
Computing Science Group

ABSTRACTION FRAMEWORK FOR MARKOV DECISION

PROCESSES AND PCTL VIA GAMES

Mark Kattenbelt Michael Huth

CS-RR-09-01

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

Markov decision processes (MDPs) are natural models of computation in a wide
range of applications. Probabilistic computation tree logic (PCTL) is a powerful
temporal logic for reasoning about and verifying such models. Often, these models are
prohibitively large or infinite-state, and so direct model checking of PCTL formulae
over MDPs is infeasible. A recognised solution to this problem would be to develop
finite-state abstractions of MDPs that soundly abstract the satisfaction of arbitrary
PCTL formulae over very large or infinite-state MDPs. We state requirements for
such an abstraction framework – e.g. that model checking of abstractions under-
approximates generalised model checking for PCTL – and show important meta-
properties that follow from these requirements. We take a notion of stochastic games
from stochastic reachability analysis, adapt it, develop a simulation order for these
adapted games – decidable in P – and prove that this adaptation meets all key
requirements for an abstraction framework. Unlike generalised model checking, model
checking our abstractions is reasonably efficient. We also show that the refinement
characterised by PCTL is coarser than our simulation order.

1 Introduction

In many application areas both stochastic uncertainty and worst/best-case uncertainty
coexist. Markov decision processes (MDPs) are models that capture both types of un-
certainty well. This makes MDPs well-equipped to model software exhibiting both non-
deterministic and probabilistic behaviour, such as randomised algorithms, or networking
tools [25]. A powerful temporal logic for analysing MDPs is probabilistic computation
tree logic (PCTL) [18]. For any MDP M and PCTL formula φ, we are therefore inter-
ested in whether M satisfies φ (i.e. verifying M |= φ), or not (i.e. refuting M |= φ). But,
for software verification such direct verification is typically not feasible.

Thus, a predominant approach to software verification – used by many qualitative
model checkers – is to convert M into a compact abstraction A, to verify A |= φ, and
obtain M |= φ from a soundness result for free. This approach is usually limited to
universal fragments of temporal logics [9] and, as such fragments are not closed under
logical negation, unsound for refutation.

In this setting refutation is instead realised by concretising abstract counter-examples
[8]. Such an approach to refutation is less appealing for probabilistic model checking as
probabilistic counter-examples typically consist of large collections of traces [17]. Thus
deciding whether such a counter-example carries over to the concrete program is unlikely
to scale well. It is therefore worth devising abstractions A such that for arbitrary formulae
of the given temporal logic the verification of A |= φ soundly implies M |= φ (e.g. [10]).

1

This enables both abstraction-based verification and refutation for logics closed under
negation, such as PCTL.

In this paper, we state requirements for such an abstraction framework for verifi-
cation and refutation of MDPs and PCTL and show important meta-properties that
follow from these, e.g. that model checking of abstractions under-approximates gener-
alised model checking for PCTL. To instantiate this framework, we adapt the notion of
stochastic games from stochastic reachability analysis [27], develop an efficiently decid-
able simulation order for these adapted games and prove that this adaptation meets all
key requirements. We further demonstrate that model checking of abstractions is rea-
sonably efficient, unlike generalised model checking. Also, we show that the refinement
characterised by PCTL is coarser than our simulation order. Proofs can be found in the
appendix.

Related work In [13, 19] MDP are abstracted by MDPs again, through the strong
simulation preorder of [22, 30]. Reachability properties verified on abstractions are sound
for the abstracted MDP. In [30] it is shown that such simulations do not soundly verify
negated Until formulae.

Transition probabilities can be abstracted as sets of probabilities, e.g. intervals. Such
foundations exist for (discrete and continous-time) Markov chains (e.g. [22, 20, 16, 23]).
It is unclear whether, and if so how, this approach can be extended to include non-
determinism (e.g. MDPs).

In [27, 24] stochastic games as abstractions of MDPs were proposed for probabilistic
reachability analysis. These games separate the non-determinism stemming from MDPs
from the non-determinism stemming from the abstraction process. The novelty of these
abstractions is the ability to compute bounds specifically tailored to over-approximate
the minimum probability and under-approximate the maximum probability of reaching
a target set. This has the flavour of a three-valued abstraction for which verification and
refutation are both sound [5] and has successfully been applied to probabilistic software
verification [25].

For qualitative systems, sound verification and refutation of temporal logics have
mostly been developed in a (sometimes implicit) three-valued setting [28, 5, 10]. Our
results for sound abstraction-based verification and refutation of MDPs and PCTL are,
notably, informed by work on modal/mixed transitions system [28, 10], three-valued
abstraction of games [15], generalised model checking [6] and a finite model property
adapted to abstractions [11].

2

2 Background

We write N for the non-negative integers and ap for a fixed set of atomic propositions. For
a set X, let P(X) be the powerset of X. A distribution over X is a function λ ∈ X → [0, 1]
such that

∑
x∈X λ(x) = 1 and the set {x ∈ X | λ(x) > 0} is countable. Let D(X) be

the set of all distributions over X. For x ∈ X let µx ∈ D(X) be the point distribution
on x, i.e. µx(x) = 1. By abuse of notation, we write α1 · x1 + . . . + αn · xn for linear
combinations of point distributions µxi . If X ′ ⊆ X, and λ ∈ D(X ′) we will sometimes
implicitly interpret λ as a distribution over X where λ(x) = 0 for all x ∈ X \ X ′. For
a set of distributions Λ ∈ PD(X) over X, and a distribution λC ∈ D(Λ) over Λ, let
(Λ ◦ λC) ∈ D(X) be defined as (Λ ◦ λC)(x) =

∑
λ∈Λ λC(λ) · λ(x) for all x ∈ X.

For any binary relation R ⊆ X × Y let R−1 ⊆ Y ×X be the relational inverse of R.
We will sometimes use infix notation xR y for 〈x, y〉 ∈ R. For every X ′ ⊆ X let R.X ′ be
the image of X ′ in R, i.e. the set {y ∈ Y | ∃x′ ∈ X ′ : 〈x′, y〉 ∈ R}. We often write R.x for
R.{x}.

As in [22] we lift R to a relation over distributions D(R) ⊆ D(X) × D(Y) by letting
〈λX , λY 〉 ∈ D(R) iff there is a weight function δ ∈ X × Y → [0, 1] such that:

∀x ∈ X :
∑

y∈Y δ(x, y) = λX(x) (1a)

∀y ∈ Y :
∑

x∈X δ(x, y) = λY (y) (1b)

∀〈x, y〉 ∈ X × Y : (δ(x, y) > 0⇒ 〈x, y〉 ∈ R) (1c)

Let π be an arbitrary finite or infinite (non-empty) sequence of elements ω0, ω1, ω2,
Let |π| be the number elements of π minus one. For i ≤ |π| let π(i) be the i+1-th element
ωi of π and, if π is finite, let −→π be the last element of π. For i ≤ |π| let πi be the prefix
of π such that |πi| = i. We denote with π a π′ the concatenation of two sequences.

Probabilistic CTL Properties of probabilistic models are often written in probabilistic
computation tree logic (PCTL) [18]. We define a minimal fragment of PCTL whose unre-
stricted negation makes other operators, such as a tautology (tt), conjunction, eventuality
and globality, definable.

Definition 1 (PCTL syntax). A PCTL formula is defined with the following BNF-style
syntax rules where a ∈ ap, k ∈ N ∪ {∞}, p ∈ [0, 1] and ./ ∈ {≤, <,≥, >}:

φ ::= a | ¬φ | φ1 ∨ φ2 | P ./ p〈ψ〉

ψ ::= Xφ | φ1U
≤k φ2 .

We call subformulae of the form φ and ψ state and path formulae, respectively. We

3

denote with Φpctl and Ψpctl the set of all PCTL state and path formulae, respectively.

Markov decision processes In quantitative software verification behaviour can be
both non-deterministic and probabilistic. Markov decision processes naturally capture
such semantics. Without loss of generality, our notion of MDP has propositional but no
action labels.

Definition 2 (MDP). A Markov decision process (MDP) is a tuple 〈S, I, T, L〉, where: S
is a set of states; I ⊆ S is a set of initial states; T ∈ S → PD(S) is a transition function
and L ∈ S → P(ap) is a labelling function.

Let M be the class of all MDPs. Let M = 〈S, I, T, L〉 denote any MDP throughout
this paper. A transition originating from s ∈ S needs to resolve both a non-deterministic
choice, by choosing λ ∈ T (s), and a probabilistic choice, by choosing s′ such that λ(s′) >
0. We allow T (s) to be the empty set, in which case we call s a deadlock state. When we
define probability measures and PCTL semantics we need a transformation M 7→M⊥ ∈
M → M which adds a sink state ⊥ to M so that ⊥ and every deadlock state of M
deterministically transition to ⊥ with probability 1.

A path of any MDP M is a sequence of transitions that strictly alternates between
states and distributions as described above. Let ΠM be the set of finite paths, Π∞

M the
set of all infinite paths, and ΠM (ω) and Π∞

M (ω) the set of finite and infinite paths of M
that start from ω (respectively).

A path resolves both non-deterministic and probabilistic choice. But, a strategy re-
solves only non-determinism. Formally, a strategy is a partial function σ ∈ ΠM → D(S)
such that σ(π) ∈ D(T (−→π)). A path π of M is consistent with σ iff for all i ≤ |π| − 1
with π(i) ∈ S the probability σ(πi)(π(i + 1)) is positive. Given a strategy σ and a set
of paths, we will add the subscript σ to denote the set of paths consistent with σ (e.g.
ΠM,σ). Finally, we denote with ΣM the set of all strategies of M .

For any strategy σ ∈ ΣM and set of finite paths Π ⊆ ΠM,σ, let Π↑σ be the set of
infinite paths of M that are consistent with σ and have a prefix in Π. When Π is a
singleton we call Π↑σ a cylinder set of M .

We define probability measures over MDPs M without deadlock states. Using the
methods from [26], every ω ∈ S ∪ D(S) and σ ∈ ΣM determine a unique probability
measure PrωM,σ over infinite paths Π∞

M,σ(ω) such that all cylinder sets constructed from
finite paths in ΠM,σ(ω) are measurable in PrωM,σ and for all zero-length paths ω′ we have
that PrωM,σ({ω′}↑σ) = 1 if ω′ = ω and 0 otherwise. Moreover, for every finite path of

4

non-zero length π′ a ω′ ∈ ΠM,σ(ω) we have:

Prω
M,σ({π′ a ω′}↑σ) =Prω

M,σ({π′}↑σ) · σ(π′)(ω′) if
−→
π′ ∈ S

Prω
M,σ({π′}↑σ) ·

−→
π′(ω′) if

−→
π′ ∈ D(S)

We will use shorthands PrωM,σ(π) and PrωM,σ(Π) to denote the probabilities PrωM,σ({π}↑σ)
and PrωM,σ(Π

↑σ), respectively, and we omit the subscript M when unambiguous.

Strong probabilistic (bi)simulation We recall the definitions of strong probabilistic
simulation (preorder vM ⊆M ×M) and strong probabilistic bisimulation (equivalence
relation ≡M ⊆M ×M) over MDPs, introduced in [30].

Definition 3 (Strong probabilistic simulation). Let M̂ = 〈Ŝ, Î, T̂ , L̂〉 and M = 〈S, I, T,
L〉 be MDPs. We say M̂ is a strong probabilistic simulation of M via relation R ⊆ Ŝ×S,
denoted M̂ vRM M , if and only if I ⊆ R.Î and, whenever 〈ŝ, s〉 ∈ R, the following
conditions hold:

(i) L̂(ŝ) = L(s)

(ii) T̂ (s) = ∅ ⇐ T (s) = ∅

(iii) ∀λ ∈ T (s)∃λ̂C ∈ D(T̂ (s)) : 〈T̂ (s) ◦ λ̂C , λ〉 ∈ D(R)

We let M̂ vM M iff there exists a relation R ⊆ Ŝ × S such that M̂ vRM M .

Condition (iii) requires that for every non-deterministic choice λ ∈ T (s) there is a
weight distribution over non-deterministic choices in T̂ (ŝ) such that the resulting dis-
tributions simulate each other. The weighted abstract transition is called a combined
transition in [30]. Condition (ii) requires that deadlock behaviour is preserved by the
simulation. We define bisimulation in the style of, e.g., [29].

Definition 4 (Strong probabilistic bisimulation). Let M̂ = 〈Ŝ, Î, T̂ , L̂〉 and M = 〈S, I, T,
L〉 be MDPs. We say M̂ is a strong probabilistic bisimulation of M via relation R ⊆ Ŝ×S,
denoted M̂ ≡RM M , iff M̂ vRM M and M vR−1

M M̂ . Let M̂ ≡M M iff there is a relation
R ⊆ Ŝ × S with M̂ ≡RM M .

PCTL semantics of MDPs We now formally define what it means for an MDP
M ∈M to satisfy a PCTL formula φ ∈ Φpctl. We do this by first defining semantics for
M⊥ and then setting M |=M φ iff M⊥ |=M φ.

5

Definition 5 (PCTL semantics). Let M = 〈S, I, T, L〉 be an MDP, and let φ ∈ Φpctl

be a PCTL formula. Let Π ⊆ Π∞
M⊥

denote all infinite paths of M⊥ starting with a state
in S. We first define a satisfaction relation |= ⊆ Π × Ψpctl for path formulae where for
k ∈ N ∪ {∞} we have π |= Xφ iff π(2) |= φ and π |= (φ1U

≤k φ2) iff:

(∃i≤k : (π(2i) |= φ2) & (∀j<i : (π(2j) |= φ1))) .

Clearly, this satisfaction relation is mutually dependent on a satisfaction relation for
PCTL state formulae |= ⊆ S⊥ × Φpctl which we define next. First, we define for every
σ ∈ ΣM , s ∈ S and ψ ∈ Ψpctl the shorthand

Probσ(s, ψ) = Prs
M⊥,σ

{
π ∈ Π∞

M⊥,σ(s) | π |= ψ
}

denoting the probability of all paths satisfying ψ that originate from s and are consistent
with σ. In the following let s ∈ S, . ∈ {>,≥}, / ∈ {<,≤} and p ∈ [0, 1]):

⊥ 6|= φ

s |= a⇔ a ∈ L(s)

s |= ¬φ⇔ s 6|= φ

s |= (φ1 ∨ φ2)⇔ (s |= φ1 or s |= φ2)

s |= P . p〈ψ〉 ⇔ inf
σ∈ΣM⊥

{Probσ(s, ψ)} . p

s |= P / p〈ψ〉 ⇔ sup
σ∈ΣM⊥

{Probσ(s, ψ)} / p

Finally, let M⊥ |=M φ iff for all s ∈ I we have s |= φ.

For MDPs we need all four threshold types: P>p〈ψ〉 implies the threshold p is met
under all schedulings, whereas ¬P≤ p〈ψ〉 implies there exists such a scheduling.

The semantics is well-defined but non-standard, as ⊥ satisfies no PCTL formulae and
the other clauses don’t apply to ⊥. This guarantees that deadlocks, if present, don’t
contribute to the probability of paths sets from any state. In fact, the semantics of
negation yields that our PCTL semantics are consistent and, moreover, two-valued.

3 Abstraction framework

Given an MDP M ∈ M and PCTL formula φ ∈ Φpctl we wish to decide whether
M |=M φ or M 6|=M φ. That is, we wish to either verify or refute the judgement M |=M φ.
In software verification, however, directly applying such a model check is intractible.
Therefore, we seek a class of models, A say, that abstract MDPs and allow for the
sound verification and refutation of PCTL formulae. Inspired by [12], we capture these

6

requirements for A abstractly. The first requirement is that MDPs are representable in
A :

R1. Domain A has an embedding function eA ∈M � A .

We call the elements in eA (M) implementations of A . Abstraction-based verification
requires an abstraction relation in A , as formalised by the following requirement:

R2. Domain A has a refinement preorder vA ⊆ A ×A .

The meaning of Â vA A is that Â abstracts A or, equivalently, that A is a refinement
of Â. Implementations are typically maximal elements of A , i.e. they cannot be further
refined. The refinement ordering enables us to associate with each A ∈ A the set of
implementations that refine A:

Definition 6 (Implementations). Let I ∈ A → P(M) be defined as I(A) = {M ∈
M | A vA eA (M)}.

We want to understand how refinement should behave over implementations. As
strong probabilistic bisimulation over MDPs preserves PCTL satisfaction [30] we will
require that the refinement preorder vA , when restricted to eA (M) × eA (M), over-
approximates ≡M .

R3. For all M,M ′ ∈M we have that M ≡M M ′ implies eA (M) vA eA (M ′).

R1 up to R3 secure a first meta-property of abstractions:

Lemma 3.1. For any A ∈ A the set of implementations I(A) is a union of equivalence
classes of ≡M .

The refinement preorder vA is used in practice to deduce properties about imple-
mentations. However, we can use function I (defined through vA) to define the largest
refinement that preserves implementations [6].

Definition 7 (Thorough refinement). The thorough refinement relation is the preorder
vth

A ⊆ A ×A such that Â vth
A A iff I(A) ⊆ I(Â).

Therefore thorough refinements can only remove, but not add, implementations. The
next meta-property states that vA soundly under-approximates vth

A in that very sense:

Lemma 3.2. For Â, A ∈ A , Â vA A implies Â vth
A A.

7

We typically expect thorough refinement to be strictly more precise than the ordinary
refinement preorder, i.e. that there exist Â, A ∈ A such that I(A) ⊆ I(Â) but Â 6vA A.
For example, this is the case for transition systems and modal transition systems and
their refinement [1].

Property verification and refutation require a PCTL semantics over A .

R4. The domain A has a satisfaction relation |=A ⊆ A ×Φpctl such that eA (M) |=A φ

iff M |=M φ for all M ∈M .

The latter part of R4 ensures consistency of the PCTL semantics across these two rep-
resentations of MDPs and implies that PCTL formulae have a two-valued semantics over
embedded implementations. To decide whether M |=M φ or M 6|=M φ using abstractions,
refinement vA has to mesh well with the abstract PCTL semantics |=A :

R5. For any Â, A ∈ A we have that Â vA A implies that for all φ ∈ Φpctl it holds that
Â |=A φ⇒ A |=A φ.

With R5, finally we have a method of deciding whether M |=M φ or M 6|=M φ by
only considering abstractions. That is, in order to verify the judgement M |=M φ it is
sufficient to find some A ∈ A such that M ∈ I(A) and A |=A φ. Using R4 and R5, this
yields M |=M φ. Similarly, to refute the judgement M |=M φ it is sufficient to find some
A ∈ A such that M ∈ I(A) and A |=A ¬φ.

As typical in abstraction-based verification, it is possible that both A 6|=A φ and
A 6|=A ¬φ hold. In that case we can neither verify nor refute M |=M φ and we may have
to refine A. It is also possible that both A |=A φ and A |=A ¬φ hold but, by R4 and R5,
A has then no implementations.

The abstract satisfaction relation of R4 is the one used in practice but, it has a
more precise version, analogous to the relationship between refinement and thorough
refinement:

Definition 8 (Thorough satisfaction). The thorough satisfaction relation is the relation
|=th

A ⊆ A × Φpctl such that A |=th
A φ iff M |=M φ for all M ∈ I(A).

Thorough satisfaction is the logical dual of generalised model checking in [6]. The
next meta-property shows |=A soundly under-approximates its thorough version |=th

A :

Lemma 3.3. For any A ∈ A and φ ∈ Φpctl we have A |=A φ implies A |=th
A φ.

Thorough refinement and thorough satisfaction also constitute a method for verifying
or refuting M |=M φ:

8

Lemma 3.4. For any Â, A ∈ A with Â vth
A A we have Â |=th

A φ ⇒ A |=th
A φ for all

φ ∈ Φpctl.

The requirements so far allow us to verify and refute M |=M φ through an abstraction
A. For abstraction-based verification and refutation to be tractible, a minimal require-
ment is that A be finite. This leads to Dams and Namjoshi’s [11] notion of complete
abstraction frameworks:

R6. For every M ∈M and φ ∈ Φpctl with M |=M φ there is a finite A ∈ A such that
M ∈ I(A) and Â |=A φ.

R6 makes it possible, in principle, to verify or refute M |=M φ through finite abstrac-
tions. Dams and Namjoshi’s notion of completeness has been investigated for Markov
chains and PCTL in [31]. Finally, we state another suitability requirement:

R7. Deciding |=A and vA has relatively low computational complexity, compared to
their thorough versions.

4 Game-based abstraction framework

We now develop stochastic games with two players, 1 and 2, as an instance of the ab-
straction framework of Section 3. We first introduce stochastic two-player games.

Stochastic two-player games Our stochastic two-player games have two distinct
types of non-deterministic choice (corresponding to the two players). This is in contrast
to the single notion of non-determinism in MDPs.

Definition 9 (Stochastic two-player game). A stochastic two-player game G is a tuple
〈S, I, T, L!, L?〉, where: S is a set of states; I ⊆ S a non-empty set of initial states;
T ∈ S � PPD(S) a transition function and L!, L? ∈ S � P(ap) labelling functions with
L!(s) ⊆ L?(s) for each s ∈ S.

L!(s) is the set of atomic propositions that must be true in s, whereas L?(s) are
propositions that may be true in s. Henceforth we will refer to stochastic two-player
games as ‘games’, and let G be the class of all games. A transition originating from
s ∈ S requires resolving a player 1 (non-deterministic) choice, by choosing a set of
distributions Λ ∈ T (s), a player 2 (non-deterministic) choice, by choosing a distribution
λ ∈ Λ and a probabilistic choice according to λ. Like MDPs, games can deadlock.

We define a transformation G 7→ G⊥ ∈ G → G by adding to G two sink states ⊥1

and ⊥2. We let ⊥1 and every s ∈ S with T (s) = ∅ deterministically transition to ⊥1

9

s1

s0

s2s3

∅

1
2

∅
ŝ3

∅
ŝ0

ŝ1ŝ2

{a?}

2
3

1
2

1
2

1
2

1
4

1
4

1
3

1
2

4
5

1
5

∅

∅∅{a!}∅

∅
ŝ4

λ̂′

s4

Figure 1: Game Ĝ and an implementation G with Ĝ vRG G, for R = {〈ŝ0, s0〉, 〈ŝ1, s2〉,
〈ŝ3, s2〉, 〈ŝ2, s3〉, 〈ŝ2, s1〉, 〈ŝ2, s4〉}.

with probability 1. For player 2 deadlocks we let T (⊥2) = {{µ⊥2}} and we replace any
potential player 2 deadlock ∅ ∈ T (s) with {µ⊥2} ∈ T (s).

A play of any game G is a sequence of transitions that strictly alternate between
states, sets of distributions, and distributions as described above. We let ΠG,Π∞

G be the
set of finite and infinite plays of G, and let ΠG(ω) and Π∞

G (ω) be finite and infinite plays
starting from ω (respectively).

In contrast to MDPs, games require two strategies; one for each player. Formally, a
player 1 strategy is a partial function σ1 ∈ ΠG → DPD(S) such that σ1(π) ∈ D(T (−→π)).
A player 2 strategy is a partial function σ2 ∈ ΠG → DD(S) such that σ2(π) ∈ D(−→π).

A play π is consistent with σ1 if for every i ≤ |π| − 1 with π(i) ∈ S the probability
σ1(πi)(π(i+1)) is positive. Similarly, π is consistent with σ2 if σ2(πi)(π(i+1)) is positive
whenever π(i) ∈ PD(S). We add the subscript σ1, σ2 to π to denote sets of consistent
plays and let Σ1

G and Σ2
G be all player 1 and 2 strategies (respectively). For some σ1 ∈ Σ1

G

and σ2 ∈ Σ2
G and a set of finite plays Π ⊆ ΠG,σ1,σ2 , we denote with Π↑σ2

σ1 the infinite plays
of G that are consistent with σ1, σ2 and that have a prefix in Π.

We define probability measures over our games G without deadlocks. Analogous to
that definition for MDPs, every ω ∈ S ∪ PD(S) ∪ D(S) and 〈σ1, σ2〉 ∈ Σ1

G×Σ2
G determine

a unique probability measure PrωG,σ1,σ2
over infinite plays in Π∞

G,σ1,σ2
(ω) such that for all

zero-length plays PrωG,σ1,σ2
(ω′) yields 1 if ω′ = ω and 0 otherwise. Moreover, for every

finite play of non-zero length π′ a ω′ ∈ Πσ1,σ2(ω) we have:

Prω
G,σ1,σ2

({π′ a ω′}↑
σ2
σ1) =

Prω
G,σ1,σ2

({π′}↑
σ2
σ1) · σ1(π′)(ω′) if

−→
π′ ∈ S

Prω
G,σ1,σ2

({π′}↑
σ2
σ1) · σ2(π′)(ω′) if

−→
π′ ∈ PD(S)

Prω
G,σ1,σ2

({π′}↑
σ2
σ1) ·

−→
π′(ω′) if

−→
π′ ∈ D(S)

10

We omit the G subscript when unambiguous to do so and use shorthands PrωG,σ1,σ2
(π)

and PrωG,σ1,σ2
(Π) to denote PrωG,σ1,σ2

({π}↑
σ2
σ1) and PrωG,σ1,σ2

(Π↑σ2
σ1), respectively.

Assumption 1. In figures we depict states of games with open circles, distributions (i.e.
player 2 choices) with filled black circles and sets of distributions (i.e. player 1 choices)
with filled black squares. Labels depict the probability of transitions (omitted for point
distributions). We write a! next to ŝ iff a ∈ L̂!(ŝ), and write a? next to ŝ iff a ∈ L̂?(ŝ)
and a 6∈ L̂!(ŝ).

Example 1. Consider the game Ĝ depicted in Figure 1 (left). Let λ̂′ ∈ D(Ŝ) be the
distribution 1

2 · ŝ3 + 1
2 · ŝ2. As depicted {λ̂′, µŝ2} ∈ T̂ (ŝ0). Example plays in Ĝ⊥ are:

ŝ1, {µ⊥2}, µ⊥2 ,⊥2, {µ⊥2}, . . .

ŝ0, {λ̂′, µŝ2}, λ̂′, ŝ3, {µŝ4}, µŝ4 , ŝ4, {µ⊥1}, µ⊥1 ,⊥1, . . .

Games as abstractions We now instantiate the embedding, refinement preorder (as
a simulation) and the abstract satisfaction relation of Section 3 for these games.

The intuition of our simulation is that player 1 non-determinism captures the inde-
terminacy introduced by abstraction and player 2 non-determinism corresponds to the
non-determinism that is present in implementations. Therefore, player 1 has no power in
embedded MDPs:

Definition 10 (R1). Let eG ∈ M → G be the function which for every MDP M =
〈S, I, T, L〉 yields a game G = 〈S, I, T̂ , L, L〉 such that T̂ (s) = {T (s)} for every s ∈ S.

Every state of an embedded MDP G has precisely one corresponding player 1 choice,
and hence Σ1

G contains only a single trivial strategy. Moreover, this means it is impossible
for player 1 deadlocks to occur in embedded MDPs. The implementations eG (M) of G

are precisely those games G = 〈S, I, T, L!, L?〉 where for every s ∈ S, player 1 has precisely
one choice and the state labels are two-valued, that is |T (s)| = 1 and L!(s) = L?(s) (as,
e.g., in the game in Figure 1 (right)). All other games are abstractions.

We now define how abstractions and implementations are related by strong probabilis-
tic game-simulation:

Definition 11 (R2). Let Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉 and G = 〈S, I, T, L!, L?〉 be games. We call
Ĝ a strong probabilistic game-simulation of G via relation R ⊆ Ŝ × S, denoted Ĝ vRG G,
iff I ⊆ R.Î and, whenever 〈ŝ, s〉 ∈ R, we have:

(i) L̂!(ŝ) ⊆ L!(s)

(ii) L̂?(ŝ) ⊇ L?(s)

11

s1

s0

s4

s2s3

∅

∅

∅ ∅ ∅
ŝ1

ŝ0

∅

∅

∅ ∅
ŝ3

ŝ4

Figure 2: Games Ĝ and G such that Ĝ vth
G G but Ĝ 6vG G. Example based on Fig. 5 of

[1].

(iii) ∀Λ ∈ T (s)∃Λ̂ ∈ T̂ (s) : (Λ̂=∅ ⇐ Λ=∅) &
(∀λ ∈ Λ ∃λ̂C ∈ D(Λ̂) : 〈Λ̂ ◦ λ̂C , λ〉 ∈ D(R))

(iv) ∀Λ ∈ T (s)∃Λ̂ ∈ T̂ (s) : (Λ̂=∅ ⇒ Λ=∅) &
(∀λ̂ ∈ Λ̂ ∃λC ∈ D(Λ): 〈λ̂,Λ ◦ λC〉 ∈ D(R))

Let Ĝ vG G iff there is a relation R ⊆ Ŝ × S with Ĝ vRM G. Clearly vG is a preorder on
G and so R2 is met.

Condition (iii) requires that the ‘abstract game’ Ĝ over-approximates the player 2
non-determinism of every player 1 choice of the ‘concrete game’ G. Thus, this condition
corresponds with the ‘must’ modality. Dually, condition (iv) requires that the abstract
game under-approximates the player 2 non-determism of every player 1 choice of the
concrete game, corresponding to the ‘may’ modality.

Example 2. For games Ĝ and G in Figure 1 we have Ĝ vRG G. To illustrate this,
let λ = 2

3 · s1 + 1
3 · s2 of G and λ̂ = 1

2 · ŝ2 + 1
2 · ŝ3 of Ĝ. Let Λ = {λ} ∈ T (s0) and

Λ̂ = {λ̂, µŝ2} ∈ T̂ (ŝ0). To show condition (iii) for Λ observe that 〈Λ̂ ◦ λ̂C , λ〉 ∈ D(R) for
λ̂C = 2

3 · λ̂+ 1
3 · µŝ2 ∈ D(Λ̂).

In our framework R3 holds:

Proposition 4.1 (R3). For all M,M ′ ∈M we have that M ≡M M ′ implies eG (M) vG

eG (M ′).

Instantiating Definition 6 we obtain for each game G the set of MDPs I(G) that
refine G. As R1 up to R3 are met for games, by meta-property Lemma 3.1 I(G) is
closed under strong probabilistic simulation.

12

Definition 7 gives rise to the thorough refinement preorder of games (vth
G). Lemma 3.2,

for games, already yields that vG must be a sound under-approximation of vth
G . As

perhaps expected, we observe that vth
G is strictly more precise than vG (see Figure 2):

Lemma 4.2. There are Ĝ,G ∈ G with Ĝ vth
G G, Ĝ 6vG G.

Turning now to requirement R4, we define the abstract PCTL semantics |=G ⊆ G ×
Φpctl. Due to unrestricted negation this requires both under-approximating (|=!) and
over-approximating (|=?) PCTL semantics.

Definition 12 (PCTL semantics). Let G = 〈S, I, T, L!, L?〉 be a game, and let φ ∈ Φpctl

be a PCTL formula. Analogous to MDPs we define PCTL semantics for G⊥ and then
set G |=G φ iff G⊥ |=G φ.

We let Π ⊆ Π∞
G⊥

denote the set of all infinite plays of G⊥ starting with a state in
S. We define two satisfaction relations |=!, |=? ⊆ Π×Ψpctl for path formulae where for
m ∈ {!, ?} and k ∈ N ∪ {∞} we have π |=m Xφ iff π(3) |=m φ and π |=m (φ1U

≤k φ2) iff:

(∃i≤k : (π(3i) |=m φ2) & (∀j<i : (π(3j) |=m φ1))) .

These satisfaction relations mutually depend on satisfaction relations for PCTL state
formulae |=!, |=? ⊆ S⊥×Φpctl. First, we define for every m ∈ {!, ?}, σ1 ∈ Σ1

G⊥
, σ2 ∈ Σ2

G⊥
,

s ∈ S and ψ ∈ Ψpctl the shorthand

Probm
σ1σ2

(s, ψ) = Prs
σ1,σ2

{
π ∈ Π∞

σ1,σ2
(s) | π |=m ψ

}
.

In the following we let s ∈ S, ¬! = ?, ¬? = !, . ∈ {>,≥}, / ∈ {<,≤} and p ∈ [0, 1]):

⊥1 |=! φ ⊥1 6|=? φ

⊥2 6|=! φ ⊥2 6|=? φ

s |=m a⇔ a ∈ Lm(s) s |=m ¬φ⇔ s 6|=¬m φ

s |=m (φ1 ∨ φ2)⇔ (s |=m φ1 or s |=m φ2)

and

s |=! P . p〈ψ〉 ⇔ inf
σ1∈Σ1

G⊥

inf
σ2∈Σ2

G⊥

{
Prob!

σ1σ2
(s, ψ)

}
. p

s |=? P . p〈ψ〉 ⇔ sup
σ1∈Σ1

G⊥

inf
σ2∈Σ2

G⊥

{
Prob?

σ1σ2
(s, ψ)

}
. p

s |=? P / p〈ψ〉 ⇔ inf
σ1∈Σ1

G⊥

sup
σ2∈Σ2

G⊥

{
Prob!

σ1σ2
(s, ψ)

}
/ p

s |=! P / p〈ψ〉 ⇔ sup
σ1∈Σ1

G⊥

sup
σ2∈Σ2

G⊥

{
Prob?

σ1σ2
(s, ψ)

}
/ p

13

ŝ0 ŝ0

{a?} ∅
ŝ0

{a? | a∈ap}

Figure 3: Three games used to illustrate some points made in the body of the paper.

Finally, let G⊥ |=G φ iff for all s ∈ I we have s |=! φ.

These PCTL semantics are consistent for consistent games, i.e. those that have imple-
mentations. The semantics of⊥1 cannot introduce inconsistencies since player 1 deadlocks
are avoidable in consistent games. This consistency follows from R5 and Proposition 4.3
below.

Example 3. For the game Ĝ with I(Ĝ) = ∅ in Figure 3 (right) both Ĝ |=G P≥ 1〈Xa〉
and Ĝ |=G ¬P≥ 1〈Xa〉 hold.

To see that the PCTL semantics over embedded MDPs coincides with the MDP
semantics recall that there are no player 1 deadlocks, the proposition labels are two-
valued (L!(s) = L?(s)) and there is exactly one player 1 strategy |Σ1

G| = 1. We now
validate R5 for our framework.

Proposition 4.3 (R5). For any Ĝ,G ∈ G with Ĝ vG G we have that Ĝ |=G φ⇒ G |=G φ

for all φ ∈ Φpctl.

Proposition 4.3 shows our notion of refinement soundly preserves PCTL satisfaction.
As explained in Section 3 this now gives us a method to verify or refute a PCTL property
by looking only at abstractions.

Example 4. Consider the abstraction Ĝ and implementation G of Figure 1. We have
that Ĝ |=G ¬P> 0.25〈Xa〉 and hence by Proposition 4.3 G |=G ¬P> 0.25〈Xa〉. However,
Ĝ is too abstract to verify the judgement G |=G P≤ 0.25〈Xa〉 as Ĝ 6|=G P≤ 0.25〈Xa〉 and
Ĝ 6|=G ¬P≤ 0.25〈Xa〉.

We note that the reverse implication of Proposition 4.3 does not hold, as stated by
the following lemma:

Lemma 4.4. There exist Ĝ,G ∈ G such that Ĝ 6vG G but for all φ ∈ Φpctl it holds that
Ĝ |=G φ⇒ G |=G φ.

Figure 4 gives an example of Ĝ and G satisfying the lemma. Lemma 4.4 shows PCTL
does not characterise games up to refinement equivalence. In fact, as the games of Figure 4

14

s1

s0

s2s3

∅

{a!} {b!} {c!}

∅

{a!} {b!} {c!}

1
2

1
2

2
3

1
2

1
2

1
3

ŝ0

ŝ1ŝ2ŝ3

Figure 4: Games Ĝ and G with Ĝ 6vG G such that Ĝ |=G φ⇔ G |=G φ for all φ ∈ Φpctl.
Example due to personal correspondence with R. Segala in relation to [29].

∅

∅

∅

q!

q!

∅∅∅ ∅ q!

Figure 5: Game G with G |=G P> 0〈tt U q〉; no finite abstraction of G satisfies
P> 0〈tt U q〉.

are non-bisimilar embedded MDPs, the example also shows PCTL does not characterise
MDPs up to strong probabilistic bisimulation, as already suggested in [29].

Using Definition 8 we obtain thorough satisfaction for games (|=th
G). Meta-property

Lemma 3.3, for games, ensures that |=G soundly under-approximates |=th
G . The following

lemma states that this is a strict under-approximation:

Lemma 4.5. There exists G ∈ G and φ ∈ Φpctl such that G |=th
G φ but G 6|=G φ.

Lemma 4.5 follows from the fact that any implementation trivially satisfies the PCTL
formula a ∨ ¬a, but the abstraction depicted in Figure 3 (middle) does not.

The next lemma shows that our game-based abstractions of MDPs are incomplete for
PCTL:

Lemma 4.6 (R6). There is an MDP M ∈ M and a PCTL formula φ ∈ Φpctl with
M |=M φ such that there is no finite game Ĝ ∈ G with M ∈ I(Ĝ) and Ĝ |=G φ.

The embedded game in Figure 5, adapted from [11, Theorem 1] to our setting, proves
Lemma 4.6. This incompleteness relies on the existence of strategies that cannot reach
q!-states. As argued in [11], fairness or more general acceptance conditions can rule out
such strategies. Based on the structural and operational nature of our games we believe
that the absence of such acceptence conditions is the only reason for our framework to
be incomplete. We note that no complete abstraction framework for MDPs and PCTL

15

is known. The incompleteness of three-valued Markov chains as abstractions of Markov
chains has been shown in [31].

Our final requirement R7 concerns the computational complexity of the various refine-
ment and satisfaction relations. We now corroborate that the computational complexity
of deciding vG and |=G is relatively low compared to deciding their thorough counterparts
vth

G and |=th
G .

Proposition 4.7. Deciding Ĝ vG G is in P.

The proof of Proposition 4.7 is based on deciding strong probabilistic simulation of
probabilistic automata [32]. We turn to thorough refinement. Qualitative thorough re-
finement of games asks whether all qualitative implementations (consisting of only point-
distributions) of one game also implement another. In the appendix we prove thorough
refinement of Krikpe modal transition systems [21] – shown to be PSPACE-hard in [2]
– can be reduced to this problem.

We now discuss the complexity of deciding |=G . As for MDPs and PCTL, M |=M φ

can be computed by a bottom-up recursion on φ ∈ Φpctl. For any Until subformula, e.g.
P>p〈φ1 U φ2〉 under modality ?, we first compute

sup
σ1∈Σ1

G

inf
σ2∈Σ2

G

{
Prob?

σ1σ2
(s, φ1 U φ2)

}
by solving a naturally derived stochastic parity game and then convert this into a Boolean
judgement by comparing the value against the threshold. Solving stochastic parity games
with rational probabilities is in NP ∩ co-NP [7]. Also, the computational overhead for
processing other types of subformulae is polynomial. Thus deciding |=G is in NP∩co-NP.

Proposition 4.8. For games G with rational probabilities, deciding G |=G φ is in NP ∩
co-NP.

We now demonstrate that thorough satisfaction of games is harder than deciding
satisfiability of PCTL formulae over MDPs which is not known to be decidable. (In [4]
satisfiability of a qualitative fragment of PCTL is shown to be EXPTIME-complete with
respect to Markov chains.)

Proposition 4.9. PCTL satisfiability over MDPs can be reduced to deciding the thor-
ough satisfaction of games.

To see this, game Ĝ depicted in Figure 3 (left) is implemented by every MDP – i.e.
I(Ĝ) = M . Hence, the model check Ĝ 6|=th

G ¬φ decides whether φ is satisfiable.
To summarize, our games satisfy all requirements R1 up to R7, except for the com-

pleteness property R6.

16

5 Discussion and conclusions

Our games enable sound, abstraction-based verification and refutation of PCTL for-
mulae. In frameworks based on the simulation preorders of [22, 30] refutation doesn’t
come cheaply, as demonstrated in [19]: soundness of probabilistic counter-examples, rep-
resented as finite Markov chains, appeals to properties of the possibly infinitely many
concretisations of that finite Markov chain.

In abstraction-refinement implementations it is common practice to over-approximate
the transition relations of abstractions [3]. In [25], however, costly optimal abstractions
are computed over a partition of an MDP. The work reported here now allows us to
sythesise over-approximating games on that same partition, which can then be succes-
sively refined over this partition in the style of [14].

Let us conclude. We motivated the need for a three-valued framework for the ver-
ification and refutation of PCTL formulae on MDPs, stated requirements for such a
framework, and derived some meta-properties enjoyed by any framework meeting these
requirements. We then instantiated this framework by adapting a notion of stochas-
tic games, developing a simulation order for these adapted games and proving that this
adaptation meets all key requirements – including the requirement that deciding simula-
tion and abstract satisfaction is reasonably efficient. Along the way, we showed that the
simulation logically characterised by PCTL is coarser than our simulation order.

Acknowledgements This work was supported in part by the UK EPSRC grants
EP/D07956X/2 and EP/E028985/1. We also thank R. Segala for his correspondence
regarding [29].

References

[1] A. Antonik, M. Huth, K. Larsen, U. Nyman, and A. Wasowski. 20 Years of Modal and
Mixed Specifications. Bull. of the EATCS 95: 94–129, July 2008.

[2] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. Complexity of decision
problems for mixed and modal specifications. In Proc. of FoSSaCS’08, LNCS 4962, pp. 112–
126. Springer, 2008.

[3] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software predicate
abstraction. In Proc. of TACAS’04, LNCS 2988, pp. 388–403. Springer, 2004.

[4] T. Brázdil, V. Forejt, J. Křet́ınský, and A. Kučera. The satisfiability problem for probabilistic
CTL. In Proc. of LICS’08, pp. 391–402. IEEE CS, 2008.

[5] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal
logics. In Proc. of CAV’99, LNCS 1633, pp. 274–287. Springer, 1999.

17

[6] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial state
spaces. In Proc. of CONCUR’00, LNCS 1877, pp. 168–182. Springer, 2000.

[7] K. Chatterjee, M. Jurdzinski, and T. A. Henzinger. Quantitative stochastic parity games.
In Proc. of SODA’04, pp. 121–130, ACM Press, 2004.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Proc. CAV’00, LNCS 1855, pp. 154–169. Springer, 2000.

[9] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5): 1512–1542, 1994.

[10] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM
Transactions on Programming Languages and Systems 19(2): 253 – 291, 1997.

[11] D. Dams and K. S. Namjoshi. The existence of finite abstractions for branching time model
checking. In Proc. of LICS’04, pp. 335–344. IEEE CS, 2004.

[12] D. Dams and K. S. Namjoshi. Automata as abstractions. In Proc. of VMCAI’05, LNCS 3385,
pp. 216–232. Springer, 2005.

[13] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reduction and refinement
strategies for probabilistic systems. In Proc. of PAPM-PROBMIV’02, LNCS 2399, pp. 57–76.
Springer, 2002.

[14] S. Das and D. L. Dill. Successive approximation of abstract transition relations. In Proc. of
LICS’01, pp. 51–60. IEEE CS, 2001.

[15] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncer-
tainty, but with precision. In Proc. of LICS’04, pp. 170–179. IEEE CS, 2004.

[16] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Proc. of
SPIN’06, LNCS 3925, pp. 71–88. Springer, 2006.

[17] T. Han and J.-P. Katoen. Counterexamples in probabilistic model checking. In Proc. of
TACAS’07, LNCS 4424, pp. 72–86. Springer, 2007.

[18] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing 6: 512–535, 1994.

[19] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Proc. of CAV’08,
LNCS 5123, pp. 162–175. Springer, 2008.

[20] M. Huth. On finite-state approximants for probabilistic computation tree logic. Theoretical
Computer Science 346(1): 113–134, 2005.

[21] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. In Proc. of ESOP’01, LNCS 2028, pp. 155–169. Springer,
2001.

[22] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In
Proc. of LICS’91, pp. 266–277. IEEE CS, 1991.

[23] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-
time Markov chains. In Proc. of CAV’07, LNCS 4590, pp. 311–324. Springer, 2007.

[24] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based abstraction-
refinement framework for Markov decision processes. Technical Report RR-08-06, OUCL,
April 2008.

18

[25] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement for
probabilistic programs. In Proc. of VMCAI’09, LNCS 5403, pp. 182–197. Springer, 2009.

[26] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Springer-Verlag,
Second edition, 1976.

[27] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov decision
processes. In Proc. of QEST’06, pp. 157–166. IEEE CS, 2006.

[28] K. G. Larsen and B. Thomsen. A modal process logic. In Proc. of LICS’88, pp. 203–210.
IEEE CS, 1988.

[29] A. Parma and R. Segala. Logical characterizations of bisimulations for discrete probabilistic
systems. In Proc. of FoSSaCS’07, LNCS 4423, pp. 287–301. Springer, 2007.

[30] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In Proc. of
CONCUR’94, LNCS 836, pp. 481–496. Springer, 1994.

[31] D. Wagner. MPhil/PhD Transfer Report. Department of Computing, Imperial College
London. April 2008.

[32] L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In Proc. of
ATVA’07, LNCS 4762, pp. 207–222. Springer, 2007.

19

A Proofs for Section 3

A.1 Proof of Lemma 3.1

Lemma 3.1. For any A ∈ A the set of implementations I(A) is a union of equivalence
classes of ≡M .

Proof. Let A ∈ A , M ∈ I(A) and letM ′ ∈M be an arbitrary MDP such thatM ≡M M ′.
It is sufficient to prove that M ′ ∈ I(A). As M ∈ I(A), we have A vA eA (M). By R3,
we have eA (M) vA eA (M ′). By transitivity of preorders we have A vA eA (M ′); hence
M ′ ∈ I(A).

A.2 Proof of Lemma 3.2

Lemma 3.2. For Â, A ∈ A , Â vA A implies Â vth
A A.

Proof. Let Â, A ∈ A be such that Â vA A and let M ∈M be an MDP with M ∈ I(A).
To show Â vth

A A, by Def. 7, it is sufficient to show M ∈ I(Â). By Def. 6 we have
A vA eA (M). By transitivity of vA (as Â vA A) we obtain Â vA eA (M); hence
M ∈ I(Â).

A.3 Proof of Lemma 3.3

Lemma 3.3. For any A ∈ A and φ ∈ Φpctl we have A |=A φ implies A |=th
A φ.

Proof. Suppose A |=A φ, then for all M ∈ I(A), as A vA eA (M), by R5 it must be
that eA (M) |=A φ. By R4 this corresponds to M |=M φ. Then, because M |=M φ for all
M ∈ I(A), by Def. 8, it follows that A |=th

A φ.

A.4 Proof of Lemma 3.4

Lemma 3.4. For any Â, A ∈ A with Â vth
A A we have Â |=th

A φ ⇒ A |=th
A φ for all

φ ∈ Φpctl.

Proof. Suppose Â |=th
A φ, then by Def. 8 it must be that M |=M φ for all M ∈ I(Â). By

Def. 7 we have that I(A) ⊆ I(Â) and hence we have that M |=M φ for all M ∈ I(A). By
Def. 8, A |=th

A φ.

20

B Proofs for Section 4

Given a distribution λX ∈ D(X) we let supp(λX) be the support of λX , i.e. the countable
set {x ∈ X | λX(x) > 0}. We also define the size of games:

Definition 13. Let G = 〈S, I, T, L!, L?〉 be a game. We denote with |G| the size of G,
defined as |G| = nG +mG, where:

– nG = |S|, and

– mG =
∑

s∈S
∑

Λ∈T (s) (1 + |Λ|) .

Note that
∑

s∈S |T (s)| ≤ mG and
∑

s∈S
∑

Λ∈T (s) |Λ| ≤ mG. We assume that ap is fixed
and can therefore consider I, L! and L? as functions that we can query in polynomial
time.

B.1 Proof of Proposition 4.1

Proposition 4.1 (R3). For all M,M ′ ∈M we have that M ≡M M ′ implies eG (M) vG

eG (M ′).

Proof. Let M̂ = 〈Ŝ, Î, T̂ , L̂〉 and M = 〈S, I, T, L〉 be two strongly bisimilar MDPs and let
R ⊆ Ŝ×S be the relation such that M̂ ≡RM M . We will show that eG (M̂) vRG eG (M). To
show this, let eG (M̂) = 〈Ŝ, Î, T̂ ′, L̂, L̂〉 and eG (M) = 〈S, I, T̂ ′, L, L〉 as defined by Def. 10.
Using Def. 4 we immediately satisfy that I ⊆ R.Î. Remaining to show is that for every
〈ŝ, s〉 ∈ R we satisfy all conditions of Def. 11. Condition (i) and (ii) of Def. 11 are trivially
true as due to the bisimulation we have L̂(ŝ) = L(s). To show conditions (iii) and (iv)
hold, recall that T̂ ′(ŝ) = {T̂ (ŝ)} and T ′(s) = {T (s)}. Knowing both have precisely one
player 1 choice greatly simplifies the quantifiers of the game-simulation definition and it
is immediate to see condition (iii) of Def. 11 of the game-simulation eG (M̂) vRG eG (M)
corresponds directly with the conditions (ii) and (iii) of Def. 3 of the simulation M̂ vRM M .
Analogously, condition (iv) of Def. 11 of the simulation eG (M̂) vRG eG (M) corresponds
with conditions (ii) and (iii) of Def. 3 of the simulation M vR−1

M M̂ . As M̂ ≡RM M yields
M̂ vRM M and M vR−1

M M̂ both (iii) and (iv) of Def. 11 must hold.

B.2 Proof of Lemma 4.2

Lemma 4.2. There are Ĝ,G ∈ G with Ĝ vth
G G, Ĝ 6vG G.

Proof. Consider the two games Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉 and G = 〈S, I, T, L!, L?〉 depicted
in Figure 2. To see that Ĝ 6vG G, observe that s2 ∈ S (and hence s0 ∈ S) cannot be

21

game-simulated by any state in Ĝ. Remaining to show is that Ĝ vth
G G. By Definition 7

it is sufficient to show that for any MDP M = 〈S′, I ′, T ′, L′〉 such that M ∈ I(G) we
have that M ∈ I(Ĝ). Clearly, the main concern is that any behaviour of M that is
simulated by s2 cannot be simulated in Ĝ. Potentially this problem may cascade through
the co-algebraic definition of game-simulation. We will show that due to the fact M is
an implementation, this is not true.

Suppose G vRG eG (M) with R ⊆ S′ × S. We will construct R̂ ⊆ Ŝ × S′ such that
Ĝ vR̂G eG (M). Let us start by taking R̂ = {〈ŝi, s′〉 | 〈si, s′〉 ∈ R, i 6= 2}. One problem is
that states s′ ∈ S′ such that 〈s2, s′〉 ∈ R may now no longer have a suitable simulation
in Ĝ via R̂.

Consider s′ ∈ S to be any state of M such that 〈s2, s′〉 ∈ R and let T ′(s′) = Λ′. The
choice Λ′ is either the empty set or not. If Λ′ = ∅ then, considering condition (iii) and
(iv) of Definition 11, the presence of player 1 choice ∅ ∈ T (s2) is the only requirement for
us to simulate s′ (that is {µs4} ∈ T (s2) does not contribute anything). We add 〈ŝ1, s′〉 to
R̂. Note that 〈ŝ1, s′〉 satisfies condition (iii) and (iv).

Suppose Λ′ is not the emptyset, then we must have that for every λ′ ∈ Λ′ we have
that 〈µs4 , λ′〉 ∈ D(R) (the presence of ∅ ∈ T (s2) does not contribute anything). We add
〈ŝ3, s′〉 to R̂. Tuple 〈ŝ3, s′〉 satisfies condition (iii) and (iv).

Although now we have fixed the issue that states s′ ∈ S′ such that 〈s2, s′〉 ∈ R cannot
be simulated with R̂, we have not shown the absence of problems in view of the co-
algebraic nature of game-simulations. This follows from the observation that s2 can only
be reached through choice T (s0) = {µs1 , µs2 , µs3} in G. Hence, remaining to show is that
for any s′ ∈ S′ such that 〈s0, s′〉 ∈ R we have that 〈ŝ0, s′〉 satisfies condition (iii) and (iv)
of Def. 9 via R̂.

As T (s0) ‘subsumes’ T̂ (ŝ0) condition (iv) is trivially satisfied. To satisfy condition (iii)
it must be that any λ′ ∈ T ′(s′) is simulated by a combined transition in {µŝ1 , µŝ3}. We
know that λ′ is simulated by a combined transition in {µs1 , µs2 , µs3}. Clearly, for any
weight attributed to µs2 and for any s′′ ∈ supp(λ′) such that 〈s2, s′′〉 ∈ R we have that
either 〈ŝ1, s′′〉 ∈ R̂ or 〈ŝ3, s′′〉 ∈ R̂. We can easily redistribute the weight of µs2 to µs1
and µs3 to obtain a suitable weight distribution.

B.3 Proof of Proposition 4.3

In this section we will show that strong probabilistic game-refinement (vG) preserves
PCTL satisfaction (|=G). Our proof extends that of [24]. In this paper a game is con-
structed from a partition of the state space of an MDP. It is shown that with the obvious
refinement order on partitions the ‘abstract’ game soundly approximates extremal reach-

22

ability probabilities of the ‘concrete’ game. We extend this proof to arbitrary games
related by strong probabilistic game-simulation and to preservation of arbitrary PCTL
formulae.

Our extensions introduce a few changes in the proof. In [24] the two games are
related by means of an abstraction relation that is both right-total, left-total and left-
unique. This means that any play of the ‘concrete’ game maps to a single play of the
‘abstract’ game. When considering strong probabilistic game-simulation (in which we
allow arbitrary relations) we lose this correspondence. We will instead assign weights
between ‘plays’ of the concrete and abstract game.

To improve presentation we will sometimes denote tuples of strategies with a single
symbol and we will use the subscripts 1 and 2 to denote the player 1 and player 2
strategies, e.g. σ̂ = 〈σ̂1, σ̂2〉 ∈ Σ1

Ĝ⊥
× Σ2

Ĝ⊥
.

Partial plays & Arenas Due to the presence of combined transitions, plays themselves
are too fine-grained for this weight function; there is not always a clear correspondence
between the distributions of the plays. We therefore introduce a new concept called
partial plays:

Definition 14 (Partial plays). Let G = 〈S, I, T, L!, L?〉 be an arbitrary game. A partial
play of G is a strictly alternating sequence of states S and sets of distributions PD(S)
such that a state s ∈ S with T (s) 6= ∅ can be followed by Λ ∈ PD(S) if Λ ∈ T (s), and
Λ ∈ PD(S) can be followed by s ∈ S iff there exists λ ∈ Λ such that λ(s) > 0.

We denote with Π̃G the set of all finite partial plays. Strategy consistency of partial
plays is defined and denoted analogous to normal plays, as are partial plays starting from
configurations ω ∈ S ∪ PD(S).

For 〈σ1, σ2〉 ∈ Σ1
G × Σ2

G and set of finite partial plays Π ⊆ Π̃σ1,σ2 we let [Π]〈σ1,σ2〉 ⊆
Π∞
σ1,σ2

denote the obvious mapping of finite partial plays onto infinite plays consistent
with σ1 and σ2.

Definition 15 (Arena). Let Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉, G = 〈S, I, T, L!, L?〉 be games without
deadlocks. An arena of Ĝ and G is a tuple 〈a1,a2〉, where:

a1 ⊆ Ŝ × S

a2 ⊆ PD(Ŝ)× PD(S)

such that a1 consists of tuples of player 1 configurations and a2 consists of tuples of
player 2 configurations.

23

Let 〈a1,a2〉 be an arena, and let π̂ ∈ Π̃Ĝ and π ∈ Π̃G be two partial plays. We call π̂
and π 〈a1,a2〉-invariant if and only if |π| = |π̂| and for every i ≤ |π| = |π̂|:

〈π(i), π̂(i)〉 ∈ (a1 ∪ a2)

Let 〈σ̂1, σ̂2〉 ∈ Σ1
Ĝ
× Σ2

Ĝ
and 〈σ1, σ2〉 ∈ Σ1

G × Σ2
G be strategy pairs. We call 〈σ̂1, σ̂2〉

and 〈σ1, σ2〉 〈a1,a2〉-invariant if and only if for all finite 〈a1,a2〉-invariant partial plays
π̂ ∈ Π̃σ̂1,σ̂2 and π ∈ Π̃σ1,σ2 the following conditions hold:

〈
−→
π̂ ,−→π 〉 ∈ a1 ⇒ 〈σ̂1(π̂), σ1(π)〉 ∈ D(a2) (2a)

〈
−→
π̂ ,−→π 〉 ∈ a2 ⇒ 〈

−→
π̂ ◦ σ̂2(π̂),−→π ◦ σ2(π)〉 ∈ D(a1) (2b)

Let σ̂ ∈ Σ1
Ĝ
× Σ2

Ĝ
and σ ∈ Σ1

G × Σ2
G be two 〈a1,a2〉-invariant strategy pairs and

π ∈ Π̃σ and π̂ ∈ Π̃σ̂ two finite 〈a1,a2〉-invariant partial plays. We denote with δ〈σ̂,σ〉〈π̂,π〉 the
weight function witnessing (2a) resp. (2b).

Properties of arenas We now show some very useful properties for two deadlock-free
games under the assumption that we have tuples of strategies that are invariant under
an arena.

In this section we fix Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉, G = 〈S, I, T, L!, L?〉 to be deadlock-free
games and 〈a1,a2〉 to be an arena of Ĝ and G. We first explore the relation between the
partial plays of Ĝ and G.

Definition 16 (Weight). Let σ ∈ Σ1
G × Σ2

G and σ̂ ∈ Σ1
Ĝ
× Σ2

Ĝ
be two 〈a1,a2〉-invariant

strategy pairs. We define a weight function wσ̂
σ ∈ Π̃Ĝ × Π̃G → [0, 1] as follows:

wσ̂
σ(π̂, π) =
∏|π|−1

i=0 δ
〈σ̂,σ〉
〈π̂i,πi〉(π(i+1), π̂(i+1)) if 〈a1,a2〉-invariant

0 otherwise.

Intuitively, the weight wσ̂
σ(π̂, π) is the amount of ‘probability mass’ of π̂ and π that

the plays have attributed to simulating each other under σ̂ and σ.

Lemma B.1. Let σ̂ ∈ Σ1
Ĝ
× Σ2

Ĝ
and σ ∈ Σ1

G × Σ2
G be two 〈a1,a2〉-invariant strategy

24

pairs, then, for any 〈ω̂, ω〉 ∈ (a1 ∪ a2):

∀π ∈ Π̃σ(ω) :
∑

π̂∈eΠĜ(ω̂)

wσ̂
σ(π̂, π) = Prω

σ([π]σ) (3a)

∀π̂ ∈ Π̃σ̂(ω̂) :
∑

π∈eΠG(ω)

wσ̂
σ(π̂, π) = Prω̂

σ̂([π̂]σ̂) (3b)

∀π ∈ Π̃G(ω) \ Π̃σ(ω) :
∑

π̂∈eΠĜ(ω̂)

wσ̂
σ(π̂, π) = 0 (3c)

∀π̂ ∈ Π̃Ĝ(ω̂) \ Π̃σ̂(ω̂) :
∑

π∈eΠG(ω)

wσ̂
σ(π̂, π) = 0 (3d)

Proof. Let us first proof (3c). Clearly, any play π ∈ ΠG(s) that is inconsistent with σ

has to be of non-zero length and has to make a move that is inconsistent with σ; there
are two types of inconsistent transitions:

– The first type of an inconsistent transition occurs when for some i < |π|, we have
π(i) ∈ S and π(i+ 1) ∈ T (π(i)) but σ1(πi)(π(i+ 1)) = 0. Due to (1b), the weight
function δ〈σ̂,σ〉〈π̂i,πi〉(π̂(i+ 1), π(i+ 1)) will always yield 0 for any π̂.

– The second type of inconsistency occurs when if some i < |π|, we have π(i) ∈ PD(S)
and π(i + 1) ∈ S such that for some λ ∈ π(i) we have λ(π(i + 1)) > 0, but for no
such λ we have that σ2(πi)(λ) > 0 and hence (π(i) ◦ σ2(πi))(π(i+ 1)) = 0 and, by
(1b), the weight function δ〈σ̂,σ〉〈π̂i,πi〉(π̂(i+ 1), π(i+ 1)) will always yield 0 for any π̂.

Hence, inconsistent partial plays do not contribute anything to the the sum of (3c). The
proof of (3d) follows from symmetry.

From (3c) and (3d) we learn that wσ̂
σ(π̂, π) can only be non-zero when π is consistent

with σ and π̂ is consistent with σ̂. Hence, we can reduce the sum in (3a) and (3b) to
plays consistent with σ and σ̂ at will, which we will use implicitly in the following proofs.

We will proof (3a) by induction on the length of partial plays under consideration.
Note that the base case, partial plays of length 0, trivially satisfy (3a). Suppose (3a)
holds for all partial plays of size i. We will prove (3a) also holds for plays of size i + 1.
Let π′ ∈ Π̃σ(s) be an arbitrary partial play of length i + 1 consistent with σ. We split
the proof into the following cases cases: π′(i) ∈ S, and π′(i) ∈ PD(S).

First suppose π′(i) ∈ S, then by definition π′ is of the form π a Λ, for some π ∈ Π̃σ(ω)

25

of length i such that −→π ∈ S and some non-empty Λ ∈ PD(S) with σ1(π)(Λ) > 0.

Prω
σ([π a Λ]σ) =

σ1(π)(Λ) ·Prω
σ([π]σ) =∑

π̂∈ΠĜ(ω̂)

(
wσ̂

σ(π̂, π) · σ1(π)(Λ)
)

= (Ind.)

∑
π̂∈ΠĜ(ω̂)

wσ̂
σ(π̂, π) ·

∑
Λ̂∈(PD(Ŝ))

δ
〈σ̂,σ〉
〈π̂,π〉(Λ̂,Λ)

 = (Eq. 1b)

∑
π̂∈ΠĜ(ω̂)

 ∑
Λ̂∈PD(Ŝ)

(
wσ̂

σ(π̂, π) · δ〈σ̂,σ〉
〈π̂,π〉(Λ̂,Λ)

) =

∑
π̂aΛ̂∈ΠĜ(ω̂)

wσ̂
σ(π a Λ, π̂ a Λ̂) = (Def. 16)

Now, suppose π′(i) ∈ PD(S), then by definition π′ is of the form π a s, for some π ∈ Π̃σ(ω)
of length i such that −→π ∈ PD(S) and some s ∈ S such that (−→π ◦ σ2(π))(s) > 0.

Prω
σ([π a s]σ) =

(−→π ◦ σ2(π))(s) ·Prω
σ([π]σ) =∑

π̂∈ΠĜ(ω̂)

(
wσ̂

σ(π̂, π) · (−→π ◦ σ2(π))(s)
)

= (Ind.)

∑
π̂∈ΠĜ(ω̂)

wσ̂
σ(π̂, π) ·

∑
ŝ∈Ŝ

δ
〈σ̂,σ〉
〈π̂,π〉(ŝ, s)

 = (Eq. 1b)

∑
π̂∈ΠĜ(ω̂)

∑
ŝ∈Ŝ

(
wσ̂

σ(π̂, π) · δ〈σ̂,σ〉
〈π̂,π〉(ŝ, s)

) =

∑
π̂aŝ∈ΠĜ(ω̂)

wσ̂
σ(π a s, π̂ a ŝ) = (Def. 16)

The proof for (3b) follows symmetrically.

Under a pair of strategies σ̂ ∈ Σ1
Ĝ
×Σ2

Ĝ
we call a set of partial finite plays P ⊆ Π̃σ̂(ŝ)

disjoint iff for every π, π′ ∈ P we have that [π]σ̂ ∩ [π′]σ̂ = ∅.
Informally, this means we can compute the probability of Prŝσ̂([P]σ̂) by means of the

sum
∑

p∈P Prŝσ̂([p]σ̂).
We now show how arenas relate probabilities of certain disjoint sets of partial plays:

Proposition B.2. Let σ̂ ∈ Σ1
Ĝ
×Σ2

Ĝ
and σ ∈ Σ1

G×Σ2
G be two 〈a1,a2〉-invariant strategy

pairs, let 〈ω̂, ω〉 ∈ (a1 ∪ a2) and let cyl!
Ĝ
,cyl?

Ĝ
⊆ Π̃σ̂(ω̂) and cyl!

G,cyl?
G ⊆ Π̃σ(ω) be

disjoint sets of finite partial plays such that if for arbitrary 〈a1,a2〉-invariant π̂ ∈ Π̃σ̂(ω̂)

26

and π ∈ Π̃σ(ω) we have

(π̂ ∈ cyl!
Ĝ

)⇒ (∃i ≤ |π| : πi ∈ cyl!
G) (4a)

(∃i ≤ |π̂| : π̂i ∈ cyl?
Ĝ

)⇐ (π ∈ cyl?
G) . (4b)

then, the following inequalities hold

Prŝ
σ̂([cyl!

Ĝ
]σ̂) ≤ Prs

σ([cyl!
G]σ) (4c)

Prŝ
σ̂([cyl?

Ĝ
]σ̂) ≥ Prs

σ([cyl?
G]σ) (4d)

Proof. We extend the notion of disjointness to sets of tuples of 〈a1,a2〉-invariant partial
plays. We call such a P ⊆ Π̃σ̂(ŝ)× Π̃σ(s) disjoint if for every 〈π̂, π〉, 〈π̂′, π′〉 ∈ P we have
that either π and π′ are disjoint or π̂ and π̂′ are disjoint.

For a disjoint set of tuples of 〈a1,a2〉-invariant partial plays P and and 〈a1,a2〉-
invariant partial play 〈π̂′, π′〉 such that for every 〈π̂, π〉 ∈ P we have 〈π̂|π̂′|, π̂|π′|〉 = 〈π̂′, π′〉
then by Definition 16: ∑

〈π̂,π〉∈P

wσ̂
σ(π̂, π) ≤ wσ̂

σ(π̂
′, π′) .

Now, for some π̂ ∈ cyl!
Ĝ

let imgG(π̂) denote partial plays π ∈ Π̃σ(ω) such that π̂ and
π are 〈a1,a2〉-invariant. Let P = {〈π̂, π〉 | π̂ ∈ cyl!

Ĝ
, π ∈ imgG(π̂)}. By construction P

is disjoint.
Similarly, for some π′ ∈ cyl!

G let imgĜ(π′) denote plays π̂′ ∈ Π̃σ̂(ω̂) such that π̂′ and
π′ are 〈a1,a2〉-invariant.

Observe that for each 〈π̂, π〉 ∈ P , we have π̂ ∈ cyl!
Ĝ

and π̂ and π are 〈a1,a2〉-
invariant. Hence, by (4a), we infer that for some i ≤ |π| we have πi ∈ cyl!

G. Also we
know that π̂i is 〈a1,a2〉-invariant with πi.

We can rephrase the last paragraph as follows: for each 〈π̂, π〉 ∈ P there exist π′ ∈
cyl!

G and π̂′ ∈ imgĜ(π′) such that 〈π̂|π̂′|, π|π′|〉 = 〈π̂′, π′〉.
This yields the following inequality:∑

π̂∈cyl!
Ĝ

∑
π∈imgG(π̂)

wσ̂
σ(π̂, π) ≤

∑
π∈cyl!G

∑
π̂∈imgĜ(π)

wσ̂
σ(π̂, π) (4e)

27

We are now in a position to prove inequality (4c):

Prω̂
σ̂([cyl!

Ĝ
]σ̂) =

∑
π̂∈cyl!

Ĝ

Prω̂
σ̂([π̂]σ̂) (Disjoint)

=
∑

π̂∈cyl!
Ĝ

∑
π∈Πσ(ω)

wσ̂
σ(π̂, π) (Eq. 3b)

=
∑

π̂∈cyl!
Ĝ

∑
π∈imgG(π̂)

wσ̂
σ(π̂, π) (Def. imgG)

≤
∑

π∈cyl!G

∑
π̂∈imgĜ(π)

wσ̂
σ(π̂, π) (Eq. 4e)

=
∑

π∈cyl!G

∑
π̂∈Πσ̂(ω̂)

wσ̂
σ(π̂, π) (Def. imgĜ)

=
∑

π∈cyl!G

Prω
σ([π]σ) (Eq. 3a)

= Prω
σ([cyl!

G]σ) (Disjoint)

The proof of (4d) follows symmetrically.

Arenas and game-simulation Let Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉, G = 〈S, I, T, L!, L?〉 be arbi-
trary games and let R ⊆ Ŝ × S be such that Ĝ vRG G.

The results in the previous sections hold for deadlock-free games only. Fortunately,
however, PCTL semantics of Ĝ andG are defined over deadlock-free Ĝ⊥ = 〈Ŝ⊥, Î, T̂⊥, L̂

!
⊥, L̂

?
⊥〉

andG⊥ = 〈S⊥, I, T⊥, L
!
⊥, L

?
⊥〉. Let R⊥ ⊆ Ŝ⊥×S⊥ be such that 〈ŝ, s〉 ∈ R⊥ iff 〈ŝ, s〉 ∈ R,

s = ⊥1 or 〈ŝ, s〉 = 〈⊥2,⊥2〉.
We can now show that the conditions of Definition 11 are precisely what we need to

construct the following arenas:

– Let H(iii) ⊆ PD(Ŝ⊥)× PD(S⊥) be a relation such that 〈Λ̂,Λ〉 ∈ H(iii) if and only if
for every λ ∈ Λ there exists a weight distribution Λ̂C ∈ D(Λ̂) such that 〈Λ̂ ◦ λ̂C , λ〉 ∈
D(R⊥).

– We let H(iv) ⊆ PD(Ŝ⊥) × PD(S⊥) be a relation such that 〈Λ̂,Λ〉 ∈ H(iv) if and
only if for every λ̂ ∈ Λ̂ there exists a weight distribution λC ∈ D(Λ) such that
〈λ̂,Λ ◦ λC〉 ∈ D(R⊥).

Clearly, H(iii) has a direct correspondence to condition (iii) of Def. 11. The arena
〈R⊥,H(iii)〉 will be used to show Next and Until formulae are preserved under the modal-
ity “!”. In contrast, 〈R⊥,H(iv)〉 corresponds to condition (iv) of Def. 11 and will used to
show Next and Until formulae are preserved under the modality “?”. For this, we need

28

to link the notions of arenas 〈R⊥,H(iii)〉 and 〈R⊥,H(iv)〉 with the existence of invariant
strategy pairs:

Lemma B.3. For every 〈σ1, σ2〉 ∈ Σ1
G⊥
× Σ2

G⊥
there exists 〈σ̂1, σ̂2〉 ∈ Σ1

Ĝ⊥
× Σ2

Ĝ⊥
such

that 〈σ̂1, σ̂2〉 and 〈σ1, σ2〉 are 〈R⊥,H(iii)〉-invariant.

Proof. We will show that for any 〈σ1, σ2〉 we can always define 〈σ̂1, σ̂2〉 in such a way that
(2a) and (2b) are satisfied. To show this for (2a) consider that whenever 〈−→π ,

−→
π̂ 〉 ∈ R⊥,

by the deadlock-freeness of Ĝ and G, condition (iii) yields that for any every Λ ∈ T⊥(−→π)
there exists Λ̂ ∈ T̂⊥(

−→
π̂) such that 〈Λ̂,Λ〉 ∈ H(iii). It follows that for any distribution

σ1(π) ∈ D(T⊥(−→π)) we can construct a distribution over λ̂ ∈ T̂⊥(
−→
π̂) such that 〈λ̂, σ1(π)〉 ∈

D(H(iii)). If we take σ̂1(π̂) to be λ̂ we obtain 〈σ̂1(π̂), σ1(π)〉 ∈ D(H(iii)).
Remaining to show is that (2b) is also satisfied. Note that 〈

−→
π̂ ,−→π 〉 ∈ H(iii). As

we are only considering partial plays of Ĝ⊥ and G⊥ we can safely assume neither play
ends in ∅. Hence, by the definition of H(iii), for every λ ∈ −→π there exists a weight
distribution λ̂C ∈ D(

−→
π̂) such that 〈

−→
π̂ ◦ λ̂C , λ〉 =∈ D(R⊥). From this it follows that for

any distribution σ2(π) ∈ D(−→π) there exists a weight distribution λ̂′C ∈ D(
−→
π̂) such that

〈
−→
π̂ ◦ λ̂′C ,

−→π ◦ σ2(π)〉 ∈ D(R⊥). If we take σ̂2(π̂) to be λ̂′C then (2b) is satisfied, meaning
that 〈σ̂1, σ̂2〉 and 〈σ1, σ2〉 are 〈R⊥,H(iii)〉-invariant.

Lemma B.4. For every σ1 ∈ Σ1
G⊥

there exists a σ̂1 ∈ Σ1
Ĝ⊥

, and, independently, for
every σ̂2 ∈ Σ2

Ĝ⊥
there exists a σ2 ∈ Σ2

G⊥
such that 〈σ1, σ2〉 and 〈σ̂1, σ̂2〉 are 〈R⊥,H(iv)〉-

invariant.

Proof. Proof analogous to Lemma B.3, other than that condition (iv) of Definition 11 is
used instead of condition (iii) and the ordering is swapped for the proof of (2b) (matching
condition (iv)).

Preservation of PCTL We are now finally in a position to prove Proposition 4.3,
which we first recall:

Proposition 4.3. For any Ĝ,G ∈ G with Ĝ vG G we have that Ĝ |=G φ⇒ G |=G φ for
all φ ∈ Φpctl.

Proof. Suppose Ĝ vRG G. It is sufficient to show that if Ĝ⊥ |=G φ then G⊥ |=G φ. Let
Ĝ⊥ = 〈Ŝ⊥, Î⊥, T̂⊥, L̂

!
⊥, L̂

?
⊥〉 and let G⊥ = 〈S⊥, I⊥, T⊥, L

!
⊥, L

?
⊥〉.

Considering that I ⊆ R.Î it is sufficient to show that 〈ŝ, s〉 ∈ R implies that s |=!

φ ⇐ ŝ |=! φ for arbitrary φ ∈ Φpctl. We do this by structural induction on φ with the

29

induction hypothesis that for all φ ∈ Φpctl, 〈ŝ, s〉 ∈ R:

s |=! φ ⇐ ŝ |=! φ (5a)

s |=? φ ⇒ ŝ |=? φ (5b)

The base cases, in which φ ∈ ap, follows immediately from (i) and (ii) of Definition 11.
For negation ¬φ we have (using Definition 12 and (5a), (5b)):

s |=! ¬φ⇔ s 6|=? φ⇐ ŝ 6|=? φ⇔ ŝ |=! ¬φ

s |=? ¬φ⇔ s 6|=! φ⇒ ŝ 6|=! φ⇔ ŝ |=? ¬φ

For disjunction φ1 ∨ φ2 we have (using Definition 12 and (5a), (5b)):

ŝ |=! φ1 ∨ φ2 ⇔ (ŝ |=! φ1 or ŝ |=! φ1)⇒

(s |=! φ1 or s |=! φ1)⇔ s |=! φ1 ∨ φ2

and:

s |=? φ1 ∨ φ2 ⇔ (s |=? φ1 or s |=? φ1)⇒

(ŝ |=? φ1 or ŝ |=? φ1)⇔ ŝ |=? φ1 ∨ φ2

Remaining to show is that the induction hypothesis holds for the probabilitic operator.
From the PCTL semantics (Definition 12) it is easy to see that the implications are
satisfied if and only if for every PCTL path formula ψ ∈ Ψpctl the following inequations
hold:

inf
σ̂1,σ̂2

{
Prob!

σ̂1σ̂2
(ŝ,ψ)

}
≤ inf

σ1,σ2

{
Prob!

σ1σ2
(s,ψ)

}
(5c)

sup
σ̂1

inf
σ̂2

{
Prob?

σ̂1σ̂2
(ŝ,ψ)

}
≥ sup

σ1

inf
σ2

{
Prob?

σ1σ2
(s,ψ)

}
(5d)

inf
σ̂1

sup
σ̂2

{
Prob!

σ̂1σ̂2
(ŝ,ψ)

}
≤ inf

σ1
sup
σ2

{
Prob!

σ1σ2
(s,ψ)

}
(5e)

sup
σ̂1,σ̂2

{
Prob?

σ̂1σ̂2
(ŝ,ψ)

}
≥ sup

σ1,σ2

{
Prob?

σ1σ2
(s,ψ)

}
(5f)

In order to prove these inequalities indeed hold, we characterise the sets of plays being
measured as a set of finite disjoint partial plays. For G⊥ we define for every s ∈ S,
strategy pair σ ∈ Σ1

G⊥
× Σ2

G⊥
, PCTL formulae φ1, φ2 ⊆ Φpctl, modality m ∈ {!, ?} and

bound k ∈ N ∪ {∞} the following sets of finite partial plays:

– xm
σ (s, φ1) ⊆ Π̃σ(s) such that π ∈ xm

σ (s, φ1) iff |π| = 2 and π(2) |=m φ1.

30

– um
σ (s, k, φ1, φ2) ⊆ Π̃σ(s) such that π ∈ um

σ (s, k, φ1, φ2) iff there exists i ≤ k such that
|π| = 2i and π(2) |=m φ2 and for all j ≤ i we have π(2j) |=m φ1 and π(2j) 6|=m φ2.

Note that these sets are disjoint by construction. Also note that it is easily verifiable that
for all π ∈ Π∞

σ (s)

π |=m Xφ⇔ π ∈ [xm
σ (s, φ)]σ

π |=m (φ1U
≤k φ2)⇔ π ∈ [um

σ (s, k, φ1, φ2)]σ

Hence, it is possible to rewrite (5c), (5d), (5e) and (5f) using the disjoint sets of finite
partial plays, e.g. :

Prob!
σ̂(ŝ, Xφ) = Prŝσ̂([x

!
σ̂ (ŝ, φ)]σ̂)

Now, consider an arena 〈R⊥,a2〉 and 〈R⊥,a2〉-invariant strategy pairs σ̂ ∈ Σ1
Ĝ
×Σ2

Ĝ
and

σ ∈ Σ1
G × Σ2

G. Then, using the induction hypothesis and R⊥, for arbitrary 〈R⊥,a2〉-
invariant partial plays π̂ ∈ Π̃σ̂(ŝ) and π ∈ Π̃σ(s) we have

(π̂ ∈ x!
σ̂ (ŝ, φ))⇒ (∃i≤|π| : πi ∈ x!

σ (s, φ))

(π ∈ x?
σ (s, φ))⇒ (∃i≤|π| : π̂i ∈ x?

σ̂ (ŝ, φ))

(π̂ ∈ u!
σ̂ (ŝ, k, φ1, φ2))⇒ (∃i≤|π| : πi ∈ u!

σ (s, k, φ1, φ2))

(π ∈ u?
σ (s, k, φ1, φ2))⇒ (∃i≤|π| : π̂i ∈ u?

σ̂ (ŝ, k, φ1, φ2))

Hence, using Proposition B.2, if we have 〈R⊥,a2〉-invariant strategy pairs, then:

Prob!
σ̂(ŝ, Xφ) = Prŝσ̂([x

!
σ̂ (ŝ, φ)]σ̂) (Rewriting)

≤ Prsσ([x
!
σ (s, φ)]σ) (4c)

= Prob!
σ(s,Xφ) (Rewriting)

Analogously we also obtain (using also (4d)):

Prob?
σ̂(ŝ, Xφ) ≥ Prob?

σ(s,Xφ)

Prob!
σ̂(ŝ, φ1U

≤k φ2) ≤ Prob!
σ(s, φ1U

≤k φ2)

Prob?
σ̂(ŝ, φ1U

≤k φ2) ≥ Prob?
σ(s, φ1U

≤k φ2)

Now recall Lemma B.3 shows that for arbitrary σ ∈ Σ1
G⊥
×Σ2

G⊥
there exists a correspond-

ing strategy pair σ̂ ∈ Σ2
Ĝ⊥
× Σ1

Ĝ⊥
such that σ̂ and σ are 〈R⊥,H(iii)〉-invariant, yielding

that the inequality of (5c) and (5f) must be preserved for both Next and Until formulae.
Analogously, Lemma B.4 shows that for arbitrary σ1 ∈ Σ1

G⊥
there exists a strategy

31

σ̂1 ∈ Σ1
Ĝ⊥

such that for every strategy σ̂2 ∈ Σ2
Ĝ⊥

there exists a strategy σ2 ∈ Σ2
G⊥

such
that 〈σ̂1, σ̂2〉 and 〈σ1, σ2〉 are 〈R⊥,H(iv)〉-invariant. Hence Lemma B.4 yields that the
inequalities of (5d) and (5e) must be preserved for both Next and Until formulae.

B.4 Proof of Lemma 4.4

Lemma 4.4. There exists Ĝ,G ∈ G such that for all φ ∈ Φpctl it holds that Ĝ |=G φ⇒
G |=G φ but Ĝ 6vG G.

Proof. We will show that the two games in Figure 5 satisfying the lemma. Let Ĝ =
〈Ŝ, Î, T̂ , L̂!, L̂?〉 and G = 〈S, I, T, L!, L?〉. Let us define λl = µs3 , λm = 2

3 · s3 + 1
3 · s2

and λr = 1
2 · s1 + 1

2 · s2, and let λ̂l, λ̂r be the corresponding distributions in Ĝ, e.g.
T (s0) = {{λl, λm, λr}} and T̂ (ŝ0) = {{λ̂l, λ̂r}}. We have that Ĝ 6vG G as no combined
transition of T̂ (ŝ0) can simulate λm.

It is sufficient to show that Ĝ⊥ and G⊥ satisfy the same PCTL state formulae in
each state (assuming the obvious mapping between states of Ĝ⊥ and G⊥ and excluding
⊥1,⊥2). We will prove this by structural induction over PCTL state formulae. More
formally, our induction hypothesis is that for all φ ∈ Φpctl, ŝ ∈ Ŝ and m ∈ {!, ?} we have
that ŝi |=m φ in Ĝ⊥ iff si |=m φ in G⊥.

The base cases of our inductive argument are the PCTL formulae consisting of a single
atomic proposition a ∈ ap. Let ŝi ∈ Ŝ and m ∈ {!, ?}. As L̂m(ŝi) = Lm(si) we have that
ŝi |=m a iff si |=m a.

Let us now consider negation ¬φ. Clearly, for any ŝi ∈ Ŝ and m ∈ {!, ?} we have
ŝi |=m ¬φ if and only if ŝi 6|=¬m φ. Similarly, we have ŝi |=m ¬φ iff si 6|=¬m φ. By
the induction hypothesis the satisfaction of φ coincides for ŝi and si. Hence, negation
preserves the induction hypothesis.

Let us now consider disjunction φ1 ∨ φ2. Clearly, for any ŝi ∈ Ŝ and m ∈ {!, ?} we
have ŝi |=m φ1 ∨ φ2 if and only if (ŝi |=m φ1 or ŝi |=m φ2) and si |=m φ1 ∨ φ2 if and only
if (si |=m φ1 or si |=m φ2). By the induction hypothesis, satisfaction of both φ1 and φ2

coincide for ŝi and si, therefore disjunction preserves the induction hypothesis.
Finally, consider PCTL formulae of the form P ./ p〈ψ〉, where ./ ∈ {<,≤, >,≥}, p ∈

[0, 1] and ψ ∈ Ψpctl.
We first observe that under any pair of strategies the states in Ŝ \ {ŝ0} and S \ {s0}

will lead to ⊥2, in which no formula is satisfied. Satisfaction of P ./ p〈ψ〉 in these states
therefore only depends on the state labelling and the modality. As both are the same for
Ĝ and G, we trivially have that for all ŝi ∈ Ŝ \{ŝ0} and m ∈ {!, ?} we have ŝi |=m P ./ p〈ψ〉
iff si |=m P ./ p〈ψ〉. The remaining case concerns only satisfaction of the formulae of the

32

form P ./ p〈ψ〉 in ŝ0 and s0.
Our second observation is that, due to the absence of player 1 choice, there is only a

single player 1 strategy in both games, denoted σ̂1 ∈ Σ1
Ĝ⊥

and σ2 ∈ Σ1
G⊥

. Therefore, to
show that ŝ0 |=m P ./ p〈ψ〉 iff s0 |=m P ./ p〈ψ〉 it is sufficient to show that for any ψ ∈ Ψpctl,
m ∈ {!, ?}:

inf
σ̂2∈Σ2

Ĝ⊥

{
Probm

σ̂1σ̂2
(ŝ0, ψ)

}
= inf

σ2∈Σ2
G⊥

{
Probm

σ1σ2
(s0, ψ)

}
sup

σ̂2∈Σ2
Ĝ⊥

{
Probm

σ̂1σ̂2
(ŝ0, ψ)

}
= sup

σ2∈Σ2
G⊥

{
Probm

σ1σ2
(s0, ψ)

}
.

Clearly, every player 2 strategy of Ĝ⊥ has a corresponding strategy in G⊥. By the
induction hypothesis and the semantics of ψ, for any player 2 strategy σ̂2 ∈ Σ2

Ĝ
of G the

corresponding strategy σ2 ∈ Σ2
G yields

Probm
σ̂1σ̂2

(ŝ0, ψ) = Probm
σ1σ2

(s0, ψ) .

Therefore, we have

inf
σ̂2∈Σ2

Ĝ⊥

{
Probm

σ̂1σ̂2
(ŝ0, ψ)

}
≥ inf

σ2∈Σ2
G⊥

{
Probm

σ1σ2
(s0, ψ)

}
sup

σ̂2∈Σ2
Ĝ⊥

{
Probm

σ̂1σ̂2
(ŝ0, ψ)

}
≤ sup

σ2∈Σ2
G⊥

{
Probm

σ1σ2
(s0, ψ)

}
.

Conversely, player 2 strategies of σ2 ∈ Σ2
G⊥

of G⊥ may not have a corresponding strat-
egy in Ĝ⊥. As we are only concerned with the player 2 choices based on finite plays
from s0, the strategy σ2 has no corresponding strategy in Ĝ⊥ precisely when the λm
has a positive probability on the trivial path π = s0, {λl, λm, λr} ∈ Π∞

G⊥
(s0), e.g. we

have that σ2(π)(λm) > 0. However, we will show this does not affect the infimum and
supremum above, as there are always strategies σ!

2, σ
?
2 ∈ Σ2

G⊥
such that σ!

2(π)(λm) = 0
and σ?

2(π)(λm) = 0 and which yield a lower respectively higher probability:

Probm
σ!
1σ2

(s0, ψ) ≤ Probm
σ1σ2

(s0, ψ)

Probm
σ?
1σ2

(s0, ψ) ≥ Probm
σ1σ2

(s0, ψ)

Clearly, σ!
2 and σ!

1 do have corresponding strategies in Ĝ⊥ and hence the infimum and
supremum must be conserved, remaining to show is that such strategies can be con-
structed.

We construct σ!
2 and σ!

1 depending on ψ and modality m. Note that the semantics of
a path formula only considers the states of a play, and not the sets of distributions and
distributions in between states. As any infinite play from s0 runs through s1, s2 or s3 we

33

σ!
2 σ?

2

∅ λl, λr λl, λr
s1 λl λl, λr
s2 λl λr
s3 λr λl
s1, s2 λl λr
s1, s3 λr λl
s2, s3 λl, λr λl
s1, s2, s3 λl, λr λl, λr

Table 1: Redistribution of λm’s probability according to Sm
ψ .

can characterise the set of infinite plays that satisfy ψ under modality m by means of a
set Sm

ψ ⊆ {s1, s2, s3}.
With this knowledge we can modify σ2’s strategy on input π using table Table B.4 to

obtain the strategies σ!
2 and σ?

2 that satisfy the requirements. More specifically, we pick a
λ′ according to Table B.4 (in the row of Sm

ψ and the column of σ!
2). We let σ!

2(π)(λm) = 0,
σ!

2(π)(λ′) = σ2(π)(λ′)+σ2(π)(λm) and σ!
2(π)({λl, λr}\{λ′}) = σ2(π)({λl, λr}\{λ′}). We

construct σ?
2 similarly from Table B.4. It is easy to see that with this construction σ!

2 and
σ?

2 yield a smaller and greater probability to satisfy ψ under m, respectively. As these
strategies do have a corresponding strategy in Ĝ⊥ the infimum and supremum above are
not affected by σ2. This means that ŝ0 |=m P ./ p〈ψ〉 iff s0 |=m P ./ p〈ψ〉 and hence our
induction hypothesis is preserved by the probabilistic operator.

B.5 Proof of Lemma 4.6

Lemma 4.6 (R6). There is an MDP M ∈M and PCTL formula φ ∈ Φpctl such that
M |=M φ and there is no finite game Ĝ ∈ G such that M ∈ I(Ĝ) and Ĝ |=G φ.

Proof. We extend the proof of [11, Theorem 1]. Consider an MDP M = 〈S, I, T, L〉 where
S = {〈m,n〉 ∈ N×N | m ≤ n+ 1} and I = {0}×N. For every n ∈ N we have transitions
of the form T (〈0, n〉) = {µ〈1,n〉}, T (〈1, n〉) = {µ〈2,n〉}, . . . , T (〈n, n〉) = {µ〈n+1,n〉}. In
addition, for every n ∈ N we label L(〈n+ 1, n〉) = {q} and for every m ≤ n we label
L(〈m,n〉) = ∅. Clearly M |=M P> 0〈tt U q〉.

We will show there does not exists a finite game Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉 such that
Ĝ |=G P> 0〈tt U q〉 and Ĝ vRG eG (M) for some R ⊆ Ŝ × S. From Definition 12, this
amounts to showing that for any such game Ĝ and ŝ ∈ Î we have that

inf
σ̂1∈Σ1

Ĝ⊥

inf
σ̂2∈Σ2

Ĝ⊥

{
Prob!

σ̂1σ̂2
(ŝ, tt U q)

}
= 0 . (6a)

34

Informally, we need to show that for any such Ĝ and ŝ ∈ Î there exists a strategy pair
under which the probability of reaching a state in which q must hold is 0. That is, such
strategies must loop forever in non q!-states. We now construct such a strategy pair
〈σ̂1, σ̂2〉 ∈ Σ1

Ĝ
× Σ2

Ĝ
inductively over the lengths of plays π̂ ∈ Πσ̂1,σ̂2(ŝ), such that for all

π̂ where
−→
π̂ ∈ Ŝ we have that 〈

−→
π̂ , 〈l, k〉〉 ∈ R for some l ≤ k. Under such a strategy pair,

as L(〈l, k〉) = ∅, by Definition 11 and 12, we must have that
−→
π̂ 6|=! q for any π̂ consistent

with σ̂1 and σ̂2, meaning that (6a) must hold.
Let k denote |Ŝ|. Because |Î| is finite and |I| is infinite, due to the condition that

I ⊆ R.Î, there must exist some ŝ ∈ Î such that R.ŝ contains infinitely many initial states.
Hence, we must have that 〈0, k〉 ∈ R.ŝ for some k ≥ |Ŝ|.

First suppose π̂ has length 0 and hence π̂ = ŝ. As 〈ŝ, 〈0, k〉〉 ∈ R, by Definition 11
it must be that there exists a Λ̂ ∈ T̂ (ŝ) such that for some λ̂C ∈ D(Λ̂) we have that
〈Λ̂ ◦ λ̂C , µ〈1,k〉〉. As the right-hand distribution is a point distribution, we have that
any λ̂ ∈ supp(λ̂C) also satisfies 〈λ̂, µ〈1,k〉〉 ∈ D(R). We therefore let σ̂1(ŝ) = µΛ̂ and
σ̂2(ŝ, Λ̂) = µλ̂. Clearly, with these strategies, all 〈σ̂1, σ̂2〉-consistent plays π̂ of length 3
are such that 〈

−→
π̂ , 〈1, k〉〉 ∈ R, but it may also be the case that 〈

−→
π̂ , 〈0, k〉〉 ∈ R, in which

case we already have a loop.
Now suppose π̂ is of length 3i for some i ∈ N. We take the smallest l ∈ N such that

〈
−→
π̂ , 〈l, k〉〉 ∈ R and can again choose σ̂1 and σ2 such that all plays π̂ of length 3(i + 1)

satisfy that 〈
−→
π̂ , 〈l + 1, k〉〉 ∈ R. To show the invariant is preserved, we need to argue

that we always have that l + 1 ≤ k. First note that for plays of length 3i, we have
that the minimum l that satisfies 〈

−→
π̂ , 〈l, k〉〉 ∈ R is at most i, as we always have that

〈
−→
π̂ , 〈i, k〉〉 ∈ R. Therefore, the only problematic case occurs with plays of length 3k.

However, we will show that in this case the minimum such l is not equal to k. In a play
π̂ of length 3k we must have k + 1 > |Ŝ| states. Clearly, π̂ must contain a cycle, e.g.
π̂(3k) = π̂(3x) for some x < k. Hence, l ≤ x < k.

B.6 Proof of Proposition 4.7

We will construct a procedure that decides vG in polynomial time. This procedure is
based on a decision procedure for strong probabilistic simulation on probabilistic au-
tomata [32].

As basic building block of deciding strong probabilistic game-refinement we use a
decision procedure MatchP2X,Y (λX ,ΛY , R), parameterised by sets X and Y which,
given a distribution λX ∈ D(X) overX, a non-empty set of distributions ΛY ∈ PD(Y) over
Y and a relation R ⊆ X × Y returns true iff there exists a weight function λC ∈ D(ΛY)
such that 〈λX ,ΛY ◦ λC〉 ∈ D(R). An implementation of such a procedure is given in

35

[32, Section 4.4.1]. We refer to the pseudo-code below. This implementation runs in
polynomial time using a reduction to a linear programming problem; other than this, no
bound on the worst-case run-time complexity is provided. We will assume that in the
worst case the procedure MatchP2X,Y (λX ,ΛY , R) runs in O(fP1(|X|, |Y |, |ΛY |)) time,
where fP1 is polynomial in terms of |X|, |Y | and |ΛY | (we ignore the other inputs because
|supp(λX)| is bounded by O(|X|) and |R| is bounded by O(|X| · |Y |)).

Consider the procedure MathP1X,Y (ΛX ,ΛY , R) specified above, which takes as input
two potentially empty sets of distributions ΛX ∈ PD(X) and ΛY ∈ PD(Y) and a relation
R ⊆ X×Y . Given the specification of MathP2X,Y the procedure MathP1X,Y (ΛX ,ΛY , R)
returns true if and only if ΛX = ∅ ⇒ ΛY = ∅ and for all λX ∈ ΛX there exists a weight
function λC ∈ D(ΛY) such that 〈λX ,ΛY ◦ λC〉 ∈ D(R). Clearly, in the worst-case we call
MathP2X,Y for each λX ∈ ΛX , which means the run-time of MathP1X,Y (ΛX ,ΛY , R)
is bounded by O(|ΛX | · fP1(|X|, |Y |, |ΛY |)).

We are now in a position to provide a procedure to decide strong probabilistic game-
simulation, denoted DecideD1(Ĝ,G), shown in the pseudo-code below. We first prove
the correctness of this procedure:

Proposition B.5. For two Ĝ,G ∈ G we have Ĝ vG G if and only if DecideD1(Ĝ,G)
returns true.

Proof. Let Ĝ = 〈Ŝ, Î, T̂ , L̂!, L̂?〉 and G = 〈S, I, T, L!, L?〉 be two games. We write Ĝ �AG G

iff I ⊆ A.Î implies Ĝ vAG G, that is, if with R′′ the conditions (i), (ii), (iii) and (iv) of
Definition 11 hold for Ĝ and G, and hence Ĝ is a strong probabilistic game-simulation of
G with A iff I ⊆ A.Î.

We first show that, by construction, whenever the algorithm returns true we have
that Ĝ vG G. To show this, it is sufficient to show that whenever the algorithm reaches
line 19 it must be that Ĝ �RG G.

Procedure 1 MatchP1X,Y (ΛX ,ΛY , R)
1: if (ΛX = ∅) then
2: return (ΛY = ∅)
3: else
4: for all (λX ∈ ΛX) do
5: if (¬MatchP2X,Y (λX ,ΛX , R)) then
6: return false
7: end if
8: end for
9: return true

10: end if

36

Conditions (i) and (ii) trivially hold at line 19 due the initialisation in line 3. For
every 〈ŝ, s〉 ∈ R, conditions (iii) and (iv) must also hold when line 19 is reached, be-
cause for R = R′ to be true, for every Λ ∈ T (s) there must be some Λ̂ ∈ T̂ (ŝ) such
that MatchP1S,Ŝ(Λ, Λ̂, R−1) (line 10) and there must be some Λ̂ ∈ T̂ (ŝ) such that
MatchP1Ŝ,S(Λ̂,Λ, R) (line 11). When considering the definition of MatchP1, this
spells out precisely conditions (iii) and (iv).

Therefore, it must be that at line 19 we have Ĝ �RG G and, due to the expression of
line 19, we have that Ĝ vG G if the algorithm returns true.

Remaining to show is that the algorithm always returns true whenever Ĝ vG G.
We let Rmax ⊆ Ŝ × S be the relation such that 〈ŝ, s〉 ∈ Rmax iff there exists a relation
B ⊆ Ŝ×S such that Ĝ �BG G and 〈ŝ, s〉 ∈ B. We will show that R ⊇ Rmax is an invariant
of the main loop of the algorithm. Line 3 ensures R ⊇ Rmax prior to the start of the
loop because for any tuple 〈ŝ, s〉 6∈ R we also have, due to conditions (i) and (ii), that
〈ŝ, s〉 6∈ Rmax.

To show the inductive invariant is preserved, we need to show that, if 〈ŝ, s〉 ∈ Rmax,
then 〈ŝ, s〉 is not removed from R′ in line 14. Recall that if 〈ŝ, s〉 ∈ Rmax then there exists
some B ⊆ Ŝ × S such that Ĝ �BG G and 〈ŝ, s〉 ∈ B. In the algorithm this corresponds to

Procedure 2 DecideD1(Ĝ,G)

1: 〈Ŝ, Î, T̂ , L̂!, L̂?〉 ← Ĝ
2: 〈S, I, T, L!, L?〉 ← G
3: R,R′ ← {〈ŝ, s〉|L̂!(ŝ) ⊆ L!(s) ∧ L̂?(ŝ) ⊇ L?(s)}
4: repeat
5: R← R′

6: for all 〈ŝ, s〉 ∈ R do
7: for all Λ ∈ T (s) do
8: c3, c4← false
9: for all Λ̂ ∈ T̂ (ŝ) do

10: c3← c3 ∨MatchP1S,Ŝ(Λ, Λ̂, R−1)

11: c4← c4 ∨MatchP1Ŝ,S(Λ̂,Λ, R)
12: end for
13: if (¬c3 ∨ ¬c4) then
14: R′ ← R′ \ {〈ŝ, s〉}
15: end if
16: end for
17: end for
18: until (R′ = R)
19: return (I ⊆ R.Î)

37

the idea that for every Λ ∈ T (s) there exists a Λ̂ ∈ T̂ (ŝ) such that MatchP1S,Ŝ(Λ,Λ̂,B−1)
holds. Similarly, there exists a Λ̂ ∈ T̂ (ŝ) such that MatchP1Ŝ,S(Λ̂,Λ,B) holds.

By definition of Rmax, we have that B ⊆ Rmax. Also, by the inductive invariant, we
have Rmax ⊆ R; hence B ⊆ R, B−1 ⊆ R−1, D(B) ⊆ D(R), D(B−1) ⊆ D(R−1) and

MatchP1S,Ŝ(Λ,Λ̂,B−1)⇒MatchP1S,Ŝ(Λ,Λ̂,R−1)

MatchP1Ŝ,S(Λ̂,Λ,B)⇒MatchP1Ŝ,S(Λ̂,Λ,R)

Therefore we know that when considering 〈ŝ, s〉, we never remove 〈ŝ, s〉 from R′ in line 14
because c3 and c4 must be true for all Λ ∈ T (s). Hence the invariant is preserved.

Now, suppose there exists some A ⊆ Ŝ × S such that Ĝ vAG G, we will show the
algorithm returns true. Considering that R and R′ become strictly smaller with each
loop iteration, the procedure must eventually reach line 19. By definition of Rmax, as
Ĝ vAG G (and hence Ĝ �AG G), we must have that A ⊆ Rmax. By the inductive invariant
of the loop, we have that when we reach line 19 Rmax ⊆ R, and hence A ⊆ R. As I ⊆ A.Î
and A ⊆ R, we must have that I ⊆ R.Î. Hence, the algorithm returns true.

We are now in a position to prove Proposition 4.7, which we now recall:
Proposition 4.7. Deciding Ĝ vG G is in P.

Proof. By Proposition B.5 it is sufficient to show DecideD1(Ĝ,G) runs in polynomial
time with respect to the size of the games.

R and R′ become strictly smaller with each loop iteration, hence the procedure must
reach line 19 in O(nĜ · nG) iterations. The number of times lines 10 and 11 are executed
in each loop iteration is bounded by O(mĜ ·mG). Finally, the execution of lines 10 and
11 is bounded by O(mG · fP1(nG, nĜ,mĜ) +mĜ · fP1(nĜ, nG,mG)).

B.7 Proof of KMTS reduction

We will prove that deciding qualitative thorough refinement of games is at least as hard
as deciding thorough refinement of Kripke modal transition systems (KMTSs) [21].

We call an MDP M ∈ M qualitative iff every distribution that occurs in this MDP
is a point distribution. A MDP that is not qualitative is called quantitative. We let
Iql : G → P(M) be a function yielding all qualitative implementations of a game, e.g.
for every Ĝ ∈ G we have Iql(Ĝ) = {M ∈ M | Ĝ vG eG (M), M is qualitative}. The
qualitative thorough refinement order vql

G ⊆ G × G is such that for two games Ĝ,G ∈ G

we have Ĝ vql
G G iff Iql(G) ⊆ Iql(Ĝ). We will show that deciding whether two games are

qualitative thorough refinements is at least as hard as deciding thorough refinement of
KMTSs.

38

In order to show this we first introduce Kripke structures, the implementations of
KMTSs, and then proceed to formally introduce KMTSs and their refinement preorder.
Then we will provide an embedding from KMTSs to games and show qualitative thorough
refinement of embedded KMTSs corresponds to thorough refinement.

Definition 17 (Kripke structure). A Kripke structure is a tuple 〈S, I, T, L〉 where: S
is a set of states; I ⊆ S is a non-empty set of initial states; T ⊆ S × S is a transition
relation, and L ∈ S → P(ap) is a labelling function.

We denote with P the set of all Kripke structures. The three-valued abstractions
of Kripke structures are Kripke modal transition systems (KMTSs), which have two
transition relations:

Definition 18 (Kripke modal transition system). A Kripke modal transition system
(KMTS) is a tuple K = 〈S, I, T !, T ?, L!, L?〉: S is a set of states; I ⊆ S is a non-empty
set of initial states; T !, T ? ⊆ S × S are transition relations such that T ! ⊆ T̂ ?, and
L!, L? ∈ S → P(ap) are labelling functions such that, for every s ∈ S, we have that
L!(s) ⊆ L?(s). The size |K| of the KMTS is the sum |S|+ |T ! ∪ T ?|. We denote with K

the set of all KMTSs.

We now recall the refinement preorder of KMTSs:

Definition 19. Let K̂ = 〈Ŝ, Î, T̂ !, T̂ ?, L!, L?〉 and K = 〈S, I, T !, T ?, L̂!, L̂?〉 be KMTSs.
We say K̂ is a simulation of K via relation R ⊆ Ŝ × S, denoted K̂ vRK K, iff I ⊆ R.Î

and, whenever 〈ŝ, s〉 ∈ R, the following conditions hold:

(i) L̂!(ŝ) ⊆ L!(s)

(ii) L̂?(ŝ) ⊇ L?(s)

(iii) ∀〈ŝ, ŝ′〉 ∈ T̂ ! ∃〈s, s′〉 ∈ T ! : 〈ŝ′, s′〉 ∈ R.

(iv) ∀〈s, s′〉 ∈ T ? ∃〈ŝ, ŝ′〉 ∈ T̂ ? : 〈ŝ′, s′〉 ∈ R.

We let vK ⊆ K ×K be the relation such that K̂ vK K iff there is a relation R ⊆ Ŝ×S
with K̂ vRK K.

Finally, we define the embedding of Kripke structures as KMTSs:

Definition 20 (Kripke to KMTS). Let eK ∈P → K be the embedding function which,
for every Kripke structure 〈S, I, T, L〉, yields the KMTS 〈S, I, T, T, L, L〉.

39

Clearly any KMTS such that L! = L? and T ! = T ? is an embedding of some Kripke
structure. Akin to Definition 6, the embedding function in combination with the preorder
give rise to an implementation function I ∈ K → P(P) yielding all Kripke structures
that refine a given KMTS. In addition, akin to Definition 7, we obtain a thorough refine-
ment preorder vth

K .
Now we have introduced KMTSs and the thorough refinement relation over KMTSs,

we will now provide an embedding of KMTSs into games and show that deciding quali-
tative thorough refinement vql

G over such embeddings corresponds to deciding vth
K .

Definition 21 (KMTS to games). Let eGK ∈ K → G be the embedding function which,
for every KMTS 〈S, I, T !, T ?, L!, L?〉, yields the game 〈S, I, T̂ , L!, L?〉 where for every
s ∈ S:

T̂ (s) = {{µs′ | s′ ∈ T !.s}} ∪ {{µs′ | s′ ∈ T ?.s}} . (7)

This embedding function is polynomial in both space and time. In order to show this
embedding allows us to decide thorough refinement of KMTSs through games, we first
proof some smaller lemmas:

Lemma B.6. The embedding eGK preserves implementations. That is, for any Kripke
structure P ∈P there exists an MDP M ∈M such that eG (M) = eGK (eK (P)).

Proof. Let P = 〈S, I, T, L〉 and let eGK (eK (P)) = 〈S, I, T̂ , L, L〉 as obtained by applying
Def. 20 and Def. 21. We already have that the labelling functions are two-valued by
definition. Therefore, by Def. 10 a suitable MDP exists if and only if for every s ∈ S

we have |T̂ (s)| = 1. By Def. 20 we know that in eK (P) the may and must transition
relations coincide. Therefore the transition function, as defined in Eq. 7 of Def. 21, always
yields a singleton set by definition. However, note that the element of this singleton set
may contain a set with multiple point distributions.

Lemma B.7. The embedding eGK preserves the refinement order. That is, for arbitrary
KMTSs K̂,K ∈ K we have that K̂ vK K iff eGK (K̂) vG eGK (K).

Proof. Let K̂ = 〈Ŝ, Î, T̂ !, T̂ ?, L̂!, L̂?〉 and K ∈ 〈S, I, T !, T ?, L!, L?〉 be arbitrary KMTSs
and let 〈Ŝ, Î, T̂ , L̂!, L̂?〉 and 〈S, I, T, L!, L?〉 be the corresponding embedded KMTSs
eGK (K̂) and eGK (K), respectively.

It is sufficient to show that for any R ⊆ Ŝ × S we have that K̂ vRK K iff eGK (K̂) vRG
eGK (K). It is immediate to see that the conditions regarding initial states and the labelling
for strong probabilistic game-simulation of eGK (K̂) and eGK (K) (see Def. 11 and Def. 21)
are identical to the corresponding conditions on KMTS refinement of K̂ and K (see Def.

40

19). Therefore, it is sufficient to show that conditions (iii) and (iv) of Def. 19 hold iff
conditions (iii) and (iv) of Def. 11 hold.

Consider any 〈ŝ, s〉 ∈ R and let Λ! = {µs′ | s′ ∈ T !.s} and Λ? = {µs′ | s′ ∈ T ?.s}.
By definition T (s) = {Λ!} ∪ {Λ?} and Λ! ⊆ Λ?. Similarly, Λ̂! = {µŝ′ | ŝ′ ∈ T̂ !.ŝ} and
Λ̂? = {µŝ′ | ŝ′ ∈ T̂ ?.ŝ}. We have T̂ (ŝ) = {Λ̂!} ∪ {Λ̂?} and Λ̂! ⊆ Λ̂?.

In this knowlegde, the quantifiers in condition (iii) and condition (iv) of Def. 11 can
be simplified, hence, we rephrase conditions (iii) and (iv) of Def. 11 as follows:

(g.i) Λ̂! = ∅ ⇐ Λ! = ∅

(g.ii) Λ̂? = ∅ ⇒ Λ? = ∅

(g.iii) For every µŝ′ ∈ Λ̂! there exists a µs′ ∈ Λ! such that 〈µŝ′ , µs′〉 ∈ D(R)

(g.iv) For every µs′ ∈ Λ? there exists a µŝ′ ∈ Λ̂? such that 〈µŝ′ , µs′〉 ∈ D(R)

In fact, (g.i) is implied by (g.iii) and (g.ii) is implied by (g.iv). Moreover, by the
definition of Λ!,Λ?, Λ̂! and Λ̂? and in the knowledge that 〈x, y〉 ∈ R iff 〈µx, µy〉 ∈ D(R),
condition (g.iii) coincides with condition (iii) of Def. 19 and condition (g.iv) coincides
with condition (iv) of Def. 19.

Note that up to now we have not needed to restrict ourselves to qualitative MDPs.
However, to prove the second part of the following lemma we do need this requirement:

Lemma B.8. For every qualitative MDP M ∈ M such that eG (M) ∈ Iql(eGK (K̂)) for
some KMTS K̂ ∈ K , there exists a Kripke structure P ∈ P such that P ∈ I(K̂) and
eGK (eK (P)) vG eG (M).

Proof. Let 〈S, I, TM , L〉 be the qualitative MDP M and let 〈S, I, TG , L, L〉 be its em-
bedding eG (M). Note that for every s ∈ S we have TG (s) = {TM (s)}. Let K̂ =
〈Ŝ, Î, T̂ !, T̂ ?, L̂!, L̂?〉 and let 〈Ŝ, Î, T̂ , L̂!, L̂?〉 be its game embedding eGK (K). We know
that for any ŝ ∈ Ŝ we have that T̂ (ŝ) = {Λ̂!} ∪ {Λ̂?} where Λ̂! = {µs′ | ŝ′ ∈ T̂ !.ŝ} and
Λ̂? = {µŝ′ | ŝ′ ∈ T̂ ?.ŝ}.

As eG (M) ∈ I(eGK (K̂)) there must be some R ⊆ Ŝ × S such that eGK (K̂) vRG eG (M).
From M we construct a Kripke structure P = 〈S, I, TP , L〉 where 〈s, s′〉 ∈ TP iff

for some λ ∈ TM (s) we have that s′ ∈ supp(λ). It is now sufficient to show that
K̂ vRK eK (P) (and hence P ∈ I(K̂)) and eGK (eK (P)) vG eG (M). We first show
K̂ vRK eK (P) without assuming that M was qualitative.

Consider that eK (P) = 〈S, I, TP , TP , L, L〉. We already have that I ⊆ R.Î and
that for every 〈ŝ, s〉 ∈ R we have L̂!(ŝ) ⊆ L(s) and L̂?(ŝ) ⊇ L(s) from the fact that

41

eGK (K̂) vRG eG (M). Remaining to show is conditions (iii) and (iv) of Def. 19. To show
condition (iii) of Def. 19 we must show that whenever 〈ŝ, s〉 ∈ R and 〈ŝ, ŝ′〉 ∈ T̂ ! there
exists 〈s, s′〉 ∈ TP such that 〈ŝ′, s′〉 ∈ R. Therefore, let 〈ŝ, s〉 ∈ R and 〈ŝ, ŝ′〉 ∈ T̂ ! be
arbitrary tuples. We will show that there exists 〈s, s′〉 ∈ TP such that 〈ŝ′, s′〉 ∈ R.

Due to the fact that T̂ (ŝ) = {Λ̂!} ∪ {Λ̂?} where Λ̂! = {µs′ | ŝ′ ∈ T̂ !.ŝ} and Λ̂! ⊆ Λ̂?

and due to the fact that TG (s) = {TM (s)}, the condition (iii) of Def. 11 of the simulation
eGK (K̂) vRG eG (M) only requires that TM (s) is such that for every µŝ′ ∈ Λ̂! there exists a
λ ∈ TM (s) such that 〈µŝ′ , λ〉 ∈ D(R). Note that λ is not necessarily a point distribution,
however, from the definition of weight functions we trivially have that 〈ŝ′, s′〉 ∈ R for any
s′ ∈ supp(λ). As the support of any distribution is always non-empty, and 〈s, s′〉 ∈ TP

for any s′ ∈ supp(λ), we have proven there exists 〈s, s′〉 ∈ TP such that 〈ŝ′, s′〉 ∈ R. This
means that condition (iii) of Def. 19 holds.

To show condition (iv) of Def. 19 we must show that whenever 〈ŝ, s〉 ∈ R and 〈s, s′〉 ∈
TP there exists 〈ŝ, ŝ′〉 ∈ T̂ ? such that 〈ŝ′, s′〉 ∈ R. Therefore, let 〈ŝ, s〉 ∈ R and 〈s, s′〉 ∈
TP be arbitrary tuples. We will show that there exists 〈ŝ, ŝ′〉 ∈ T̂ ? such that 〈ŝ′, s′〉 ∈ R.

Due to the fact that T̂ (ŝ) = {Λ̂!} ∪ {Λ̂?}, where Λ̂? = {µs′ | ŝ′ ∈ T̂ ?.ŝ} and Λ̂! ⊆ Λ̂?,
and due to the fact that TG (s) = {TM (s)}, the condition (iv) of Def. 11 of the simulation
eGK (K̂) vRG eG (M) requires that Λ̂? is such that for every λ ∈ TM (s) there exists a µŝ′ ∈ Λ̂?

such that 〈µŝ′ , λ〉 ∈ D(R). Because 〈s, s′〉 ∈ TP there must exist a distribution λ′ ∈ TM (s)
such that s′ ∈ supp(λ′). Clearly, there exists µŝ′ ∈ Λ̂? such that 〈µŝ′ , λ′〉 ∈ D(R) (and
hence 〈ŝ′, s′〉 ∈ R). By the definition of Λ̂?, there must exist 〈ŝ, ŝ′〉 ∈ T̂ ? such that
〈ŝ′, s′〉 ∈ R. This concludes that condition (iv) of Def. 19 holds and therefore that
K̂ vRK eK (P).

Remaining to show is that eGK (eK (P)) vG eG (M). Let 〈S, I, T ′G , L, L〉 be the em-
bedding eGK (eK (P)). Note that eGK (eK (P)) and eG (M) already agree on S, I and L.
Moreover, as TM consists only of point distributions, for every s ∈ S we have that
T ′G (s) = {TM (s)} = TG (s). This means that eGK (eK (P)) = eG (M) and as the refinement
vG is a preorder, and hence reflexive, we trivially have that eGK (eK (P)) vG eG (M).

Proposition B.9. For every K̂,K ∈ K we have that I(K) ⊆ I(K̂) iff Iql(eGK (K)) ⊆
Iql(eGK (K̂)).

Proof. Let K̂,K ∈ K be arbitrary KMTSs. We first prove the implication from right
to left, that is: if for some Kripke structure P ∈ P we have that P ∈ I(K) and

42

I(eGK (K)) ⊆ I(eGK (K̂)), then P ∈ I(K̂).

P ∈ I(K)⇐⇒

K vK eK (P)⇐⇒ (Def. 6)

eG
K (K) vG eG

K (eK (P)) =⇒ (Lem. B.7)

eG
K (K̂) vG eG

K (eK (P))⇐⇒ (Lem. B.6)

K̂ vK eK (P)⇐⇒ (Lem. B.7)

P ∈ I(K̂) (Def. 6)

We now prove the implication in the other direction. That is, if for some MDP M ∈M

we have that M ∈ Iql(eGK (K)) and I(K) ⊆ I(K̂), then M ∈ Iql(eGK (K̂)). By Lemma B.8
and B.7, in the following, let P ∈P be such that eGK (K) vG eGK (eK (P)) vG eG (M):

M ∈ Iql(eG
K (K))⇐⇒

eG
K (K) vG eG

K (eK (P))⇐⇒ (Lem. B.8)

K vK eK (P) =⇒ (Lem. B.7)

K̂ vK eK (P)⇐⇒ (Assumption)

eG
K (K̂) vG eG

K (eK (P)) =⇒ (Lem. B.7)

eG
K (K̂) vG eG (M)⇐⇒ (Lem. B.8)

M ∈ Iql(eG
K (K̂)) (Def. 6)

B.8 Proof of Proposition 4.9

Proposition 4.9. PCTL satisfiability over MDPs can be reduced to deciding the thor-
ough satisfaction of games.

Proof. Consider the game Ĝ = 〈{ŝ0}, {ŝ0}, T̂ , L̂!, L̂?〉 depicted in Figure 3 (with T̂ (ŝ0) =
{{µŝ0}, ∅}, L̂!(ŝ0) = ∅ and L̂?(ŝ0) = ap). We will show that for any PCTL formula
φ ∈ Φpctl we have that Ĝ 6|=th

G ¬φ iff φ is satisfiable.
We first prove that I(Ĝ) = M , e.g. that Ĝ is implemented by any MDP. To show

this, let M ∈M be an arbitrary MDP, let eG (M) = 〈S, I, T, L, L〉 and let R = {ŝ0} × S.
We will show that Ĝ vRG eG (M). Clearly, I ⊆ S = R.ŝ0. Moreover, for any 〈ŝ0, s〉 ∈ R,
as L̂!(ŝ0) = ∅ and L̂?(ŝ0) = ap condition (i) and (ii) of Def. 11 are trivially satisfied.

For any 〈ŝ0, s〉 ∈ R, consider an arbitrary concrete player 1 choice Λ ∈ T (s). We wish
to show that conditions (iii) and (iv) of Def. 11 are satisfied for Λ. We have two cases:
Λ = ∅ or Λ 6= ∅. If Λ = ∅, then taking ∅ ∈ T̂ (ŝ0) satisfies both condition (iii) and (iv)
tivially. If Λ 6= ∅, we will now show that condition (iii) and (iv) are satisfied due to the
presence of {µŝ0} ∈ T̂ (ŝ0).

43

For condition (iii) let µ{µŝ0
} ∈ D({µŝ0}). Clearly, {µŝ0} ◦ µ{µŝ0

} = µŝ0 and for any
λ ∈ Λ we trivially have 〈µŝ0 , λ〉 ∈ D(R).

For condition (iv) let λC ∈ D(Λ) be an arbitrary weight function over Λ. The resulting
distribution Λ ◦ λC ∈ D(S) (or in fact any distribution over S) trivially simulates µŝ0 ,
hence 〈µŝ0 ,Λ ◦ λC〉 ∈ D(R).

We have shown that all conditions of Def. 11 hold, and therefore Ĝ vRG eG (M) (e.g.
M ∈ I(Ĝ)). Moreover, as we made no assumptions on M , it must be that I(Ĝ) = M .

Now, suppose φ ∈ Φpctl is satisfiable over M , i.e. there is some M ∈ M such
that M |=M φ. Due to the two-valued semantics of MDPs, M 6|=M ¬φ and hence, by
Definition 8, Ĝ 6|=th

G ¬φ.
To show the other direction, suppose Ĝ 6|=th

G ¬φ. By Definition 8 there exists some
M ∈M such that M 6|=M ¬φ. Clearly, this means φ is satisfied by some initial state of
M⊥. We construct M ′ from M by restricting the initial states to the state satisfying φ.
Clearly, M ′ |=M φ and hence φ is satisfiable.

44

	Introduction
	Background
	Abstraction framework
	Game-based abstraction framework
	Discussion and conclusions
	Proofs for [sect:abstractionframework]Section 3
	Proof of [lem:impl-closed-under-bis]Lemma 3.1
	Proof of [lem:underapprox-thorough-refinement]Lemma 3.2
	Proof of [lem:underapprox-thorough-satisfaction]Lemma 3.3
	Proof of [lem:r6]Lemma 3.4

	Proofs for [sect:game-framework]Section 4
	Proof of [prop:r3]Proposition 4.1
	Proof of [cor:rev-underapprox-thorough-refinement]Lemma 4.2
	Proof of [prop:r6]Proposition 4.3
	Proof of [lem:reverse-r6]Lemma 4.4
	Proof of [lem:r7]Lemma 4.6
	Proof of [prop:d1]Proposition 4.7
	Proof of KMTS reduction
	Proof of [prop:d4]Proposition 4.9

