) =G (last(r))+ Yy cq p(s'[last(r), 0o (1))-B(s') B(last(r))+ gt

Using a similar analysis to the first part of the proof, it is straightforward to verify that
G(s) > EAvg (s, 0.)+e completing the proof.

IN

O]
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B Proof of Proposition

Proof. Let Ty be a boundary region graph 7pg and s € Sgrg. We define the fractional signature
of a state s=((¢,v), (¢,()) € Serc of a boundary region graph as |s| = [v§.

It is easy to verify that starting from a state s € Sgr and taking only boundary transitions it
is impossible to reach any state whose fractional signature is neither a subsequence, or shift of a
subsequence of the fractional signature of s. Therefore the reachable sub-graph of Ty from a
given initial state s € Sggg is the finite MDP 7.5 . = (S56, Asra, ) Where S5y is the finite set of
states such that s’ € S, if [s'[ is either a subsequence or a k-shift of a subsequence of |sf. [J

C Proof of Lemma

Proof. The proof is in two parts. First we show that if (7;)Y , = Optd (Zsc), then T; is region-
ally concave for all i<N. In the second part, we use this result to show that if P |= Opth(Tyx)
and D |= Opt),(Zsre ), then P and D are regionally concave.

e Consider any N € N. We now prove by induction that 7; is regionally concave for all : <N
The base case is trivial as Ty(s, R) = 0 for every state (s, R) € Sgrg. For the inductive
step we assume that 7 is regionally concave and show that for any region R = (¢,() € R
the function T;11(-, R) : R — R is concave. Therefore consider any R = (¢,() € R, by
definition for any (s, R) = ((¢,v), (¢,({)) € Sera:

Ti+1(37 R) = {TFBRG«S’ R)? (a7 RI))—’_Ti@((S? R)? (a7 R/))}

min
(a,R) €A T (s, R)
and T.”((s, R), ((b, ¢, a), R)) equals

S [, a)(CL ) - Ti((4, v+b—rv(c)[C:=0]), (¢, [C:=0])) .
(C01)e2€ x L,

Now the concavity of Tz@ on the domain R follows from the following steps:

— by induction 7j; is regionally concave;

- T;((¢, v+b—v(c)[C:=0]), (¢, {[C:=0])) is concave on the domain R for fix (¢, C),
as function composition of a concave and a linear function is concave (Lemma [2.1));

= Y ceacxr 06, al(C. ) - Ti((¢, v+b — v(c)[C:=0]), (¢, ([C:=0])) is concave on
the domain R as it is a nonnegative (probability) weighted sum of concave functions
(again from Lemma 2.1).

Now by definition of a concavely-priced PTA, the function 7((s, R), (o, R')) is concave
on the domain R. Therefore, again invoking Lemma we have that every (a, R') €
At (s, R) the sum of the concave functions s ((s, R), (o, R')) and T2 ((s, R), (o, R'))
is concave on the domain . Which implies that T;1 (-, R) : R — R is concave as it is the
minimum of a set of concave functions (Lemma [2.1)).
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e To show the regional concavity of P and D we demonstrate that they are both limits of
regionally concave functions and the fact that the limits of concave functions is concave
(Lemma 2.1). Considering P we have for any (s, R) € Sgga:

P(s, R) = EReachy  (F)(s, R) by Proposition [3.4]
— inf B {ij‘f“ XXy, Y;)} by definition
= ;g} A}Enoo E7 {Ef\;lw(Xi_l, YZ)} by Assumption[3.2]
= A}gnoo 0{161; E7 {Zf\ilw(Xi,l, Yz)} since 7,5, is a finite MDP
= A}gnoo ETotalz . (N)((s, R)) by definition
= A}gnoo Tn(s,R) by Proposition 3.4]

Note that the limit exists in the fourth equality due to Assumption The proof for
D = Opt),(Zgra) follows similarly.

O

D Proof of Lemma (6.7

Proof. For every o’ € X and for every n € N, we have that

1 / 1
CE{ S (X YD) 2 il B X n(Xin, V) |
n

cEX M N

Taking limit supremum both sides, we have that

1 / 1
limsup — - K7 { Yo m(Xio1,Yh) } > limsupinfyen,, — - Eg{ Yo m(Xio1, Ys) }
n n

n—oo n—~oo

Since the previous inequality holds for arbitrary o’ we have that

1 |
inf limsup — 'Eg{ Z?:m(Xi_l,Yi)} > limsup inf - -Eg{ zyzlw(xi_l,yi)}
n

0€X M n—oo n—oo OTEXM M

as required. O

E Proof of Proposition [6.9]

Before we give the proof of Proposition[6.9 we require the following definitions and results.

Definition E.1. Let v € V be a clock valuation and (v§ = { fo, f1,... fn} its fractional signa-
ture. The strait of v is defined as strait(v) = min {1—f,,, fn—fn—1,---, fi—fo}

For any clock valuations v,/ € V, we define a measure of the scatter of ' around v as follows.
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Definition E.2. Let v, ' € V be clock valuations. The scatter of v' around v equals
scatter(v, ') = left_scatter(v, V) + right_scatter(v, /)

where left_scatter(v, V') and right_scatter(v, V') denote the left and right scatter of v’ around v
and are defined as follows:

left_scatter(v, ') = max{v(c)—r'(c)|ce CAv(c)>V'(c)}
right_scatter(v,v’) = max{//(c¢)—v(c)|ce C Av(c)<V(c)}
Notice that ||v — V||« < scatter(v,v) < 2- ||V — V|-

Lemma E.3. If ((¢,v), R) and ((b,c,a), R') are a state and action of Ty and >0 such that
e<strait(v)/2, then e<strait((v+t)[C:=0])/2 for all C C C where t = b—v/(c).

Proposition E.4. Let ((¢,v), R) be a state of the boundary region graph Tgzs and >0 such that
e<strait(v)/2. If (£, V') is a state of [ T] and scatter (v, V') <e, then for any action ((b,c,a), R') €
Agra((¢,v), R) there exists an action (t',a) € Av(¢,v'), such that v'+t' € R/, |t—t'| < € and
scatter((v+t), (V' +t')) < e where t = b—v(c).

Proof. Consider any state s=((¢,v), R) of Ty, action ((b,c,a), R') € Aga((¢,v), R), state of
s'=(£, ") of [T] and >0 such that e<strait(r)/2 and scatter(v, ’)<e. To proof the proposi-
tion, by definition of Ty and [T], it is sufficient to show show that there exists ¢ € R such that
V'+t' € R and scatter((v+t), (v/+t'))<e where t = b — v(c). We claim that if

b—1/(c) if ['+t(s', )] = R’
t' =< b-v(c)+d if[s'+t(s', Q)] =11 R
b—1'(c)—d if [§'+t(s', )] <41 R’

where d < min{e—scatter(v, 1), strait(v/)}, then scatter((v+t), (v'+t'))<e and '+t' € R’
as required. The idea behind such a value of d is that if d > strait(¢/) then it is possible that
V'+t' ¢ R, and if d > e—scatter(v, /') then it is possible that scatter((v+t), (V' +t')) > e.
Also observe that |t — /| < . We prove our claim for the case when v/(¢) < v(c). The other
two cases, i.e., when v(c) > 1/(¢) and v(c) = V/(c) are analogous and hence omitted. Since
((byc,a), R') € Agac((¢,v), R) and d<strait(r'), it follows that v'+¢' € R’ and it therefore
remains to show that scatter((v+t), (v/+t'))<e.

Therefore assume v/(¢) < v(c), we first consider when v(c)—1v/(¢) = left_scatter(v, ') and
then the case when v(c)—1/(c) < left_scatter(v, /).

o If v(c)—1/(c) = left_scatter(r, '), then there are three subcases, either [s'+t(s', )] =
R, [§'+t(s',a)] <41 R or [§'+t(s',a)] —41 R'. We consider only the subcase when
[s'+t(s', )] <41 R’ as the treatment for the other cases is similar. By construction:

t'=b—-1(c)—d

= b— (v(c) — left_scatter(v, ")) —d  since v(c)—1/(c) = left_scatter(v, ')
= (b—v(c)) + (left_scatter(v, V') — d) rearranging
= t + (left_scatter(v, ') — d) by definition of ¢.
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Now, for any ¢ € C we have:

(v+t)(d)— @ +)() = v(d)+t-V ()t
= (v(d)=V()+ (t—t) rearranging
= (v(c) =V () + (t — (t + (left_scatter(v, ') — d))) from above
= (v(c) = V() — (left_scatter(v,v') — d) rearranging  (4)

and similarly:
W +)() = w+t)(d) = V() —v()) + (left_scatter(v, V') —d) . (5)

Now, from (4) it follows that left_scatter(v+t,v'+t')=d and if right_scatter(v,v’)#£0,
then using (5)) we have:

right_scatter(v+t, /' +t) = right_scatter(v, V) + left_scatter(v, ') — d.
On the other hand, if right_scatter (v, ’)=0, then again using (5) we have:
right_scatter(v+t, /' +t) = (left_scatter(v, V') — d) — mingcc{v(c)—1/'()}.

In either case, it is straightforward to verify that scatter(v—+t, v/ +t") < scatter(v,1/') < e
as required.

If v(c)—1/(¢) < left_scatter(v, '), then again there are three subcases: [s'+t(s', )] = R/,
[¢'+t(s' )] «—41 R/, and [¢'+t(s’, )] —41 R’. In this case, we consider the subcase
when [s'+¢(s’, @)] —41 R'. The treatment for the other two cases is similar. By construc-
tion we have:

t'=0b—-1(c)+d
= (b-v(e) -

=t—(v(e)—v

rearranging
(c)+d by definition of ¢.

~
N
—~
2}
N—
|
t\
—~
9}
~—
~—
+
S

It then follows that:
left_scatter(v+t, v/ +t') = left_scatter(v, ') — (v(c) — V' (c)) — d
and if right_scatter(v, v/)#£0, then
right_scatter(v+t, v/ +t) = right_scatter(v, ') + (v(c) — V/(¢)) +d.
On the other hand, if right_scatter(v, ') = 0, then
right_scatter(v+¢,/+t) = max {0, (v(c)—v/(¢)) + d — mingec{v(c)—'(c)}} .

Again it is straightforward to verify that scatter(v+t, /+t') < scatter(v, ').

This completes the proof. O
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The following result follows directly from Proposition above.

Corollary E.5. Let ((¢,v), R) be a state of the boundary region graph Tgpe and 0<e<strait(v) /2.
If (£,V) is a state of [T] and scatter(v,V') < &, then for any ((b,c,a), R') € Awms((¢,v), R),
there exists (t',a) € At({,V"), such that V'+t' € R, [t—t'| < € and for every C C C, we have:

scatter( (v+t)[C:=0], (V' +t')[C:=0] ) < e.
wheret = b — v(c).

Before we give the final result required to prove Proposition we require the following defini-
tion.

Definition E.6. For any priced MDP M = (S, A, p, ), strategy o of M and finite run r, let o[r]
be the strategy such that for any finite run v’ of M.:

() a(r,a,r"y if ' is of the form (last(r),a,r")
7 N o(r')  otherwise.

Intuitively, the strategy o[r| acts essentially as o assuming that the run r has already occurred.

Proposition E.7. Suppose that the price function m is K-Lipschitz continuous. If opre and
((¢,v), R) are a strategy and state of Tgrs, 0<e<strait(v)/2 and ({,V) is a state of [T] such
that scatter(v, V') <e, then there exists a strategy o of [T] such that for any N € N:

| ETotal gy, (N)(((€, v), R), 05rg) — ETotalp7y(N)((¢, '), 07) | < K-N-e.

Proof. Consider any strategy oggc and state ((¢,v), R) of the boundary region graph 7y and
£>0 such that e<strait(r)/2. To prove that the proposition holds we will prove by induction on
M that for any state (¢, 1) of [T] such that scatter(v, ') <e there exists a strategy o such that

| ETotalz,., (N)(((¢,v), R), Opra) — ETOtal[[’T]] (V)((¢, V/>7 J’ZZ‘!) ‘ <€

forall N < M. If M = 0, then for any state (¢,2) of [T] such that scatter(r,2’) < ¢ and
strategy 0¥ by definition of ETotal we have:

| ETotal 7, (N)(((¢,v), R), 0ars) — ETotalj7)(N)((¢, 1), 07 )| = |0-0| =0 < ¢

as required.

Now suppose that the result holds for some M and consider any N < M+41 and state
(¢,1) of [T] such that scatter(v,')<e. The case when N=0 follows as above and there-
fore for the remainder of the proof we restrict attention to the case when N>0. By definition
osa((l,v), R) = ((b,¢,a), R) for some ((b,c,a),R") € Aga((¢,v),R). Now, from Corol-
lary [E.5| we have that there exists (t',a) € At(¢,v'), such that v/+t' € R, |t—t'| < ¢ and for
every C' C C, we have:

scatter( (v+t)[C:=0], (V'+1')[C:=0] ) < ¢
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where t = b—v(c). Letting o T1(¢,1') = (¢, a) it follows from Deﬁnitionand the definition
of ETotal that for any NV < M

ETotal 7, (N)(((¢,v), R), Ogra)
v.C v.C

=x((l,v),(t,a))+ > 5[, a)(C, 2 - ETotalz,,, (N —1)(Sgxg > Osre[TsrG ))
(C ) e2C x I,

ETotalpry (V) (¢, /), o2 +1)

= W((é? l//)a (t 7a)) + E 5[67 a](C,€ ) ETOtal[[Tﬂ(
(C0)E2X x L

1)(s59, oM+ 9

where in the above sbeS = (¢, (v+t)[C:=0]), R'[C:=0]), bl = (((¢,v),R),(a,t), sﬁRg>,

“ =, (V+t')[C:=0]) and r?’c = ((¢,1), (a,t'), s"Cr) Combining these facts yields:

‘ETotaITBRG (N)(((£,), R), 7as) — ETotalpzy (N)((£, /), e +1)

< |n((t,v), (t,a)) =7 ((6,0), (Fa)) |+ X 6[L,a)(C,E)-
(C0)E2C X L

’ETotalTBRG(N—l)(sﬁRE,aBRG[rﬁRg’]) ETotal 7y (N—1)(s2°C, oM 12N [ (6)

Now by construction, for any C' C C we have that:
scatter ((v+t)[C:=0], (V'+t)[C:=0] ) < ¢

and hence using Lemma and induction, for any ¢ € L and C' C C, there exists a strategy
ag— C of [T] such that

/

‘ETotalTBRG(N—l)(sf;Rg,UBRG[rﬁRG]) ETotal 7y (N —1)(s5°C, ‘ZC)’<K(N_1).5 )

Constructing the strategy 0’M+1 such that O’M+1[ f]-lc] = JZT,’C forall ¥/ € Land C C C, it
follows from (6)) and (7) that

‘ETotalq;aRG(N)(((& V), R), o) — ETotalir (N) (£, ), MH))
< |7 ((tv), (t,a)) = ((6,), (E, )| + X 6[6,al(C,0) - K-(N—1)-

(C41)€2¢ x L
< |m((t,v), (t,a) —x((,), (', a)| + K-(N—1)-€ since §[¢, a] € D(2°x L)
< Ke+K(N-1)e since |t — ¢'| < ¢ and 7 is K-Lipschitz continuous
— K-N-¢ rearranging
which completes the proof by induction. O
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