
Decision Algorithms for Probabilistic
Bisimulation?

Stefano Cattani1 and Roberto Segala2

1 School of Computer Science, The University of Birmingham
Birmingham B15 2TT, United Kingdom

2 Dipartimento di Informatica, Università di Verona
Strada Le Grazie 15, Ca’ Vignal 2 37134 Verona, Italy

Abstract. We propose decision algorithms for bisimulation relations
defined on probabilistic automata, a model for concurrent nondetermin-
istic systems with randomization. The algorithms decide both strong
and weak bisimulation relations based on deterministic as well as ran-
domized schedulers. These algorithms extend and complete other known
algorithms for simpler relations and models. The algorithm we present for
strong probabilistic bisimulation has polynomial time complexity, while
the algorithm for weak probabilistic bisimulation is exponential; however
we argue that the latter is feasible in practice.

1 Introduction

Randomization is attracting increasing attention in computer science, and con-
sequently the study of modeling and verification techniques for randomized con-
current systems becomes fundamental. An evidence of this fact is the existence of
a considerable literature about models for concurrent probabilistic systems and
related techniques [1, 7, 9, 11, 16, 18, 24, 25]. This paper focuses on the model
of probabilistic automata [21], an extension of labeled transition systems with
probabilities, and on verification techniques based on probabilistic extensions of
bisimulation relations [17] as defined in [22].

Probabilistic automata [21] extend labeled transition systems by generalizing
the notion of a transition, which leads to a probability distribution over states
rather than to a single state. Then, several notions and techniques for labeled
transition systems can be extended directly to probabilistic automata. Among
these, bisimulation relations [22, 8, 16] are the focus of this paper. Bisimulation
was first defined in the context of CCS [17], and turned out to be a fundamen-
tal relation for its simplicity and the elegance of its axiomatization. It was first
extended to a model with randomization in [16] and then extended to a model
with nondeterminism and randomization in [8]. The model of [8] is also known
as the alternating model of concurrent probabilistic systems as opposed to the
non-alternating model given by probabilistic automata. The main restriction in
the alternating model is that each state either enables several transitions that
? Supported in part by EPSRC grants GR/N22960 and GR/M13046

L. Brim, P. Janar, M. Ketnsky and A. Kuera (Eds.), 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of LNCS, pages 371–385, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

lead to a single state (nondeterministic state), or a single unlabeled transition
that leads to a probability distribution over states (probabilistic state). Proba-
bilistic automata allow more general notions of bisimulation, which turn out to
be different compared to the alternating model as soon as we use randomization
to resolve nondeterminism. Such new bisimulation relations, both in their strong
and weak versions, are studied in [22]. Bisimulation relations are also studied in
the context of stochastic process algebras [12, 5, 10], where it is shown that
bisimulation coincides with the notion of lumping for Markov chains [12].

A problem that is subject of considerable study is the search for decision
algorithms for bisimulation [3, 20, 4]. The problem is solved already in the con-
text of stochastic process algebras [3], in the context of the alternating model
[20] and in the context of probabilistic automata with respect of strong bisim-
ulation [2]. However, it is still open in the context of probabilistic automata,
since the restrictions imposed to the alternating model seem to guarantee a lot
of extra structure that simplifies decision procedures; in the non alternating
model bisimulation gives rise to two different relations under deterministic and
randomized schedulers respectively, while in the alternating model bisimulation
gives rise to the same relation no matter whether randomization is used or not.

In this paper we give decision algorithms for strong bisimulation under ran-
domized schedulers (strong probabilistic bisimulation) and for weak bisimulation
under randomized schedulers (weak probabilistic bisimulation). The algorithms
are instances of the well established partitioning technique [13, 19], where large
equivalence classes are refined into smaller classes; thus, our presentation con-
centrates on how to define a splitter for each of the relations that we analyze.
The splitter for strong probabilistic bisimulation considers two states s1 and s2

as equivalent if and only if for each transition that leaves s1 there is a match-
ing convex combination of transitions that leave from s2 and vice versa, where
the convex combination of transitions expresses the ability of the scheduler to
use randomization. Operationally, if we take the extreme points of the convex
hull generated by the transitions that are labeled by a specific action, then the
extreme points of the convex hulls for s1 and s2 must coincide. The splitter
for weak probabilistic bisimulation is based again on convex hulls; however, we
have to consider arbitrary sequences of transitions that are labeled by internal
actions. Since such transitions are potentially infinite, we identify a sufficiently
powerful finite class of schedulers that can characterize the extremal points of
the convex hulls to be examined.

The algorithms that we propose for the probabilistic relations are based on
the problem of computing the extreme points of the convex hull generated by a
set of n points in a d-dimensional space; the extreme points can be computed by
solving O(n) linear programming problems. Unfortunately, in the case of weak
probabilistic bisimulation, the number of points generating the convex hull can
be exponential in the number of states of the automaton. Despite the negative
result concerning the complexity of our decision algorithms, we show that from
a practical perspective our algorithms are feasible since the worst case scenarios
are very unlikely to occur.

The rest of the paper is organized as follows. Section 2 contains some back-
ground on measure theory and convex hulls and describes our notational conven-
tions; Section 3 introduces the model of probabilistic automata, and Section 4
describes the bisimulation relations of [22]; Section 5 describes the general struc-
ture of the decision algorithms, while Sections 6 and 7 describe the details of the
algorithms for strong probabilistic bisimulation, and weak probabilistic bisimu-
lation, respectively; finally, Section 8 contains some concluding remarks.

2 Preliminaries

Probability Spaces and Measures. A σ-field over a set X is a set F ⊆ 2X that
includes X and is closed under complement and countable union. Observe that
2X is a σ-field over X. A measurable space is a pair (X,F) where X is a set and
F is a σ-field over X. The set X is also called the sample space. A measurable
space (X,F) is called discrete if F = 2X . Given a measurable space (X,F), a
measure over (X,F) is a function µ : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , µ[∪IXi] =

∑
I µ[Xi]. A

probability measure over a measurable space (X,F) is a measure µ over (X,F)
such that µ[X] = 1; a sub-probability measure over (X,F) is a measure µ over
F such that µ[X] ≤ 1. A measure over a discrete measurable space is called a
discrete measure. Sometimes we refer to probability measures as distributions.

Given a set X, denote by Disc(X) the set of discrete probability measures
over the measurable space (X, 2X), and by SubDisc(X) the set of discrete sub-
probability measures over the measurable space (X, 2X). We call a discrete (sub-
)probability measure a Dirac measure if either it assigns measure 1 to exactly
one object or it assigns measure 0 to all objects. Given a discrete sub-probability
measure µ of SubDisc(X), denote by µ[⊥] the value 1 − µ[X]. In the sequel
discrete sub-probability measures are used to describe progress. If the measure
of the sample space is not 1, then it means that with some non-zero probability
the system does not progress. We use the symbol ⊥ to denote this fact.

In this paper we refer also to semi-Markov processes. A semi-Markov process
is a pair (Q,µ) where Q is a set and µ : Q × Q → [0, 1] is a function, called
a transition function, such that for each element q ∈ Q the function is the
probability of reaching an element from X when leaving from q.

Convex Sets and Convex Hulls. A subset S of Rd is convex if for each pair of
points s1, s2 ∈ S, the segment joining s1 and s2, i.e., the set of points T =
{ts1 + (1 − t)s2 | 0 ≤ t ≤ 1}, is entirely contained in S. Given a subset S of
Rd, the convex hull of S, denoted by CHull(S), is the smallest convex set that
contains S. A convex set S is said to be finitely generated if there is a finite
set T , called a generator, such that S = CHull(T). In such case there is also
a unique minimum set T that generates S. We denote such minimum set T by
Gen(S). The elements of Gen(S) are called the extreme points of S.

Given a set of points S = {s1, . . . , sn}, we say that s is a convex combination
of the points in S if there exists a set of non negative weights t1, . . . , tn such that

∑n
i=1 ti = 1 and s =

∑n
i=1 ti ∗ si. The definition is extended in the natural way

to give the convex combination of an infinite countable set.
In the sequel, we rely on the fact that there are algorithms to determine the

extreme points of the convex hull generated by a given set of n points. This is also
known as the “redundancy removal for a point set S” in Rd. This problem has a
polynomial complexity as it can be reduced to solving O(n) linear programming
problems, for which many polynomial time algorithms are available [6].

3 Probabilistic Automata

Probabilistic Automata. A probabilistic automaton A is a tuple (S, s̄, Σ,D) where
S is a set of states, s̄ ∈ S is the start state, Σ is a set of actions and D ⊆
S × Σ × Disc(S) is the transition relation. The set of actions Σ is partitioned
into two sets E and H of external and hidden actions, respectively. For the
purpose of this paper, we will consider only automata with finite state sets.

For convenience, states are ranged over by r, q, s, actions are ranged over by
a, b, c, internal actions are ranged over by τ , and discrete distributions are ranged
over by µ. We also denote the generic elements of a probabilistic automaton A
by S, s̄, Σ,E,H and D, and we propagate primes and indices when necessary.
Thus, the elements of a probabilistic automaton A′i are S′i, s̄

′
i, Σ

′
i, E

′
i,H

′
i and D′i.

An element of D is called a transition. A transition (s, a, µ) is said to leave
from state s, to be labeled by a, and to lead to µ. We also say that s enables
action a and that action a is enabled from s. Finally, we say that the transition
(s, a, µ) is enabled from s. The transition (s, a, µ) is denoted alternatively by
s

a−→ µ. Given a state q, denote by D(q) the set of transitions that leave from
q, that is, D(q) = {(s, a, µ) ∈ D | s = q}.

The reactive models of [7] are probabilistic automata where each state enables
at most one transition for each action. In line with the process algebraic termi-
nology, we call such probabilistic automata deterministic. Ordinary automata
are probabilistic automata where each transition leads to a Dirac distribution;
we call them Dirac automata. The alternating model [9] can be seen as proba-
bilistic automata where each state either enables a unique transition labeled by
an internal action or several transitions that lead to Dirac distributions.

Executions and Traces. A potential execution of a probabilistic automaton A is
a finite or infinite sequence of alternating states and actions, α = s0a1s1a2s2 . . .
starting from a state and, if the sequence is finite, ending with a state. Define the
length of a potential execution α, denoted by |α|, to be the number of occurrences
of actions in α. If α is an infinite sequence, then |α| = ∞. For a natural number
i ≤ |α|, denote by α[i] the state si. In particular α[0] is the first state of α.
For a finite execution α denote by α[⊥] the last state of α. We say that a
potential execution α is a prefix of a potential execution α′, denoted by α ≤ α′

if the sequence α is a prefix of the sequence α′. An execution of a probabilistic
automaton A is a potential execution of A, α = s0a1s2a2s2 . . . such that for each
i < |α| there exists a transition (si−1, ai, µi) of D where µi[si] > 0. An execution

is said to be initial if α[0] = s̄. We denote by execs(A) the set of executions of
A, and by execs∗(A) the set of finite executions of A.

The trace of a potential execution α, denoted by trace(α) is the sub-sequence
of α composed by its external actions. A trace is used to observe the externally
visible communication that takes place within a potential execution.

Combined Transitions. Nondeterminism in a probabilistic automaton arises from
the fact that a state may enable several transitions. Resolving the nondetermin-
ism in a state s means choosing one of the transitions that are enabled from s.
However, being in a randomized environment, transitions may be chosen ran-
domly. In this case we obtain an object which we call a combined transition.

Given a state s and a distribution σ ∈ SubDisc(D(s)), define the combined
transition according to σ to be the pair (s, µσ), where µσ ∈ SubDisc(Σ × S) is
defined for each pair (a, q) as

µσ[(a, q)] =
∑

(s,a,µ)

σ [(s, a, µ)] µ[q]. (1)

In practice a transition is chosen among the transitions enabled from s ac-
cording to σ, and then the chosen transition is scheduled. The chosen transi-
tions may be labeled by different actions, and thus the distribution that ap-
pears in a combined transition includes actions as well. Observe that, since σ
is a sub-probability measure, we consider also the fact that with some non-zero
probability no transition is scheduled from s. We denote a combined transition
(s, µ) alternatively by s −→C µ. Whenever there exists an action a such that
µ[(a, S)] = 1 we denote the corresponding combined transition alternatively by
s

a−→C µ′ where µ′ ∈ Disc(S) is defined for each state q as µ′[q] = µ[(a, q)].

Schedulers. A scheduler for a probabilistic automaton A is a function σ :
execs∗(A) → SubDisc(D) such that for each finite execution α, we have that
σ(α) ∈ SubDisc(D(α[⊥])). In other words, a scheduler is the entity that re-
solves nondeterminism in a probabilistic automaton by choosing randomly either
to stop or to perform one of the transitions that are enabled from the current
state. The choices of a scheduler are based on the past history.

We say that a scheduler is Dirac if it assigns a Dirac distribution to each
execution. We say that a scheduler is simple if for each pair of finite executions
α1, α2 ∈ execs(A) such that α1[⊥] = α2[⊥] we have that σ(α1) = σ(α2).
Finally, we say that a scheduler is determinate is for each pair of finite executions
α1, α2 ∈ execs(A) such that α1[⊥] = α2[⊥] and trace(α1) = trace(α2) we have
that σ(α1) = σ(α2).

A Dirac scheduler is a scheduler that does not use randomization in its
choices. We could call it a deterministic scheduler; however the name Dirac
is more consistent with the rest of our terminology and avoids overloading of the
term nondeterministic. Simple schedulers base their choices only on the current
state without looking at the past history, while determinate scheduler may look
at the externally visible part of the past history. Determinate scheduler were in-
troduced in [20] for the purpose of defining a finite class of schedulers that would

characterize probabilistic bisimulation in the alternate model. In this paper we
use determinate schedulers for the same purpose as in [20].

Consider a scheduler σ and a finite execution α with last state q. The distri-
bution σ(α) describes how to move from q. The resulting combined transition is
the combined transition according to the distribution σ(α), which we denote by
(q, µσ(α)).

Probabilistic Executions. The result of the action of a scheduler from a start state
s can be represented as a semi-Markov process whose states are finite executions
of A with start state s. These objects are called probabilistic executions.

Formally, the probabilistic execution of A identified by a scheduler σ and a
state s is a semi-Markov process (Q,µ) where Q is the set of finite executions of
A that start with s, and µ is 0 except for pairs of the form (q, qar), where it is
defined as follows: µ[q, qar] = µσ(α)[(a, r)].

Given a probabilistic execution we can define a probability measure over
executions as follows. The sample space is the set of executions that start
with s; the σ-field is the σ-field generated by the set of cones, sets of the
form Cα = {α′ ∈ execs(A) | α ≤ α′}; the measure is the unique exten-
sion µσ,s of the measure defined over the cones by the following equation:
µσ,s[Csa1s1...ansn] =

∏
i∈{1,...n} µσ(sa1s1...ai−1si−1)[(ai, si)]. This definition is jus-

tified by standard measure theoretical arguments [15]. In the sequel we denote a
probabilistic execution alternatively by the probability measure over executions
that it identifies.

Observe that any reachability property is measurable since it can be ex-
pressed as a countable union of cones. Furthermore, observe that the probability
of a finite execution α is µσ,s[α] = µσ,s[Cα]µσ(α)[⊥]. The probability of α repre-
sents the probability of executing α and then stopping. The probability of the
set of finite executions represents the probability of stopping eventually.

Weak Transitions. We are often interested in transitions that abstract from
internal computation. Weak transitions as defined in [17] serve this purpose. In
[23] weak transitions are generalized to probabilistic automata by stating that a
weak transition is essentially a probabilistic execution that stops with probability
1 and whose traces at the stopping points consist of a unique action.

Formally, we say that there is a weak transition from state s to µ labeled by
an action a, denoted by s

a=⇒ µ, if there is a probabilistic execution µσ,s, with
σ a Dirac scheduler, such that
1. µσ,s[execs∗(A)] = 1, and
2. for each α ∈ execs∗(A), if µσ,s[α] > 0 then trace(α) = a.
3. for each state q, µσ,s[{α ∈ execs∗(A) | α[⊥] = q}] = µ[q].

If we remove the Dirac condition on the scheduler σ, then we say that there is
a combined weak transition from s to µ labeled by a, denoted by s

a=⇒C µ.
Condition 1 states that the probability of stopping is 1; Condition 2 states

that at each stopping point only action a has occurred among the external
actions; Condition 3 states that the distribution over states at the stopping
points is µ.

4 Bisimulation

We can now define the bisimulation relations that we are interested to study fol-
lowing the approach of [23]. We distinguish between strong and weak bisimula-
tions, and within each class we distinguish between bisimulations based on Dirac
schedulers (strong bisimulation and weak bisimulation relations) and bisimula-
tions based on general schedulers (strong probabilistic bisimulation and weak
probabilistic bisimulation relations).

We first need to lift an equivalence relation on states to an equivalence rela-
tion on distributions over states. Following [16], two distributions are equivalent
if they assign the same probabilities to the same equivalence classes. Formally,
given an equivalence relation R on a set of states Q, we say that two probability
distributions µ1 and µ2 of Disc(Q) are equivalent according to R, denoted by
µ1 ≡R µ2, iff for each equivalence class C of R, µ1[C] = µ2[C].

Strong Probabilistic Bisimulation. Let A1,A2 be two probabilistic automata. An
equivalence relation R on S1∪S2 is a strong probabilistic bisimulation if, for each
pair of states q, r ∈ S1 ∪ S2 such that q R r, if q

a−→ µ for some distribution µ,
then there exists a distribution µ′ such that µ ≡R µ′ and r

a−→C µ′.
The probabilistic automata A1,A2 are said to be strongly probabilistically

bisimilar if there exists a strong probabilistic bisimulation R on S1 ∪ S2 such
that s̄1 R s̄2. We denote a strong probabilistic bisimulation relation also by ∼c.

The non probabilistic version of strong bisimulation [16, 8, 22] is obtained
by disallowing combined transitions in the definition above. Strong probabilistic
bisimulation was first defined in [22], but it also gives rise to meaningful relations
for reactive systems and for the alternating model. However, in the two restrictive
models strong bisimulation and strong probabilistic bisimulation coincide.

Weak Probabilistic Bisimulation. Let A1,A2 be two probabilistic automata. An
equivalence relation R on S1 ∪S2 is a weak probabilistic bisimulation if, for each
pair of states q, r ∈ S1 ∪ S2 such that q R r, if q

a−→ µ for some distribution µ,
then there exists a distribution µ′ such that µ ≡R µ′ and r

a=⇒C µ′.
The probabilistic automata A1,A2 are said to be weakly probabilistically

bisimilar if there exists a weak probabilistic bisimulation R on S1∪S2 such that
s̄1 R s̄2. We denote a weak probabilistic bisimulation relation also by ≈c.

The non probabilistic version of weak bisimulation [22] is obtained by disal-
lowing combined transitions in the definition above. Weak probabilistic bisimu-
lation was first defined in [22]. Decision algorithms for weak probabilistic bisim-
ulation in the alternating model are studied in [20]. Similarly to the strong case,
there is a very close relationship between weak bisimulation and weak proba-
bilistic bisimulation in the alternating model.

5 The Algorithms

In this section we define the general scheme of the algorithms that decide whether
two probabilistic automata are bisimilar according to one of the definitions of

Section 4. The approach we use in all cases is the partitioning technique of
[13, 19]: we start with a single equivalence class containing all the states and we
refine it until we get the equivalence classes induced by the bisimulation relation
under examination.

To refine a partition, we find an element (splitter) of the partition that vio-
lates the definition of bisimulation and then subdivide it further. Formally, given
a probabilistic automaton A = (S, s̄, Σ,D) and a partition W of S, we say that
a triplet (C, a,W), C ∈ W and a ∈ Σ, is a splitter if there are two states s, t ∈ C
that prevent the partition from being a bisimulation.

Algorithm 1 describes the main structure of the decision procedure Decide-
Bisim. It is based on two functions: function FindSplit returns a splitter (C, a,W)
for the current partition W if one exists, and returns the empty set otherwise;
function Refine, given a splitter (C, a,W), distinguishes the states in C that are
incompatible, and divides C into subclasses, thus refining the current partition.

Algorithm 1. Decide whether two probabilistic automata A1 = (S1, s̄1, Σ1,D1)
and A2 = (S2, s̄2, Σ2,D2) are related according to some bisimulation R.

DecideBisim (A1, A2) =
W = {S1 ∪ S2};
(C, a,W) = FindSplit(W);
while C 6= ∅ do

W = Refine(W, C, a);
(C, a,W) = FindSplit(W);

if (s̄1 and s̄2 are related) then
return W;

else return false;

Algorithm 1 works as follows: it starts with one single equivalence class and
then refines it through the while loop. It is easy to see that in each iteration, if a
splitter is found, then the refinement produces a partition that is finer than the
previous one. When no splitter is found, then DecideBisim simply checks whether
the start states of A1 and A2 are equivalent according to the current partition.

Function FindSplit (see Algorithm 2) has a two phase structure which is
independent of the relation we study. In the first phase, FindSplit computes
information about the transitions enabled from each state s; then, in the second
phase, it compares the information of each pair of states in the same equivalence
class to check whether they should be separated.

Algorithm 2. Finds a splitter in partition W.

FindSplit(W) =
foreach s ∈ Sa ∪ Sb, a ∈ Σ

I(s, a) = ComputeInfo(s, a,W)
foreach Ci ∈ W, s, t ∈ Ci, a ∈ Σ

if I(s, a)/W 6= I(t, a)/W
return (Ci, a,W);

return ∅;

Finally, function Refine has a very simple structure: it refines each partition by
comparing states pairwise and grouping those with the compatible information
into new equivalence classes. We omit the pseudo code from this paper.

In the following sections we show how to compute the information I(s, a)
and how to compare such information for strong probabilistic bisimulation and
weak probabilistic bisimulation. The technique can also be used for strong non
probabilistic bisimulation as I(s, a) is described by the finite set of transitions
leaving state s and labeled by a (the resulting algorithm is proposed in [2]).

For strong (resp, weak) probabilistic bisimulation I(s, a) describes the set of
combined transitions (resp, weak combined transitions) that are enabled from s
and labeled by a. In both cases, each transition can be described simply by the
distribution over states that it leads to, which can be seen as well as a tuple in
a n-dimensional space, where n is the number of states. Formally, if we express
S as {s1, s2, . . . , sn}, thus numbering the states, a transition (s, a, µ) of I(s, a)
can be represented by the point (p1, p2, . . . , pn) in Rn where pi = µ(si) for each
i in {1, . . . , n}.

Define the reachable space for a point s with transitions labeled by a with
respect to strong probabilistic bisimulation, denoted by S∼c

(s, a), to be the set
of points that are reachable from s with a combined transition s

a−→C µ. Simi-
larly, define the reachable space with respect to weak probabilistic bisimulation,
denoted S≈c

(s, a) by considering combined weak combined transitions.

Theorem 1. Let ' be either strong probabilistic bisimulation or weak probabilis-
tic bisimulation, A a probabilistic automaton, and s1 and s2 two states. Then,
s1 ' s2 if and only if ∀a ∈ Σ we have that S'(s1, a)/ '= S'(s2, a)/ '.

Proof outline. The proof is straightforward in the case of strong probabilistic
bisimulation, since we have to match strong transitions of one state with strong
combined transitions of the other and vice versa. The result for weak probabilistic
bisimulation is similar, after proving that the main condition in the definition of
probabilistic weak bisimulation can be replaced by the following: for each pair
of states q and r, such that q ≈c r if q

a=⇒c µ for some distribution µ, then there
exists a distribution µ′ such that µ ≡≈c

µ′ and r
a=⇒c µ′.

It follows that the information I(s, a) that we need in FindSplit coincides with
the reachable spaces defined above. Such spaces are then quotiented with respect
to the equivalence relation induced by the current partition W. In the following
sections we show that for strong probabilistic bisimulation and weak probabilistic
bisimulation these spaces are convex sets and, despite being potentially infinite
because of combined transitions, they are generated by a finite set of points.

Complexity. Assuming that the complexity to compute the information I(s, a)
is c and the complexity to compare such information is d, then the complexity of
FindSplit is O(n∗ c+n2 ∗d), the complexity of Refine is O(n2 ∗d) and the overall
complexity is O(n∗ (n∗ c+n2 ∗d)), since the while loop can be repeated at most
n times, corresponding to the worst case when all the states are in a different
equivalence class. Note that our algorithm computes I(s, a) at each iteration and
an efficient implementation would avoid this.

6 Splitter for Strong Probabilistic Bisimulation

In the case of strong probabilistic bisimulation, S∼c(s, a) is a potentially infinite
set, but it is easy to see that such set is the convex set generated by the (non
combined) transitions leaving the state.

Proposition 1. Given a probabilistic automaton A, for each state s and each
action a, the reachable space S∼c

(s, a) is a convex space.

Proof. We need to prove that, given two combined transitions s
a−→c µ1 and

s
a−→c µ2, each of their convex combinations is still a legal combined transition.

To prove this fact, observe that each transition (s, a, (p∗µ1 +(1−p)∗µ2)), with
0 ≤ p ≤ 1, can be seen as the combination of the two transitions s

a−→c µ1 and
s

a−→c µ2 with weights p and 1− p, respectively.

Proposition 2. Given a probabilistic automaton A, each point reachable with a
combined transition s

a−→c µ is a convex combination of those points reachable
with non combined transitions.

Compute. From Propositions 1 and 2, the distributions that are reachable from
s with non combined transitions labeled by a, are sufficient to characterize the
set S∼c(s, a). Thus, we can apply any algorithms for the determination of the
extreme points to obtain Gen(S∼c(s, a)). This means that we have to apply
linear programming algorithms to the points corresponding to each deterministic
transition.

Compare. We have to verify that the generators computed are the same set.

Complexity. The algorithm proposed above is polynomial in the number of states
n and the number of transitions m of the automaton. The computation of the
generator of the convex set can be done by solving at most O(m) linear pro-
gramming problems, for which polynomial algorithms are available (e.g. [14]).
The comparison of two sets of extreme points is again polynomial. In practice, we
expect to have a limited number of transitions leaving each point, thus limiting
the number of linear programming problems to solve for each point.

7 Splitter for Weak Probabilistic Bisimulation

Again we can prove that the set S≈c
(s, a) is a convex set; however, since in a weak

transition we can consider arbitrary sequences of transitions labeled by internal
actions, we need to identify a finite set of points that includes the generator of
S≈c(s, a). A weak combined transition can be seen as the result of the action of a
scheduler. We show that the generator of S≈c(s, a) is included in the set of weak
transitions generated by determinate and Dirac schedulers, which are finite. The
idea of determinate schedulers originates from [20]. The proof proceeds in two
steps: first we show that we can use determinate schedulers (Proposition 3); then
we show that we can remove randomization from the schedulers (Proposition 4).

s1

s3

µ0

s4 µ4

µ2

q3

q1
q2

µ1

s2

µ3

...

r
q4

Fig. 1. Structure of the proof of Proposition 3.

Proposition 3. Given a probabilistic automaton A, any point reachable with a
weak transition under the control of a (generic) scheduler can be obtained as a
convex combination of the points reachable with determinate schedulers.

Proof. To simplify our proof we augment our probabilistic automaton by adding
some state information that records the last external action that occurred. Thus
we can limit our analysis to simple schedulers.

Consider a probabilistic execution induced by a scheduler σ starting from
a state r. Let s be a state of the automaton and call s1, s2, . . . its occurrences
in the probabilistic execution (see Figure 1). There can be at most countably
many occurences of s. For each i > 0, let πi be the probability not to reach any
other occurrence of s from si, and let µi by the final distribution reached from si

conditioned on not reaching s any more. If πi = 0, then define µi arbitrarily. Let
π0 be the probability not to reach s from r if s 6= r, 0 otherwise, and let µ0 by
the final distribution reached from r conditioned on not reaching s. As before, µ0

is arbitrary if π0 = 0. For each i > 0, define σi as a scheduler that behaves like σ
whenever s does not occur in the history and that treats the last occurrence of s
as the occurrence si otherwise. Then σi is a scheduler that does not look at the
past history whenever s is reached. Furthermore, the weak combined transition
identified by σi leads to distribution ρi = π0µ0 + (1− π0)µi.

Observe that the distribution µ induced by σ satisfies the equation µ =∑
i≥0 piµi, where pi is the probability to reach the occurrence si from r multiplied

by πi for i > 0, and p0 = π0; note that
∑

i>0 pi = 1 − π0. By defining p′i to be
pi/(1 − π0), it is immediate to show that µ =

∑
i>0 p′iρi, which means that

the weak combined transition associated with σ can be expressed as a convex
combination of the weak combined transitions associated with each of the σi’s.

By repeating the above procedure on the other states for each of the sched-
ulers σi, we end up with a collection of simple schedulers whose corresponding
transitions can be combined to give the transition of σ. The process ends since
the states of A are finite.

Proposition 4. Given a probabilistic automaton A, each point reachable with a
weak transition under the control of a determinate scheduler can be obtained as
a convex combination of the points reachable with Dirac determinate schedulers.

Proof outline. Again we simplify the proof by augmenting our probabilistic au-
tomata so that we deal with simple schedulers. Then, we proceed state by state
by replacing the combined transition returned by σ by one of the transitions that
have non-zero probability. The resulting schedulers can be combined to lead to
the distribution of σ.

Compute. To compute S≈c(s, a) we first compute the set of points reachable
by transitions generated by Dirac determinate schedulers and then solve the
extreme point problem in the set of reachable points as we did in Section 6 for
strong probabilistic bisimulation.

To compute the set of points reachable by transitions generated by Dirac
determinate schedulers we first check all the possible ways to resolve non de-
terminism by visiting the transition graph of A and resolving nondeterminism
in each possible way at each state that is reached in the visit. Since we are re-
stricted to Dirac determinate schedulers, each time we encounter a state before
or after the occurrence of a external action the same decision must be taken.

Let σ be a Dirac simple scheduler for A (again we consider augmented au-
tomata for simplicity), and let the states of A be s0, s1, . . . , sn. For each i, let
µi be the target distribution of the transition given by σ and xi be the distribu-
tion reachable from si under the control of σ. The following linear system holds,
where ei is the vector with the ith component set to 1 and all others set to 0.


x0 = µ0[s0] · x0 + . . . + µ0[sn] · xn + µ0[⊥] · e0

...
xn = µn[s0] · x0 + . . . + µn[sn] · xn + µn[⊥] · en

(2)

We are interested in the solution of the system above relative to state s. If
such solution does not exist, then it means that scheduler σ does not describe a
transition from s, and thus it should be discarded.

Compare. Once we have the set of extreme points, the problem is the same as
with strong probabilistic bisimulation and we have to check whether the two
generators are the same.

Complexity. Unfortunately, the algorithm described above is exponential: there
can be exponentially many Dirac determinate schedulers to consider while re-
solving non determinism. In such a case, we have to run the extremal point
algorithm on an exponential number of candidate points.

Example 1. The automaton of Figure 2 shows a scenario in which the exponen-
tial bound is reached. Assume that all bi,j states are in different equivalence
classes (achievable by enabling different actions from the states), and that all
the transitions shown are labeled by invisible actions. Let σ be a Dirac deter-
minate scheduler; the distribution µ generated by σ is such that µ(bi,ji

) = 1
2i ,

i = 1 . . . k − 1 and µ(bk,jk
) = 1

2k−1 for some combination of ji ∈ {0, 1} and

. . .

b0,1 b1,1 b2,1 bk,1

b2,0 bk,0b1,0b0,0
1
2

1
2

1
2

1
2

1
2

1
2

Fig. 2. An automaton with an exponential number of Dirac determinate sched-
ulers.

1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
8

1
2

1
8

1
8

1
2

3
8

3
8

3
8

1
2

1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
8

1
2

1
8

1
8

1
2

3
8

3
8

3
8

1
2

b b bc c cd d d

a a a

b b bc c cd d d

a a aa a

b b c d b c d b c d

a
a

a

c d b c d b c d

a

Fig. 3. Two non bisimilar probabilistic automata (left) and two non bisimilar
alternating automata (right)

probability 0 to all other states. We denote a scheduler σ with the set of indexes
{ji}i∈1..k of the states reached with non zero probability under σ. It is clear
that there are 2k such schedulers. In order to show that all 2k schedulers must
be considered, it is necessary to show that no resulting point can be expressed
as the convex combination of the others. Assume that the point reached with
scheduler {ji} can be expressed as a convex combination of the other schedulers,
then there must be another scheduler {li} which has a positive weight in the
convex combination. Since the two schedulers {ji} and {li} are different, there
must be an index k such that jk 6= lk, that is, they make a different choice at
the k-th level. This leads to a contradiction, since {li} would give a non zero
probability to state bk,lk in the convex combination, while bk,lk has probability
0 under scheduler {jk}.

The example above shows that, using the technique described in this sec-
tion, all points reachable with Dirac determinate schedulers must be considered,
resulting in an exponential complexity. We do not know whether this bound
is inevitable or there are other techniques that avoid consideration of all these
points, thus reaching a polynomial complexity.

However, despite the exponential complexity we have achieved, we argue that
the algorithm is feasible in practice. Note that the worst case complexity bound is
achieved when all states and transitions are reachable from a state via sequences

of τ moves. We believe that such pathological cases are unlikely to occur since
the sequences of τ moves in a typical probabilistic automaton are short.

In the description of the algorithms for both strong and weak probabilistic
bisimulation, we have not considered efficiency: both algorithms can be made
more efficient by not calculating the reachable states at each iteration and by
reusing much of the previous computation. Making such improvement to the al-
gorithms would not change their complexity classes; in particular, the algorithm
for weak probabilistic bisimulation would still be exponential.

Comparison with the Alternating Model. A polynomial time algorithm for the al-
ternating model was proposed in [20]. This algorithm uses the same partitioning
technique we have used and it is based on the result that two states are weakly
bisimilar if and only if the maximum probabilities of reaching each equivalence
class are the same for each action. Informally, this works in the alternating model
because for each probability distribution there is a state representing it, so check-
ing maximum probabilities is enough to check exact probabilities. In our model
a single state represents more than one probability distribution. Figure 3 shows
how computing maximal probabilities fails to distinguish non bisimilar states for
probabilistic automata, while it works in the alternating model. The start states
of the two automata at the top of Figure 3 are not weakly bisimilar; however, the
maximal probabilities of reaching each equivalence class (reachable with action
b or c or d, respectively) are the same. The bottom part of Figure 3 shows the
alternating automata obtained from those above by using the widely accepted
decomposition of the transitions. In this case, the alternating automata first re-
solve the nondeterministic choice, then the probabilistic choice; this allows the
algorithm to distinguish between non bisimilar states: the states reached after
the a action have different maximal probabilities for each equivalence class.

8 Concluding Remarks

We have studied decision algorithms for bisimulation relations on probabilistic
automata and we have obtained a polynomial time algorithm for strong proba-
bilistic bisimulation and an exponential algorithm for weak probabilistic bisim-
ulation. From a practical perspective we have argued that our exponential time
algorithm should be feasible as the number of reachable equivalence classes from
a state is small. It is still an open problem to find a decision algorithm for
weak bisimulation, while the problem is solved already in the alternating model.
However, given the results of [22], where it is shown that the probabilistic tem-
poral logic PCTL is preserved by probabilistic bisimulation, we believe that the
probabilistic version of our bisimulation relations is the most important.

References

[1] L. d. Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997. Available as Technical report STAN-CS-TR-98-1601.

[2] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. Journal of Computer and System Sciences,
60(1):187–231, 2000.

[3] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes.
Technical Report 99/12, University of Twente, 1999.

[4] C. Baier and M. Stoelinga. Norm functions for bisimulations with delays. In
Proceedings of FOSSACS. Springer-Verlag, 2000.

[5] M. Bernardo, L. Donatiello, and R. Gorrieri. Modeling and analyzing concurrent
systems with MPA. In Proceedings of the Second Workshop on Process Algebras
and Performance Modelling (PAPM), Erlangen, Germany, pages 175–189, 1994.

[6] K. Fukuda. Polyhedral computation FAQ.
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html, 2000.

[7] R. v. Glabbeek, S. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121(1), 1996.

[8] H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-
ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.

[9] H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabilities. In Proceedings of the 11th IEEE Symposium on Real-Time Systems,
Orlando, Fl., 1990.

[10] H. Hermanns, U. Herzog, and J. Katoen. Process algebra for performance evalu-
ation. To appear in Theoretical Computer Science.

[11] J. Hillston. PEPA: Performance enhanced process algebra. Technical Report
CSR-24-93, Department of Computer Science, Univ. of Edimburgh (UK), 1993.

[12] J. Hillston. A Compositional Approach to Performance Modeling. PhD thesis,
Department of Computer Science, Univ. of Edimburgh (UK), 1994.

[13] P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, 1990.

[14] N. Karmakar. A new polynomial-time algorithm for linear programming. Com-
binatorica 4, pages 373–395, 1984.

[15] J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Graduate Texts
in Mathematics. Springer-Verlag, second edition, 1976.

[16] K. Larsen and A. Skou. Bisimulation through probabilistic testing. In Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas, pages 344–352, 1989.

[17] R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

[18] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM
Trans. Prog. Lang. Syst., 18(3):325–353, May 1996.

[19] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,
16(6):973–989, 1987.

[20] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In Proceedings of CONCUR 2000, pages 334–349. Springer-Verlag, 2000.

[21] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science,
1995. Also appears as technical report MIT/LCS/TR-676.

[22] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Proceedings of CONCUR 94, pages 481–496. Springer-Verlag, 1994.

[23] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

[24] K. Seidel. Probabilistic communicating processes. Technical Report PRG-102,
Ph.D. Thesis, Programming Research Group, Oxford University, 1992.

[25] S. Wu, S. Smolka, and E. Stark. Composition and behaviors of probabilistic I/O
automata. Theoretical Comput. Sci., 176(1-2):1–38, 1999.

	Decision Algorithms for Probabilistic Bisimulation
	Introduction
	Preliminaries
	Probabilistic Automata
	Bisimulation
	The Algorithms
	Splitter for Strong Probabilistic Bisimulation
	Splitter for Weak Probabilistic Bisimulation
	Concluding Remarks

