
Symbolic Model Checking of Probabilistic Timed
Automata Using Backwards Reachability∗

Marta Kwiatkowska, Gethin Norman and Jeremy Sproston
University of Birmingham, Birmingham B15 2TT, United Kingdom

{M.Z.Kwiatkowska,G.Norman,J.Sproston}@cs.bham.ac.uk

January 26, 2000

Abstract

We consider probabilistic timed automata of [13], an extension of the timed au-
tomata model of [2] with discrete probability distributions. In contrast to timed
automata, which model real-time systems purely in terms of nondeterminism, our
model allows to express the likelihood of the system making certain transitions,
and is thus appropriate for modelling fault-tolerance and probabilistic failures. We
present a symbolic model checking algorithm for the existential fragment of the logic
PTCTL of [13] based on backward reachability as in [12]. The logic allows us to
specify properties such as “with probability 0.99 or greater, it is possible to correctly
deliver a data packet within 5 time units”, or “with probability 0.87 or greater, the
system never enters an error state”.

1 Introduction

Much progress has been made recently with formal methods and tools for the verification of
real-time systems, to mention the timed automata model [2] and the associated tools such
as UPPAAL [4] and KRONOS [6]. With the help of these, the modelling and automated
analysis of systems is possible in the presence of dense real-time by means of reduction of
timed automata to finite quotient structures.

The timed automata model describes the system events purely in terms of nondeter-
minism. However, it may be desirable to express the relative likelihood of the system
exhibiting certain behaviour. For example, we may wish to model a system for which the
target node of a transition is not uniquely determined, but instead is given probabilisti-
cally ; for example, a transition can result in success with probability 0.9, and otherwise

∗The first two authors are supported in part by EPSRC grant GR/M04617.

Technical Report CSR-00-1, School of Computer Science, University of Birmingham, January 2000.

1

an error state is entered. Another example could be a communications protocol, which
delivers data over unreliable medium; thus, a message is lost with probability 0.05 each
time a communication channel is used. In such cases, quantitative estimates of the likeli-
hood of properties being satisfied or violated are called for. For example, we might wish
to establish the minimal/maximal probability of never entering an error state in the gear
box controller [15], or the probability of the message being delivered correctly within t
time units in the bounded retransmission protocol [7]. Minimal/maximal probabilities are
obtained instead of exact ones because of nondeterminism. There exist established meth-
ods for model checking of untimed probabilistic systems against reachability problems and
temporal logic specifications such as PBTL [5, 3, 8].

This paper is a contribution in the area of automatic verification of probabilistic timed
automata. This model was introduced in [13], where a model checking method for the
logic PTCTL (a synthesis of TCTL of [1] and PBTL of [3]) has also been presented.
Unfortunately, the method of [13] is not practical, as it relies on the construction of the
full region graph of the automaton (exponential in the number of clocks). Here we propose
an improvement, a symbolic method based on backward reachability, for the existential
fragment of the logic PTCTL. Our starting point is the non-probabilistic, real-time, model
checking algorithm of [12], which we adapt to our setting through a judicious combination
with the maximal probability reachability algorithm of [9].

Due to the presence of quantitative probabilities, the unstructured aggregation of back-
wards reachable states in a single set featured in the method of [12] is insufficient. Instead,
for a given ‘until’ formula, we generate a certain quotient transition system on this state
set, then solve a corresponding linear programming problem to establish the probability
of the formula being satisfied. Another improvement of the approach of [13], for the more
restricted case of probabilistic reachability properties via forward reachability, has been
proposed in [14].

2 Concurrent Probabilistic Systems

We assume some familiarity with Markov chains and probability theory, see e.g. [16]. Let S
be a finite set. A probability subdistribution (distribution) on S is a function p : S → [0, 1]
such that

∑
s∈S p(s) ≤ 1 (= 1). Since our results generalise to the case of subdistributions,

by abuse of notation we refer to subdistributions as distributions. The set of distributions
over S is denoted by µ(S). A concurrent probabilistic system is a pair C = (S, Steps) where
S is a finite set of states and Steps a function which assigns to each state s ∈ S a finite,
non-empty set Steps(s) of probability distributions on S. Elements of Steps(s) are called
transitions. Execution of C results in paths, which arise by first resolving nondeterminism
in a given state, and then moving to the target state according to the selected probability
distribution. A path of the system C = (S, Steps) is a non-empty, finite or infinite sequence,

π = s0
p0−→ s1

p1−→ s2
p2−→ · · · where si ∈ S, pi ∈ Steps(si) with pi(si+1) > 0 for all 0 ≤ i ≤ |π|,

|π| length of path π. We use π(i) to refer to the ith state of π, and last(π) to its last state.
We let Path ful(s) denote the set of infinite paths of C starting in s ∈ S.

2

The selection of a probability distribution is made by an adversary, a function A map-
ping every finite path ρ of C to a distribution A(ρ) on S such that A(ρ) ∈ Steps(last(ρ))
is a transition in C. The subset of infinite paths starting in s and corresponding to the
choices of an adversary A is denoted by PathAful(s). With each adversary one can associate
a sequential Markov chain whose states are finite paths of C, together with the induced
probability measure Prob on subsets of Path ful(s); see [3] for more details. We rely on the
following known result.

Theorem 1 [8] Let C = (S, Steps) be a concurrent probabilistic system, R ⊆ S. Define
ReachE (s, R) as the maximal probability of reaching the set of states R in C. The linear
programming problem over the set {xs | s ∈ S \R} of variables: minimize

∑
s∈S\R xs subject

to

xs ≥
∑

s′∈S\R

p(s′) · xs′ +
∑
s′∈R

p(s′) p ∈ Steps(s) and s ∈ S \R

admits exactly one optimal solution vector x, and for all s ∈ S \R : xs = ReachE (s, R).

The linear programming problem of Theorem 1 can be solved iteratively or in polynomial
time with e.g. the ellipsoid method. It can be optimized by pre-computing the set of states
that are reachable with positive probability [5] or with probability 1 [9], often resulting in
a reduction in the number of unknowns.

3 Probabilistic Timed Automata

We follow the notation of [2, 13], and only recall the basic notions. A clock x ∈ X is
a real-valued variable which increases at the same rate as real-time. A clock valuation
ν : X → R, ranging over RX , is a function assigning a real value to each clock in X . If
X ⊆ X , we write ν[X := 0] for the valuation that assigns 0 to clocks in X and agrees with
ν on all the remaining clocks in X , and ν + t for the valuation whose clocks take the value
ν(x) + t where t ∈ R.

The set of zones of X , written ZX , is defined inductively by the syntax:

ζ ::= true |x ∼ k |x− y ∼ k | ζ ∨ ζ | ζ ∧ ζ

where x, y ∈ X , ∼∈ {<,≤,≥, >} and k ∈ N. We only consider canonical zones which
ensures equality between syntactic and semantic (as subsets of RX) representation of zones.
This enables us to use the above syntax interchangeably with set-theoretic operations. Let
ζ ∈ ZX and ν ∈ RX . Then ζ[ν] is the boolean value obtained by replacing each occurrence
of a clock x ∈ X in ζ by ν(x). If ζ[ν] = true then we say that ν satisfies ζ, also denoted
by ν ∈ ζ.

We shall require the following operations on zones. For any zones ζ, ζ ′ ∈ ZX and subset
X ⊆ X of clocks let:

[X := 0]ζ
def
= {ν | ν[X := 0] ∈ ζ}

↙ζ′ ζ
def
= {ν | ∃t ≥ 0 .(ν + t ∈ ζ ∧ ∀t′ ≤ t .(ν + t′ ∈ ζ ∨ ζ ′))}.

3

A timed automaton is an ordinary automaton extended with clocks. Its nodes and
transitions are labelled with zones, known as invariants and enabling conditions respec-
tively. The automaton may only stay in a node, letting time pass, if the clocks satisfy the
invariant. When an enabling condition is satisfied, the corresponding transition can be
taken. Transitions are instantaneous, and are additionally labelled with clock resets of the
form X := 0, which reset the clocks x ∈ X to zero upon entering the target node.

Probabilistic timed automata generalise timed automata in the following sense. Transi-
tions no longer have a single target node but possibly several, which are chosen probabilis-
tically. We associate every such transition with a single enabling condition, and allow its
edges to be labelled with their own probability values and clock resets. The probabilities
labelling the edges of any transition must sum up to no more than one, and hence can be
viewed as a discrete probability distribution. Several transitions may be simultaneously
enabled, with the choice between them (and letting time elapse if the invariant would not
be violated) resolved nondeterministically.

Definition 2 (Probabilistic Timed Automaton [13]) A probabilistic timed automa-
ton is a tuple G = (S, L, s̄,X , inv , prob, 〈τs〉s∈S) which contains:

• a finite set S of nodes,

• a function L : S −→ 2AP assigning to each node of the automaton the set of atomic
propositions that are true in that node,

• a start node s̄ ∈ S,

• a finite set X of clocks,

• a function inv : S −→ ZX assigning to each node an invariant condition,

• a function prob : S −→ Pfn(µ(S × 2X)) assigning to each node a (finite, non-empty)
set of discrete probability distributions on S × 2X , and

• a family of functions 〈τs〉s∈S where, for any s ∈ S, τs : prob(s) −→ ZX assigns to
each p ∈ prob(s) an enabling condition.

An edge e of G is a tuple of the form (s, s′, p,X) ∈ S2×µ(S × 2X)× 2X . We define the set
E of edges of the probabilistic timed automaton G such that (s, s′, p,X) ∈ E if and only if
p ∈ prob(s) and p(s′, X) > 0. If s ∈ S, the set in(s) contains all edges of the form (, s, ,).
For any e = (s, s′, X, p) define the following functions: type(e) = p, and source(e) = s.

Example 1 An example of a probabilistic timed automaton H modelling a simple prob-
abilistic communication protocol is included in Figure 1. Its nodes represent the following
states: ii (sender, receiver both idle); hi (sender has data, receiver idle); si (sender sent
data, receiver idle; and sr (sender sent data, receiver received). It starts in the state ii ,
and moves to hi as soon as the data is received. While in hi , after between 1 and 2 time
units have elapsed, it can make a probabilistic transition either to sr with probability 0.9

4

(data received), or to si with probability 0.1 (data lost). In si the protocol will attempt to
resend the data after 2 to 3 time units, which again can be lost, this time with probability
0.05.

ii

sr

hi

true

true

si
{x := 0}

{x := 0}

true

1

true

{x, y := 0}1
x = y = 0

x ≤ 2

x ≥ 1

x ≥ 2
x ≤ 3

0.9 0.1

0.05

0.95

Figure 1: A probabilistic timed automaton H modelling a probabilistic protocol

An underlying model for probabilistic timed automata are probabilistic timed structures,
a suitable combination of the timed structures of [11] and concurrent probabilistic systems
described in Section 2. Define a state as a pair 〈s, ν〉 consisting of a node and a clock
valuation. Formally, a probabilistic timed structure is a pair M = (Q,TSteps) where Q is
a set of states, and TSteps a function which assigns to each state q ∈ Q a set TSteps(q) of
pairs of the form (t, p) where t ∈ R and p ∈ µ(Q). Thus, each transition (t, p) contains both
information about time duration as well as probability : the meaning of (t, p) ∈ TSteps(q)
is that, when in state q, then, after t time units have elapsed, the system moves to state q′

with probability p(q′).
We can derive the notions of a path, adversary and probability measure ProbT as

for concurrent probabilistic systems, except that we must take account of the additional
labelling of steps with time duration (see [13] for precise details). Let M = (Q,TSteps) be

a probabilistic timed structure. Its paths are of the form ω = q0
t0,p0−−→ q1

t1,p1−−→ q2
t2,p2−−→ · · ·

where qi ∈ Q, (ti, pi) ∈ TSteps(qi) and pi(qi+1) > 0 for all 0 ≤ i ≤ |ω|. An adversary (or
scheduler) of M = (Q,TSteps) is a function A mapping every finite path ω of M to a pair
(t, p) such that A(ω) ∈ TSteps(last(ω)).

In what follows we fix the set AP of atomic propositions and a labelling function L and
omit them if clear from the context. The probabilistic timed structure arising from G with
respect to the labelling L is as follows.

Definition 3 For any probabilistic timed automaton G, let MG = (QG, TStepsG) be the
probabilistic timed structure given by:

• QG = {〈s, ν〉 | s ∈ S, ν ∈ RX and ν satisfies inv(s))}, with the interpretation of
propositions induced from the labelling function L of G.

5

• Take any 〈s, ν〉 ∈ QG. Then (t, p̃) ∈ TStepsG〈s, ν〉, where t ∈ R and p̃ ∈ µ(S ×RX),
iff there exists p ∈ prob(s) such that

– the clock valuation ν + t satisfies τs(p);

– (ν + t′) satisfies the invariant condition inv(s) for all 0 ≤ t′ ≤ t;

– for any 〈s′, ν ′〉:

p̃〈s′, ν ′〉 =
∑

X⊆X &
(ν+t)[X:=0]=ν′

p(s′, X) .

Let type(p̃) = p.

• Take any 〈s, ν〉 ∈ QG. If ν + t satisfies inv(s) for all t ∈ R, then (1, p
〈s,ν〉
div) ∈

TStepsG〈s, ν〉 where p
〈s,ν〉
div 〈s′, ν ′〉 = 1 iff 〈s′, ν ′〉 = 〈s, ν〉. Let type(p

〈s,ν〉
div) =⊥. (This is

to model letting time diverge in states where it is possible.)

In common with the usual practice in real-time systems we disallow divergent paths (i.e.
those which do not permit time passage beyond some bound) since they do not correspond
to realisable behaviour [13]. We let Adv (Advdiv) denote the set of all (all divergent)
adversaries of MG.

For simplicity, we assume the following restriction. Let MG = (QG,TStepsG) be a
probabilistic timed structure of G, then for every q ∈ QG there exists an adversary A
of MG such that ProbT{ω |ω ∈ PathAful(q) and ω is divergent} = 1. In other words,
the automata we consider must allow time divergence, possibly through transitions, with
probability 1 in every state.

4 The logic PTCTL∃

We now describe the existential fragment, PTCTL∃, of the probabilistic real-time logic
PTCTL (Probabilistic Timed Computation Tree Logic) [13]. PTCTL combines TCTL
[1, 12] (in particular, the reset quantifier z.φ and the facility to refer directly to clock
values) and the existential fragment of probabilistic temporal logic PBTL [3] similar to
pCTL of [5].

As with TCTL, we enlarge the set of clock variables with the set of formula clocks, Z,
which is disjoint from X . A formula clock valuation is denoted by E ∈ RZ and used in the
same way as standard clock valuations.

Definition 4 (Syntax of PTCTL∃) The syntax is:

φ ::= true | a | ζ | φ ∧ φ | ¬φ | z.φ | [φ ∃ U φ]wλ

where a ∈ AP is an atomic proposition, ζ ∈ ZX∪Z is a zone, z ∈ Z, λ ∈ [0, 1], and w is
either ≥ or >.

6

PTCTL is interpreted over probabilistic timed structures. Before we give the formal
semantics, we introduce some notation. Given a state q and a formula clock valuation E ,
we denote by ζ[q, E] the boolean value obtained by replacing each occurrence of a system
clock x ∈ X , resp. formula clock z ∈ Z, in ζ by q(x), resp. E(z). Consider a path ω of M.
A position of ω is a pair (i, t′), where i ∈ N and t′ ∈ R such that 0 ≤ t′ ≤ ti. The state at
position (i, t′), denoted by qi + t′, assigns qi(a) to each proposition a in AP, and qi(x) + t′

to each clock x in X . Given a path ω, i, j ∈ N and t, t′ ∈ R such that i ≤ |ω|, t ≤ ti and
t′ ≤ tj, we say that the position (j, t′) precedes the position (i, t), written (j, t′) ≺ (i, t), iff
j < i, or j = i and t′ < t.

Definition 5 (Satisfaction Relation for PTCTL∃) Given a probabilistic timed struc-
ture M and a set A of adversaries of M, then for any state q of M, formula clock valua-
tion E, and PTCTL∃ formula φ, the satisfaction relation q, E |=A φ is defined inductively
as follows:

q, E |=A true for all q and E
q, E |=A a ⇔ q(a) = true
q, E |=A ζ ⇔ ζ[q, E] = true
q, E |=A φ1 ∧ φ2 ⇔ q, E |=A φ1 and q, E |=A φ2

q, E |=A ¬φ ⇔ q, E 6|=A φ
q, E |=A z.φ ⇔ q, E [z := 0] |=A φ

q, E |=A [φ1 ∃ U φ2]wλ ⇔ Prob({ω |ω ∈ PathAful (q) & ω, E |=A φ1 U φ2}) w λ

for some A ∈ A
ω, E |=A φ1 U φ2 ⇔ there exists a position (i, t) of ω such that

ω(i) + t, E +Dω(i) + t |=A φ2, and
for all positions (j, t′) of ω such that (j, t′) ≺ (i, t),
ω(j) + t′, E +Dω(j) + t′ |=A φ1 ∨ φ2

where Dω(i) is the total elapsed time up to step i.

The above defines a family of satisfaction relations for classes of adversaries, typically
|=Advdiv

. We note that the restriction on automata G imposed in Section 2 ensures that for
PTCTL∃ we obtain that |=Adv coincides with |=Advdiv

.
An example of a property expressible in PTCTL∃ is “with probability 0.99 or greater,

it is possible to correctly deliver a data packet within 5 time units”, which is written
as z.[true ∃U delivered ∧ (z ≤ 5)]≥0.99. Due to the presence of negation, by dual-
ity our logic includes a form of universal quantification over adversaries, for example,
¬[true ∃U error]>1−0.87 expresses “with probability 0.87 or greater, the system never
enters an error state”.

For the remainder of this paper we fix automaton G = (S, L, s̄,X , inv , prob, 〈τs〉s∈S)
with the underlying timed probabilistic structure MG = (QG,TStepsG).

7

5 Model Checking Existential ‘Until’: A First At-

tempt

In [13] an algorithm for model checking full PTCTL was proposed. It is based on the
construction of the full region graph, and thus has high complexity since the region graph
is exponential in the number of clocks. Here we turn our attention to the symbolic method
of [12] for nonprobabilistic existential ‘until’, and work with zones instead of regions. Given
a formula [φ ∃U ψ]wλ, the idea is to first compute the set of node-zone pairs satisfying ψ,
and then traverse the edges e = (s′, s, p,X) of G backwards from ψ-states s, continuously
satisfying φ. We refer to node-zone pairs as symbolic states. Assume we have computed
the sets [[φ]], [[ψ]] ⊆ S × ZX∪Z of symbolic states such that, for any state 〈s, ν〉 ∈ QG and
formula clock evaluation E , 〈s, ν〉, E |= φ, resp. ψ, iff there exists 〈s, ζ〉 ∈ [[φ]], resp. [[ψ]],
such that [ν, E] ∈ ζ.

Let zone : S × PTCTL∃ → ZX∪Z be the function zone(s, θ)
def
=

⋃
〈s,ζ〉∈[[θ]] ζ. We extend

the time and discrete predecessor functions time pre and disc pre of [17] as follows:

time preφ(〈s, ζ〉)
def
= 〈s,↙zone(s,φ) ζ ∩ inv(s)〉

disc preφ((s
′, s, p,X), 〈s, ζ〉) def

= 〈s′, τs′(p) ∩ ([X := 0]ζ) ∩ zone(s′, φ)〉

(note that by construction zone(s′, φ) ⊆ inv(s′)) and lift time preφ to sets T ⊆ S × ZX∪Z
in the usual way.

Combining the above with the approach of [12] yields an algorithm for finding all states
from which one can reach a ψ-state with positive probability without leaving φ-states, shown
in Figure 2. Note the use of disc preφ(e, time preφ〈s, ν〉), rather than time preφ(disc preφ(e, 〈s, ν〉)),
to ensure the detection of symbolic states for which the edge e is enabled throughout.

ExistsUntil>0(φ, ψ){
Z := time preφ([[ψ]])
Z ′ := S
while Z ′ 6= Z do
Z ′ := Z
for all (s, ζ) ∈ Z

for all e ∈ in(s)
Z := Z ∪ {disc preφ(e, time preφ〈s, ν〉)}

end for all
end for all

end while
return Z

Figure 2: Algorithm for finding all states satisfying [φ ∃U ψ]>0

8

It might seem that simply generating edges between symbolic states and calculating the
probabilities labelling these edges would enable us to construct a concurrent probabilistic
transition system quotient of the automaton, then use the reduction to the linear program-
ming problem of Theorem 1 to establish [φ ∃U ψ]wλ for arbitrary λ. Unfortunately, this is
not the case, as we now demonstrate.

Example 2 Consider the automatonH in Figure 1 and PTCTL∃ formula [(y < 6) ∃Usr]wλ
(for any λ) meaning “y stays below 6 until a data packet has been received (in sr)”. The
concurrent probabilistic system quotient corresponding to the automaton H is shown in
Figure 3.

〈sr , true〉

〈ii , true〉

1

1

〈si , 2 ≤ x ≤ 3 ∧ y < 4〉 〈si , 2 ≤ x ≤ 3 ∧ y < 6〉

〈hi , 1 ≤ x ≤ 2 ∧ y < 4〉

〈hi , 1 ≤ x ≤ 2 ∧ y < 6〉

〈hi , 1 ≤ x ≤ 2 ∧ y < 2〉

1

0.05

〈si , 2 ≤ x ≤ 3 ∧ y < 2〉

0.1 0.9 0.90.10.9

0.05

0.95 0.95 0.95

Figure 3: The concurrent probabilistic system for the automaton H in Figure 1

We overload the notation by referring to edges both when considering G (where they
connect nodes) and the concurrent probabilistic system quotient (where they connect sym-
bolic states). The problem with the algorithm in Figure 2 is that it fails to detect all edges;
in particular, the dotted edges in Figure 3 would not be found. In general, we may compute
symbolic states 〈s, ζ〉, 〈s, ζ ′〉 via different edges e1, e2 belonging to the same distribution
p ∈ µ(S × 2X), i.e. having the same type. Then, if ζ ∩ ζ ′ 6= ∅, in the state 〈s, ζ ∩ ζ ′〉 both
these edges are relevant, i.e. enabled throughout ζ ∩ ζ ′. We must explicitly consider all the
relevant intersections of zones, together with the additional induced edges. The notion of
relevance is captured by the function below. Assume the existence of sets Z ⊆ S × ZX∪Z
of symbolic states and E of edges between them, then define:

relevant(p, 〈s′, ζ ′〉) def
=

{〈s′, ζ ′′〉 | 〈s′, ζ ′′〉 ∈ Z ∧ ζ ′ ∩ ζ ′′ 6= ∅ ∧ ∃e ∈ E . source(e) = 〈s′, ζ ′′〉 ∧ type(e) = p}.

Finally, note that our algorithm must also allow for situations where nondeterministic
choice between probability distributions arises, e.g. in symbolic state 〈ii, true〉 in Figure 3.

9

6 Symbolic Model Checking Algorithm for PTCTL∃

We are now ready to give a symbolic model checking procedure for the existential frag-
ment of PTCTL. Given a probabilistic timed automaton G and a PTCTL∃ formula θ, the
algorithm proceeds by building the parse tree of the formula, and traverses it bottom-up,
inductively computing the set of node-zone pairs satisfying subformulae θ′ as they are en-
countered. For all subformulae θ′ which are not of the form [φ∃Uψ]wλ, the corresponding
set [[θ′]] can be computed simply by appropriate operations on zones. For the subformula
θ′ = [φ∃Uψ]wλ, however, a probabilistic concurrent system Cφ,ψ = (Sφ,ψ, Stepsφ,ψ) is com-
puted by means of the algorithm ExistsUntil. The solution to the linear programming
problem of Theorem 1 over Cφ,ψ yields the set of symbolic states which satisfy [φ∃Uψ]wλ.

Formally, if θ is a PTCTL∃ formula, define [[θ]] by induction as follows:

1. [[true]]
def
= {〈s, inv(s)〉 | s ∈ S}

2. [[a]]
def
= {〈s, inv(s)〉 | s ∈ S and a ∈ L(s)}

3. [[ζ]]
def
= {〈s, inv(s) ∩ ζ〉 | s ∈ S}

4. [[φ ∧ ψ]]
def
= {〈s, ζ ∩ ζ ′〉 | 〈s, ζ〉 ∈ [[φ]] and 〈s, ζ ′〉 ∈ [[ψ]]}

5. [[¬φ]]
def
= {〈s, inv(s) \ {ζ | 〈s, ζ〉 ∈ [[φ]]}〉 | s ∈ S}

6. [[z.φ]]
def
= {〈s, [z := 0]ζ〉 | 〈s, ζ〉 ∈ [[φ]]}

7. [[[φ ∃U ψ]wλ]]
def
= {time preφ〈s, zone(Ts)〉 | s ∈ S}

where Ts =
⋃
{ζ | ζ ∈ ZX∪Z , 〈s, ζ〉 ∈ Sφ,ψ and ReachE (〈s, ζ〉, [[ψ]]) w λ}.

The algorithm ExistsUntil is shown in Figure 4.

It consists of two phases: generation of all symbolic states Zφ,ψ and a subset of edges
Eφ,ψ between them, followed by the construction of the probabilistic concurrent system
Cφ,ψ = (Sφ,ψ, Stepsφ,ψ) where Sφ,ψ = Zφ,ψ, at which stage the missing edges are added.

The following summarises the construction of the set Stepsφ,ψ. Let φ, ψ be fixed and
assume the existence of sets Z ⊆ S × ZX∪Z of symbolic states and E of edges (we elide the

subscripts φ, ψ for clarity). For 〈s, ζ〉 ∈ Z, define E〈s, ζ〉 def
= {e |(〈s, ζ̂〉, , ,) ∈ E ∧ ζ ⊆ ζ̂};

dist〈s, ζ〉 def
= {p | (〈s, ζ̂〉, , p,) ∈ E〈s, ζ〉}; and choices(〈s, ζ〉, p) def

= {(s′, X) | (〈s, ζ̂〉, 〈s′, ζ ′〉, p,X) ∈
E〈s, ζ〉} where p ∈ dist〈s, ζ〉. Now for any p ∈ dist〈s, ζ〉 and (s′, X) ∈ choices(〈s, ζ〉, p) put:

targets(〈s, ζ〉, p, (s′, X))
def
= {(〈s′, ζ ′〉, X) | (〈s, ζ̂〉, 〈s′, ζ ′〉, p,X) ∈ E〈s, ζ〉}

supports(〈s, ζ〉, p) =
∏

(s′,X)∈choices(〈s,ζ〉,p)

targets(〈s, ζ〉, p, (s′, X))

10

ExistsUntil(φ, ψ){
Z := ∅
E := ∅
Fringe := [[ψ]]
while Fringe 6= ∅ do

for all 〈s, ζ〉 ∈ Fringe
Z := Z ∪ {〈s, ζ〉}
Fringe := Fringe \ {〈s, ζ〉}
for all e = (s′, s, p,X) ∈ in(s)
〈s′, ζnew〉 := disc preφ(e, time preφ〈s, ζ〉)
if 〈s′, ζnew〉 6∈ Z ∧ ζnew 6= ∅

Fringe := Fringe ∪ {〈s′, ζnew〉}
end if
if 〈s′, ζnew〉 6∈ time preφ([[ψ]]) ∧ ζnew 6= ∅ then
E := E ∪ {(〈s′, ζnew〉, 〈s, ζ〉, p,X)}
for all 〈s′, ζold〉 ∈ relevant(p, 〈s′, ζnew〉)

if 〈s′, ζnew ∩ ζold〉 6∈ Z
Fringe := Fringe ∪ {〈s′, ζnew ∩ ζold〉}

end if
end for all

end if
end for all

end for all
end while
return C = (Z, Steps(Z,E))

}

Figure 4: Algorithm for [φ ∃U ψ]wλ

The set Steps for the sets Z and E can now be defined as follows: p̂ ∈ Steps〈s, ζ〉 iff there
exists p ∈ dist〈s, ζ〉 and support ∈ supports(〈s, ζ〉, p) such that for any 〈s′, ζ ′〉 ∈ Z:

p̂〈s′, ζ ′〉 =
∑

(〈s′,ζ′〉,X)∈support

p(s′, X)

where we consider (〈s′, ζ ′〉, X) ∈ support by abuse of notation.
We now state the formal correctness of our model checking procedure.

Theorem 6 For any state 〈s, ν〉 ∈ QG, PTCTL∃ formula θ and E ∈ RZ :

〈s, ν〉, E |= θ if and only if [ν, E] ∈ zone(s, [[θ]]).

Proof. The proof is given in the Appendix. ut

11

Proposition 7 The algorithm ExistsUntil terminates for any formula [φ ∃U ψ]wλ.

Before we give the proof we require the following definition. Given a probabilistic real-time
graph G and PTCTL formula θ let cθ,G be the largest integer constant appearing in the
invariant and enabling conditions of G and in the formula θ.

Proof. We first prove by induction on θ ∈ PTCTL that, for any s ∈ S, the maxi-
mum constant appearing in zone(s, [[ψ]]) ∈ ZX∪Z it is less than or equal to cθ,G. In all cases
except θ = [φ ∃U ψ]wλ this follows by definition.

In the case for θ = [φ ∃U ψ]wλ, since cθ,G = max{cφ,G, cψ,G}, it is straightforward to
show if the maximum constant appearing in ζ it is less than cθ,G, 〈s, ζ ′〉 = time preφ〈s, ζ〉
and 〈s′, ζ ′′〉 = disc preφ(〈s, ζ ′〉, e) for some e ∈ in(s), then the maximum constant appearing
in ζ ′ and ζ ′′ is less than cθ,G. Furthermore, if the maximum constant appearing in ζ and ζ ′

is less than cθ,G, then so is the maximum constant appearing in ζ ∩ ζ ′ . It then follows that
at any point during the algorithm ExistUntil, if 〈s, ζ〉 ∈ Z then the maximum constant
appearing in ζ it is less than cθ,G.

Finally, since there are only finitely many states and finitely many ζ ∈ ZX∪Z such that
the maximum constant appearing ζ is less than cθ,G, it follows that the algorithm must
terminate. ut

7 Conclusion

We conclude with some observations of the complexity of our method. Though in the worst
case the size of the quotient is proportional to the number of regions, we expect that in
practice it will result in significantly smaller structures. Future work will address extending
the method of [18] for computing the coarsest bisimilarity quotient to our setting. While
this should allow for model checking of full PTCTL, the method proposed here can result
in a smaller system since it generates a quotient for a particular formula.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information
and Computation, 104(1), 1993.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126,
1994.

[3] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11, 1998.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New Gen-
eration of Uppaal. In Int. Workshop on Software Tools for Technology Transfer,
1998.

12

[5] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. FST&TCS’95, volume 1026 of Lect. Notes in Comp. Sci. Springer-
Verlag, 1995.

[6] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
model-checking tool for real-time systems. In Proc. CAV’98. Springer Verlag, 1998.

[7] P. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans. The bounded retransmission
protocol must be on time! In Proc. TACAS’97, volume 1217 of Lect. Notes in Comp.
Sci. Springer-Verlag, 1997.

[8] L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford Uni-
versity, Department of Computer Science, 1997.

[9] L. de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In Proc. CONCUR’99, volume 1664 of Lect. Notes in Comp. Sci. Springer
Verlag, 1999.

[10] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(4):512–535, 1994.

[11] T. Henzinger and O. Kupferman. From quantity to quality. In Proc. HART’97, Lect.
Notes in Comp. Sci. 1201. Springer-Verlag, 1997.

[12] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111(2), 1994.

[13] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of
real-time systems with discrete probability distributions. In Proc. ARTS’99, volume
1601 of Lect. Notes in Comp. Sci. Springer-Verlag, 1999.

[14] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of
real-time systems with discrete probability distributions. Technical Report CSR-00-2,
University of Birmingham, 2000.

[15] M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gear-Box
Controller. In Proc. TACAS’98, number 1384 in Lect. Notes in Comp. Sci. Springer–
Verlag, 1998.

[16] W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

[17] S. Tripakis. L’Analyse Formelle des Systèmes Temporisés en Pratique. PhD thesis,
Université Joseph Fourier, 1998.

[18] S. Tripakis and S. Yovine. Analysis of timed systems based on time-abstracting bisim-
ulations. In Proc. CAV’96, volume 1102 of Lect. Notes in Comp. Sci. Springer-Verlag,
1996.

13

Appendix (Proof of Theorem 6)

For simplicity we fix a probabilistic timed automaton G and PTCTL formula [φ ∃U ψ]wλ.
To ease notation, we denote the probabilistic timed structure MG = (QG,TStepsG) as-
sociated with G by M = (Q,TSteps) and the probabilistic concurrent system Cφ,ψ =
(Zφ,ψ, Stepsφ,ψ) and set of edges Eφ,ψ generated by the algorithm ExistsUntil(φ, ψ) by
C = (Z, Steps) and E respectively.

Before we give the proof of Theorem 6 we introduce the following definitions. For any
state 〈s, ν〉 ∈ Q and E ∈ RZ , we say:

〈s, ν〉, E ∈ time preφ〈s, ζ〉 if [ν, E] ∈ ζ ′ where 〈s, ζ ′〉 = time preφ〈s, ζ〉.

Next, for any adversary A of M we introduce the sequence of functions (PA
n)n∈N. Intu-

itively, for a state 〈s, ν〉 ∈ Q and E ∈ RZ , the value PA
n (〈s, ν〉, E) equals the probability of

reaching from 〈s, ν〉, under the adversary A, a state which satisfies ψ in at most n discrete
transitions, under the restriction of passing through only φ states, and with respect to the
formula clock valuation E . Since adversaries can choose on the basis of history, we define
PA
n over paths, then restrict to the case of single states (paths of length 0).

Definition 8 For any adversary A ∈ AdvM, E ∈ RZ and finite path ω ∈ PathAfin such that
last(ω) = 〈s, ν〉 and A(ω) = (t, p̃):

• if there exists t′ ≤ t such that 〈s, ν + t′〉, E + t′ |= ψ and 〈s, ν + t′′〉, E + t′′ |= φ ∨ ψ
for all t′′ ≤ t′, let PA

0 (ω, E) = 1

• otherwise, let PA
0 (ω, E) = 0

and for any n ≥ 0:

• if there exists t′ ≤ t such that 〈s, ν + t′〉, E + t′ |= ψ and 〈s, ν + t′′〉, E + t′′ |= φ ∨ ψ
for all t′′ ≤ t′, let PA

n+1(ω, E) = 1

• if 〈s, ν + t′〉, E + t′ |= φ ∧ ¬ψ for all t′ ≤ t, let

PA
n+1(ω, E) =

∑
〈s′,ν′〉∈Q

p̃〈s′, ν ′〉 ·PA
n (ω

t,p̃−→ 〈s′, ν ′〉, E + t)

• otherwise, let PA
n+1(ω, E) = 0.

Lemma 9 For any 〈s, ν〉 ∈ Q and E ∈ RZ :

sup
A∈AdvM

Prob{ω |ω ∈ PathAful〈s, ν〉 & ω, E |= φ U ψ} = sup
A∈AdvM

lim
n→∞

PA
n (〈s, ν〉, E).

14

Proof. The lemma is proved by showing for any 〈s, ν〉 ∈ Q, A ∈ AdvM and E ∈ RZ :

Prob{ω |ω ∈ PathAful〈s, ν〉 and ω, E |= φ U ψ} = lim
n→∞

PA
n (〈s, ν〉, E)

which follows from the fact that we can associate with A a Markov chain whose states are
finite paths of M and the iterative method for PCTL until formulas for Markov chains
(see for example [10]). ut

Next, for any adversary B of C, we define a sequence of functions (PB
n)n∈N. Intuitively,

for any state 〈s, ζ〉, PB
n 〈s, ζ〉 equals the probability, of reaching from state 〈s, ν〉 under the

adversary B, a state in [[ψ]] in at most n transitions.

Definition 10 For any adversary B ∈ AdvC and π ∈ PathBfin , if last(π) = 〈s, ζ〉, let:

PB
0 (π) =

{
1 if 〈s, ζ〉 ∈ time preφ[[ψ]]
0 otherwise

and for any n ≥ 0, if B(π) = p̂:

PB
n+1(π) =

 1 if 〈s, ζ〉 ∈ time preφ[[ψ]]∑
〈s′,ζ′〉∈Z

p̂〈s′, ζ ′〉 ·PB
n (π

p̂−→〈s′, ζ ′〉) otherwise.

Lemma 11 For any 〈s, ζ〉 ∈ Z:

ReachE (〈s, ζ〉, [[ψ]]) = sup
B∈AdvC

lim
n→∞

PB
n 〈s, ζ〉.

Proof. The proof follows similarly to that of Lemma 9. ut

We now give the proof of the theorem.

Proof (of Theorem 6). The proof is by induction on θ ∈ PTCTL∃. The cases for θ = true,
θ ∈ AP, θ ∈ ZX∪Z , θ = φ ∧ ψ, θ = ¬φ and θ = z.φ follow by definition of [[·]] and |=.

In the case of θ = [φ ∃U ψ]wλ, by induction on θ we have:

〈s, ν〉, E |= ξ if and only if [ν, E] ∈ zone(s, [[ξ]]) for ξ ∈ {φ, ψ}. (1)

The remainder of the proof in this case is subdivided into properties (a), (b), (c) and (d)
successively shown below. We first prove that the following holds.

Property (a). For all (〈s, ζ〉, 〈s′, ζ ′〉, p,X) ∈ E if ν ∈ RX , E ∈ RZ and [ν, E] ∈ ζ, then
there exists t ∈ R such that

• 〈s, ν〉, E |= φ

• ν satisfies inv(s) and τs(p)

15

• 〈s′, ν[X := 0] + t′〉, E + t′ |= φ ∨ ψ for all 0 ≤ t′ ≤ t

• [ν, E][X := 0] + t ∈ ζ ′.

Proof of (a). Follows by induction on 〈s′, ζ ′〉 ∈ Z.

• In the base step 〈s′, ζ ′〉 ∈ [[ψ]], in which case by definition of time preφ and (1), if
〈s′, ν ′〉, E ∈ time preφ〈s′, ζ ′〉, then there exists t ∈ R such that:

〈s′, ν ′ + t〉, E + t |= ψ and 〈s′, ν ′ + t′〉, E + t′ |= φ ∨ ψ for all t′ ≤ t.

Now consider any (〈s, ζ〉, 〈s′, ζ ′〉, p,X) ∈ E, then by definition

〈s, ζ〉 = disc preφ(e, time preφ〈s′, ζ ′〉)

and e = (s, s′, p,X) ∈ in(s′). Property (a) then follows by definition of disc preφ, (1)
and from above.

• For the inductive step, (〈s′, ζ ′〉, 〈s′′, ζ ′′〉, p′, X ′) ∈ E for some 〈s′′, ζ ′′〉 ∈ Z and in this
case by induction if [ν ′, E ′] ∈ ζ ′, then 〈s′, ζ ′〉, E ′ |= φ, and hence 〈s′, ζ ′〉, E ′ |= φ ∨ ψ.
The remainder of the proof of (a) now follows similarly to the base case.

Next we prove the following.

Property (b). For any 〈s, ν〉 ∈ Q and E ∈ RZ :

〈s, ν〉, E |= [φ ∃U ψ]>0 ⇔ ∃ 〈s, ζ〉 ∈ Z such that [ν, E] ∈ time preφ(ζ).

Proof of (b). Follows from (a) and since:

• for any 〈s, ν〉 ∈ Q and E ∈ RZ , 〈s, ν〉, E |= [φ ∃U ψ]>0 if and only if there exists a path
ω ∈ Path ful〈s, ν〉 and a position (i, t) of ω such that ω(i)+ t, E+Dω(i)+ t |=A φ2, and
for all positions (j, t′) of ω such that (j, t′) ≺ (i, t), ω(j)+ t′, E+Dω(j)+ t′ |=A φ1∨φ2

where Dω(i) is the total elapsed time up to step i.

• 〈s, ζ〉 ∈ Z if and only if there exists π ∈ Path ful〈s, ζ〉 such that π(i) ∈ [[ψ]] for some
i ∈ N, which follows by construction of C.

Finally, we show a correspondence between the probability values of PA
n for adversaries

A of the probabilistic timed structure M and PB
n for adversaries B of the constructed

concurrent probabilistic system C. Since C contains only the portion corresponding to the
satisfaction of the formula [φ ∃U ψ]wλ, we only consider the adversaries A of M which
satisfy:

Prob{ω |ω ∈ PathAful〈s, ν〉 and ω, E |= φ U ψ} > 0.

16

Formally, we will show the following correspondence. For all n ∈ N, 〈s, ν〉 ∈ Q and E ∈ RZ

such that 〈s, ν〉, E |= [φ ∃U ψ]>0, it is the case that:

Property (c). If B ∈ AdvC, 〈s, ζ〉 ∈ Z and 〈s, ν〉, E ∈ time preφ〈s, ζ〉, then there exists
A ∈ AdvM such that PA

n (〈s, ν〉, E) ≥ PB
n 〈s, ζ〉

Property (d). If A ∈ AdvM and Prob{ω |ω ∈ PathAful〈s, ν〉 and ω, E |= φ U ψ} > 0,
then there exists 〈s, ζ〉 ∈ Z such that 〈s, ν〉, E ∈ time preφ〈s, ζ〉 and B ∈ AdvC such that
PB
n 〈s, ζ〉 ≥ PA

n (〈s, ν〉, E).

It follows from (b), Lemma 9 and Lemma 11 that to prove Theorem 6 it is sufficient to
show that (c) and (d) hold.

Proof of (c), (d) (base case). We now prove (c) and (d) by induction on n ∈ N. The case
for n = 0 for both (c) and (d) is proved by showing: if 〈s, ν〉 ∈ Q, E ∈ RZ , A ∈ AdvM,
〈s, ζ〉 ∈ Z such that 〈s, ν〉 ∈ time preφ〈s, ζ〉 and B ∈ AdvC then:

PA
0 (〈s, ν〉, E) > 0 ⇔ PA

0 (〈s, ν〉, E) = 1 by Definition 8
⇔ 〈s, ν〉, E ∈ time preφ[[ψ]] by induction
⇔ PB

0 〈s, ζ〉 = 1 by Definition 10.

Next, suppose the property holds for some n ∈ N and consider any 〈s, ν〉 ∈ Q and
E ∈ RZ such that 〈s, ν〉, E |= [φ ∃U ψ]>0. If 〈s, ν + t〉, E + t |= ψ for some t ∈ R and
〈s, ν + t′〉, E + t′ |= φ for all t′ ≤ t, then the result follows similarly to the case when n = 0
and we are left to consider when 〈s, ν + t〉, E + t 6|= ψ for all t ∈ R.

Proof of (c) (induction step). Let B ∈ AdvC and 〈s, ζ〉 ∈ Z such that 〈s, ν〉, E ∈
time preφ〈s, ζ〉. By construction, B〈s, ζ〉 = p̂ for some p̂ ∈ Steps〈s, ζ〉, and there exists
p ∈ prob(s) and support ∈ supports(〈s, ζ〉, p) such that for any 〈s′, ζ ′〉 ∈ Z:

p̂〈s′, ζ ′〉 =
∑

(〈s′,ζ′〉,X)∈support

p(s′, X).

Furthermore, supposing B′ is the adversary of C such that

PB′

n (〈s′, ζ ′〉) = PB
n (〈s, ζ〉 p̂−→〈s′, ζ ′〉),

if (〈s′, ζ ′〉, X) ∈ support for some X ⊆ X , then by Definition 10:

PB
n+1〈s, ζ〉 =

∑
(〈s′,ζ′〉,X)∈support

p(s′, X) ·PB′

n 〈s′, ζ ′〉. (2)

Moreover, by construction of Steps : (〈s′, ζ ′〉, X) ∈ support if and only if (〈s, ζ̂〉, 〈s′, ζ ′〉, p,X) ∈
E for some ζ̂ ⊇ ζ. Also, for any t ∈ R such that 〈s, ν + t〉, E + t ∈ 〈s, ζ〉, if (〈s′, ζ ′〉, X) ∈
support , then 〈s′, (ν + t)[X := 0]〉, E + t ∈ time preφ〈s′, ζ ′〉 by construction of E.

17

Now, by construction of support , for any (s′, X) ∈ support(p), either (〈s′, ζ ′〉, X) 6∈
support for all 〈s′, ζ ′〉 ∈ Z, or there exists a unique 〈s′, ζ ′〉 ∈ Z such that (〈s′, ζ ′〉, X) ∈
support . Considering the adversary A such that A〈s, ν〉 = (t, p̃), type(p̃) = p and for all
(〈s′, ζ ′〉, X) ∈ support :

PA
n (〈s, ν〉 t,p̃−→ 〈s, ν + t[X := 0]〉, E + t) ≥ PB′

n 〈s′, ζ ′〉 (3)

(which exists by induction on (c)), then letting νtX = (ν + t)[X := 0] and E t = E + t to
ease notation, by Definition 8 we have:

PA
n+1(〈s, ν〉, E) =

∑
〈s′,ν′〉∈Q

p̃〈s′, ν ′〉 ·PA
n (〈s, ν〉 t,p̃−→ 〈s′, ν ′〉, E t)

=
∑

(s′,X)∈support(p)

p(s′, X) ·PA
n (〈s, ν〉 t,p̃−→ 〈s′, νtX〉, E t) by definition of p̃

≥
∑

(〈s′,ζ′〉,X)∈support

p(s′, X) ·PA
n (〈s, ν〉 t,p̃−→ 〈s′, νtX〉, E t) from above

≥
∑

(〈s′,ζ′〉,X)∈support

p(s′, X) ·PB′

n 〈s′, ζ ′〉 by (3)

= PB
n+1〈s, ζ〉 by (2)

and since 〈s, ζ〉 and B are arbitrary, (c) holds by induction.

Proof of (d) (induction step). For the proof in this case consider any adversary A ∈
AdvM such that Prob{ω |ω ∈ PathAful〈s, ν〉 and ω, E |= φ U ψ} > 0. Now, by definition
A〈s, ν〉 = (t, p̃) for some t ∈ R and p̃ ∈ µ(Q), and by definition of |= and M:

• ν + t′ satisfies inv(s) for all 0 ≤ t′ ≤ t

• ν + t satisfies τs(type(p̃))

• 〈s, ν + t′〉, E + t′ |= φ for all 0 ≤ t′ ≤ t.

Also, supposing type(p̃) = p, then it is straightforward to show:

PA
n+1(〈s, ν〉, E) =

∑
(s′,X)∈support(p)

p(s,X) ·PA′

n (〈s′, (ν + t)[X := 0]〉, E + t) (4)

for some A′ ∈ AdvM. Now consider any (s′, X) ∈ support(p) such that

PA′

n 〈s′, (ν + t)[X := 0]〉, E + t) > 0,

then by definition (s, s′, p,X) ∈ in(s′) and by induction there exists 〈s′, ζ ′s′,X〉 ∈ Z and
adversary B′ such that

PB′

n 〈s′, ζ ′s′,X〉 ≥ PA′

n (〈s′, (ν + t)[X := 0]〉, E + t)

and 〈s′, (ν + t)[X := 0]〉, E + t ∈ time preφ〈s′, ζ ′s′,X〉. Letting:

〈s, ζs′,X〉 = disc preφ((s, s
′, X, p), time preφ〈s′, ζ ′s′,X〉),

it follows that

18

• 〈s, ζs′,X〉, 〈s′, ζ ′s′,X〉 ∈ Z

• 〈s, ν + t〉, E + t ∈ 〈s, ζs′,X〉

• 〈s, (ν + t)[X := 0]〉, E + t ∈ time preφ〈s′, ζ ′s′,X〉

• (〈s, ζs′,X〉, 〈s′, ζ ′s′,X〉, p,X) ∈ E.

It then follows by construction of Z that 〈s, ζ〉 ∈ Z where

ζ = ∩{ζs′,X | (s′, X) ∈ support(p) & 〈s′, (ν + t)[X := 0]〉, E + t |= [φ ∃U ψ]>0}

and from above [ν, E] + t ∈ ζ. Furthermore, by construction of Steps there exists p̂ ∈
Steps〈s, ζ〉 such that for any 〈s′, ζ ′〉 ∈ Z:

p̂〈s′, ζ ′〉 ≥
∑

(s′,X)∈support(p), ζ′=ζs′,X

&PA′
n 〈s′,(ν+t)[X:=0]〉,E+t)>0

p(s,X). (5)

Now, define B as the adversary of C such that B〈s, ζ〉 = p̂ and whose behaviour is exactly

as B′ in 〈s, ζ〉 p̂−→〈s′, ζ ′s′,X〉. Let νtX = (ν + t)[X := 0], E t = E + t and θ′ = [φ ∃U ψ]>0 to
ease notation. By Definition 10, we have:

PB
n+1〈s, ζ〉 =

∑
〈s′,ζ′〉∈Z

p̂〈s′, ζ ′〉 ·PB
n (〈s, ζ〉 p̂−→〈s′, ζ ′〉)

≥
∑

(s′,X)∈support(p)&

PA′
n 〈s′,νt

X〉,E
t)>0

p(s,X) ·PB
n (〈s, ζ〉 p̂−→〈s′, ζ ′s′,X〉) by (5)

≥
∑

(s′,X)∈support(p)&

PA′
n 〈s′,νt

X〉,E
t)>0

p(s,X) ·PA′

n (〈s′, νtX〉, E t) by construction of B

=
∑

(s′,X)∈support(p)

p(s,X) ·PA′

n (〈s, νtX〉, E t) rearranging

= PA
n+1(〈s, ν〉, E) by (4)

as required. ut

19

	Introduction
	Concurrent Probabilistic Systems
	Probabilistic Timed Automata
	The logic PTCTL
	Model Checking Existential `Until': A First Attempt
	Symbolic Model Checking Algorithm for PTCTL
	Conclusion

