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Abstract
We introduce a probabilistic robustness measure for
Bayesian Neural Networks (BNNs), defined as the
probability that, given a test point, there exists a point
within a bounded set such that the BNN prediction
differs between the two. Such a measure can be used,
for instance, to quantify the probability of the existence
of adversarial examples. Building on statistical verifi-
cation techniques for probabilistic models, we develop
a framework that allows us to estimate probabilistic
robustness for a BNN with statistical guarantees, i.e.,
with a priori error and confidence bounds. We provide
experimental comparison for several approximate BNN
inference techniques on image classification tasks
associated to MNIST and a two-class subset of the
GTSRB dataset. Our results enable quantification of
uncertainty of BNN predictions in adversarial settings.

1 Introduction
Bayesian Neural Networks (BNNs), i.e. neural networks
with distributions over their weights, are gaining momen-
tum for their ability to capture the uncertainty within
the learning model, while retaining the main advan-
tages intrinsic to deep neural networks [MacKay, 1992;
Gal, 2016]. A wide array of attacks and formal verification tech-
niques have been developed for deterministic (i.e. non-Bayesian)
neural networks [Biggio and Roli, 2018]. However, to date, only
methods based on pointwise uncertainty computation have been
proposed for BNNs [Feinman et al., 2017]. To the best of our
knowledge, there are no methods directed at providing guarantees
on BNNs that fully take into account their probabilistic nature.
This is particularly important in safety-critical applications, where
uncertainty estimates can be propagated through the decision
pipeline to enable safe decision making [McAllister et al., 2017].

In this work, we present a statistical framework to evaluate
the probabilistic robustness of a BNN. The method comes with
statistical guarantees, i.e., the estimated robustness meets a priori
error and confidence bounds. In particular, given an input point
x∗ ∈Rm and a (potentially uncountable) bounded set of input
points T ⊂Rm, we aim to compute the probability (induced by
the distribution over the BNN weights) that there exists x∈T such
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that the BNN prediction onx differs from that ofx∗. Note that this
is a probabilistic generalisation of the usual statement of (determin-
istic) robustness to adversarial examples [Goodfellow et al., 2014].

We formulate two variants of probabilistic robustness. The
first variant describes the probability that the deviation of the
network’s output (i.e., of the class likelihoods) between x∗ and
any point in T is bounded. This variant accounts for the so-called
model uncertainty of the BNN, i.e., the uncertainty that derives
from partial knowledge about model parameters. The second
variant quantifies the probability that the predicted class label for
x∗ is invariant for all points in T . This accounts for both model
uncertainty and data uncertainty, which is related to intrinsic un-
certainty in the labels. These properties allow one to estimate, for
instance, the probability of the existence of adversarial examples.

The exact computation of such robustness probabilities is,
unfortunately, infeasible, as the posterior distribution of a BNN is
analytically intractable in general. Hence, we develop a statistical
approach, based on the observation that each sample taken
from the (possibly approximate) posterior weight distribution
of the BNN induces a deterministic neural network. The latter
can thus be analysed using existing verification techniques for
deterministic networks (e.g. [Huang et al., 2017; Katz et al., 2017;
Ruan et al., 2018]). Thus, we can see the robustness of a BNN
as a Bernoulli random variable whose mean is the probability that
we seek to estimate (see Section 5). In order to do so, we develop
a sequential scheme based on Jegourel et al. [2018], a statistical
approach for the formal verification of stochastic systems.
Namely, we iteratively sample the BNN posterior and check the
robustness of the resulting deterministic network with respect to
the input subset T . After each iteration, we apply the Massart
bounds [Massart, 1990] to check if the current sample set satisfies
the a priori statistical guarantees. Thus, we reduce the number of
samples only to those needed in order to meet the statistical guar-
antees required. This is essential for the computational feasibility
of the method, as each sample entails solving a computationally
expensive verification sub-problem. Moreover, our method is
generally applicable in that the estimation scheme is independent
of the choice of the deterministic verification technique.

We evaluate our method on fully connected and convolutional
neural networks, trained on the MNIST handwritten digits dataset
[LeCun and Cortes, 2010] and a two-class subset of the the Ger-
man Traffic Sign Recognition Benchmark (GTSRB) [Stallkamp
et al., 2012] respectively. We compare the robustness profiles
of three different BNN inference methods (Monte Carlo dropout



[Gal and Ghahramani, 2016], variational inference [Blundell
et al., 2015], and Hamiltonian Monte Carlo [Neal, 2012]),
demonstrating that our notion of probabilistic robustness results
in an effective model selection criterion and provides insights into
the benefits of BNN stochasticity in mitigating attacks1.

In summary, the paper makes the following main contributions:
• We define two variants of probabilistic robustness for

BNNs, which generalise safety and reachability defined
for deterministic networks. These can be used to quantify
robustness against adversarial examples.
• Building on analysis techniques for deterministic neural

networks, we design a statistical framework for the
estimation of the probabilistic robustness of a BNN, which
ensures a priori statistical guarantees.
• We evaluate our methods on state-of-the-art approximate

inference approaches for BNNs on MNIST and GTSRB,
for a range of properties. We quantify the uncertainty of
BNN predictions in adversarial settings.

2 Related Work
Most existing methods for the analysis and verification of neu-
ral networks are designed for deterministic models. These can
be roughly divided into heuristic search techniques and formal
verification techniques. While the focus of the former is usu-
ally on finding an adversarial example [Goodfellow et al., 2014;
Wicker et al., 2018; Wu et al., 2018], verification techniques strive
to formally prove guarantees about the robustness of the network
with respect to input perturbations [Huang et al., 2017; Katz et al.,
2017; Ruan et al., 2018]. Alternatively, statistical techniques posit
a specific distribution in the input space in order to derive a quan-
titative measure of robustness for deterministic networks [Webb
et al., 2018; Cohen et al., 2019]. However, this approach may not
be appropriate for safety-critical applications, because these typi-
cally require a worst-case analysis and adversarial examples often
occupy a negligibly small portion of the input space. Dvijotham
et al. [2018] consider a similar problem, i.e., that of verifying (de-
terministic) deep learning models over probabilistic inputs. Even
though they provide stronger probability bounds than the above
statistical approaches, their method is not applicable to BNNs.

Bayesian uncertainty estimation approaches have been
investigated as a way to flag possible adversarial examples on
deterministic neural networks [Feinman et al., 2017], though
recent results suggest that such strategies might be fooled by
adversarial attacks designed to generate examples with small
uncertainty [Grosse et al., 2018]. However, as these methods
build adversarial examples on deterministic networks and use
uncertainty only at prediction time, their results do not capture the
actual probabilistic behaviour of the BNN in adversarial settings.
In contrast, our approach allows for the quantitative analysis
of probabilistic robustness of BNNs, yielding probabilistic
guarantees for the absence of adversarial examples.

A Bayesian perspective on adversarial attacks is taken by Rawat
et al. [2017], where experimental evaluation of the relationship
between model uncertainty and adversarial examples is given.
Similarly, Kendall et al. [2015] study the correlation between

1Code is available at
https://github.com/matthewwicker/StatisticalGuarenteesForBNNs

uncertainty and per-class prediction accuracy in a semantic seg-
mentation problem. These approaches are, however, pointwise, in
that the uncertainty information is estimated for one input at a time.
Instead, by applying formal verification techniques on the deter-
ministic NNs sampled from the BNN, our method supports worst-
case scenario analysis on possibly uncountable regions of the input
space. This allows us to obtain statistical guarantees on probabilis-
tic robustness in the form of a priori error and confidence bounds.

Cardelli et al. [2018] present a method for computing
probabilistic guarantees for Gaussian processes in Bayesian
inference settings, which applies to fully connected BNNs in
the limit of infinite width. However, the method, while exact for
Gaussian processes, is only approximate for BNNs and with an
error that cannot be computed.

Another relevant set of works aims to derive PAC bounds on the
generalization error for neural networks [Neyshabur et al., 2017;
Bartlett et al., 2017]. However, these bounds are not directly
applicable to our robustness estimation problem, as our focus is
on analysing how, for a given test point, a perturbation applied to
that point causes a prediction change, independently of the point
ground truth.

3 Bayesian Neural Networks
In this section we provide background for learning with BNNs,
and briefly review the approximate inference methods employed
in the remainder of the paper. We use fw(x)=[fw1 (x),...,fwC (x)]
to denote a BNN with C output units and an unspecified number
(and kind) of hidden layers, where w is the weight vector random
variable. Given a distribution over w and w ∈ RW , a weight
vector sampled from the distribution of w, we denote with fw(x)
the corresponding deterministic neural network with weights fixed
to w. Let D={(x,c)|x∈Rm, c∈{1,...,C}} be the training set.
We consider classification with a softmax likelihood model, that
is, assuming that the likelihood function for observing class h, for
an input x∈Rm and a given w∈RW , is given by σh(fw(x))=

ef
w
h (x)∑C

j=1e
fw
j

(x) . We define σ(fw(x))=[σ1(f
w(x)),...,σC(f

w(x))],

the combined vector of class likelihoods, and similarly we de-
note with σ(fw(x)) the associated random variable induced by
the distribution over w. In Bayesian settings, we assume a prior
distribution over the weights, i.e. w∼p(w)2, so that learning for
the BNN amounts to computing the posterior distribution over the
weights, p(w|D), via the application of the Bayes rule. Unfortu-
nately, because of the non-linearity generally introduced by the
neural network architecture, the computation of the posterior can-
not be done analytically [MacKay, 1992]. Hence, various approxi-
mation methods have been investigated to perform inference with
BNNs in practice. Among these methods, in this work we con-
sider Hamiltonian Monte Carlo [Neal, 2012], variational inference
through Bayes by backprop [Blundell et al., 2015], and Monte
Carlo dropout [Gal, 2016]. We stress, however, that the method
we present is independent of the specific inference technique used,
as long as this provides a practical way of sampling weights w
from the posterior distribution of w (or an approximation thereof).

Hamiltonian Monte Carlo (HMC) proceeds by defining
a Markov chain whose invariant distribution is p(w|D), and
relies on Hamiltionian dynamics to speed up the exploration

2Usually depending on hyperparameters, omitted here for simplicity.



of the space. Differently from the two other methods discussed
below, HMC does not make any assumptions on the form of the
posterior distribution, and is asymptotically correct. The result
of HMC is a set of samples wi that approximates p(w|D).

Variational Inference (VI) proceeds by finding a suitable
approximating distribution q(w)≈p(w|D) in a trade-off between
approximation accuracy and scalability. The core idea is that
q(w) depends on some hyper-parameters that are then iteratively
optimized by minimizing a divergence measure between q(w)
and p(w|D). Samples can then be efficiently extracted from q(w).

Monte Carlo Dropout (MCD) is an approximate variational
inference method based on dropout [Gal and Ghahramani,
2016]. The approximating distribution q(w) takes the form
of the product between Bernoulli random variables and the
corresponding weights. Hence, sampling from q(w) reduces to
sampling Bernoulli variables, and is thus very efficient.

4 Problem Formulation
A BNN defines a stochastic process whose randomness comes
from the distribution over the weights of the neural network.
Thus, the probabilistic nature of a BNN should be taken into
account when studying its robustness.

For this purpose, we formulate two problems, respectively
instances of probabilistic reachability and probabilistic safety,
properties that are widely employed for the analysis of stochastic
processes [Abate et al., 2008; Bortolussi et al., 2016]. At the same
time, these problems constitute a probabilistic generalization
of the reachability [Ruan et al., 2018] and safety specifications
[Huang et al., 2017] typical of deterministic neural networks.
In particular, in Problem 1 we consider reachability of the value
of the softmax regression, while Problem 2 is concerned with
perturbations that affect the classification outcome.

Problem 1 Consider a neural network fw with training dataset
D. Let x∗ be a test point and T⊆Rm a bounded set. For a given
δ≥0, compute the probability

p1= P(φ1(f
w)|D), where

φ1(f
w)= ∃x∈T s.t. |σ(fw(x∗))−σ(fw(x))|p>δ,

and |·|p is a given seminorm. For 0≤η≤1, we say that fw is
robust with probability at least 1−η in x∗ with respect to set T
and perturbation δ iff p1≤η.

For a set T and a test point x∗, Problem 1 seeks to compute the
probability that there exists x∈T such that the output of the soft-
max layer for x deviates by more than a given threshold δ from the
output forx∗. Note thatx∗ is not necessarily an element ofT . IfT
is a bounded region around x∗, Problem 1 corresponds to comput-
ing the robustness of fw with respect to local perturbations. Note
that we only require that T is bounded, and so T could also be de-
fined, for instance, as a set of vectors derived from a given attack.

The probability value in Problem 1 is relative to the output
of the softmax layer, i.e., to the vector of class likelihoods, and
not to the classification outcome, which is instead considered
in Problem 2. In fact, probabilistic models for classification
further account for the uncertainty in the class prediction step by
placing a Multinoulli distribution on top of the softmax output
[Gal, 2016]. Specifically, the class of an input x∗ is assigned by

the stochastic process m(x∗) with values in {1,...,C}, where the
probability that m(x∗)=h, h∈{1,...,C}, is given by

P(m(x∗)=h)=

∫
zP(σh(f

w(x∗))=z|D)dz. (1)

Taking the classification aspect and Multinoulli distribution into
account poses the following problem.

Problem 2 Consider a neural network fw with training dataset
D. Let x∗ be a test point and T⊆Rm a bounded set. We compute
the probability

p2= P(φ2(f
w)|D), where

φ2(f
w)=∃x∈T s.t.m(x∗) 6=m(x).

For 0≤ η≤ 1, we say that fw is safe with probability at least
1−η in x∗ with respect to set T iff p2≤η.

An important consequence of Problem 2 is that, for regions of
the input space where the model is unsure which class to assign
(i.e., where all classes have similar likelihoods), it is likely that the
Multinoulli samples of Eqn (1) induce a classification different
from that of x∗, thus leading to a low probability of being safe.
In contrast, Problem 1 does not capture this aspect as it considers
relative variations of the class likelihoods.

Note that the only source of uncertainty contributing to the
stochasticity of Problem 1 comes from the distribution of the
weights of the BNN, i.e. from p(w|D). This is the so-called
model uncertainty, i.e. the uncertainty that accounts for our partial
knowledge about the model parameters [Gal, 2016]. On the other
hand, Problem 2 accounts both for model uncertainty and data
uncertainty, i.e. the noise of the modelled process. We stress
that both robustness measures introduced in Problem 1 and 2
do not consider any specific decision making procedure, and are
as such independent and prior to the particular decision making
techniques placed on top of the Bayesian model.

Unfortunately, for BNNs, the distribution of fw is intractable.
Hence, to solve Problem 1 and 2 approximation techniques
are required. In what follows, we illustrate a statistically sound
method for this purpose.

5 Estimation of BNN Robustness Probability
We present a solution method to Problems 1 and 2, which builds
on a sequential scheme to estimate the probability of properties φ1
and φ2, Problems 1 and 2, respectively. This solution comes with
statistical guarantees, in that it ensures an arbitrarily small estima-
tion error with arbitrarily large confidence. Our method is based
on the observation that a sample of the BNN weights induces a
deterministic NN. Hence, we can decide the satisfaction of φ1 and
φ2 for each sample using existing formal verification techniques
for deterministic networks. More precisely, given a BNN fw, we
verify φ1 and φ2 over deterministic NNs fw, wherew is a weight
vector sampled from p(w|D) (or its approximation q(w)). For φ2,
along with w, we also need to sample the class m(x∗) from the
Multinoulli distribution of Eqn (1). Details about the deterministic
verification methods used here are given in Section 5.2.

5.1 Statistical Estimation Scheme
For j=1,2, we can see the satisfaction of φj(fw) as a Bernoulli
random variable Zj, which we can effectively sample as



described above, i.e., by sampling the BNN weights and formally
verifying the resulting deterministic network. Then, solving
Problem j amounts to computing the expected value of Zj. That
is, we evaluate the probability pj that φj is true w.r.t. fw. For
this purpose, we derive an estimator p̂j for pj such that:

p̂j=
1

n

n∑
i=1

φj(f
wi)≈E[Zj]=pj, (2)

where {fwi}i=1,...,n is the collection of sampled deterministic
networks.

We want p̂j to satisfy a priori statistical guarantees. Namely,
for an arbitrary absolute error bound 0<θ< 1 and confidence
0<γ≤1 (i.e., the probability of producing a false estimate), the
following must hold:

P(|p̂j−pj|>θ)≤γ. (3)

Chernoff bounds [Chernoff, 1952] are a popular technique to
determine the sample size n required to satisfy (3) for a given
choice of θ and γ. Specifically, the estimate p̂j after n samples
satisfies (3) if

n>
1

2θ2
log

(
2

γ

)
. (4)

These bounds are, however, often overly conservative, leading to
unnecessarily large sample size. Tighter bounds were formulated
by Massart [1990], where the sample size depends on the
unknown probability to estimate, pj. In particular, Massart
bounds require only a small fraction of samples when pj is close
to 0 or 1, but are not directly applicable for their dependence
on the unknown pj value. Jegourel et al. [2018] solve this issue
by extending Massart bounds to work with confidence intervals
for pj instead of pj itself. For arbitrary 0<α<γ, let Ipj =[a,b]
denote the 1 − α confidence interval for pj obtained after n
samples. Then, (3) holds if n satisfies

n>
2

9θ2
log

(
2

γ−α

)
·


(3b+θ)(3(1−b)−θ) if b<1/2

(3(1−a)+θ)(3a+θ) if a>1/2

(3/2+θ)2 otherwise
. (5)

We employ a sequential probability estimation scheme to solve
Problem 1 and 2, which utilizes the above bounds to determine,
after each sample, if the current estimate provides the required
guarantees (given by parameters θ, γ, and α). By applying a
sequential scheme, we crucially avoid unnecessary sampling be-
cause the analysis terminates as soon as the statistical guarantees
are met. This considerably improves the efficiency of our method,
given that drawing of each Bernoulli sample entails solving a
potentially computationally expensive NN verification problem.

The estimation scheme is outlined in Algorithm 1 and works as
follows. At the n-th iteration, we sample a weight vector w from
the posterior and, only for Problem 2, the class of the test input
m(x∗) (lines 4-5). The n-th Bernoulli sample (variable SAT in
line 6) is obtained by applying a suitable deterministic verification
method (see Section 5.2) on fw. After updating the number of
successes k and trials n (line 7), we use these to update the estima-
tor p̂ (line 8) and compute a 1−α confidence interval Ip for the
robustness probability (line 9). We use Ip to derive the sample size
nM as per the Massart bounds of Equation (5) (line 10), and up-
date the number of required samples to nmax=dmin(nM ,nC)e

(line 11), where nC is the sample size computed as per (4), in
line 1 of the algorithm. In other words, we select the best between
Chernoff and Massart bounds, as Massart bounds are tighter than
Chernoff bounds when p̂ is close to 0 or 1, but Chernoff bounds
perform better when p̂ is close to 0.5. If n≥nmax, we return p̂,
which is guaranteed to satisfy (3). Otherwise, we iterate over an
additional sample. Concrete values of the Chernoff and Massart
bounds for our experiments are reported in the Appendix.

Algorithm 1 BNN robustness estimation
Input: x∗ – test point, T – search space for adversarial inputs,
f – network architecture, p(w|D) – posterior on weights, φ –
property (φ1 or φ2), θ,γ,α – Massart bound parameters
Output: p̂ – robustness probability estimator satisfy-
ing (3)

1: nC← number of samples by Chernoff bounds (4)
2: nmax←dnCe; n,k← 0, 0
3: while n<nmax do
4: w← sample from p(w|D)
5: m(x∗)← sample class from (1) (only for Problem 2)
6: SAT← verify φ over fw as per §5.2
7: k←k+SAT; n←n+1
8: p̂← k/n
9: Ip← CONFIDENCEINTERVAL(1−α, k, n)

10: nM← samples num. by Massart bounds (5) using Ip
11: nmax←dmin(nM ,nC)e
12: end while
13: return p̂

5.2 Verification of Deterministic NNs
Our estimation algorithm is independent of the choice of T and
the deterministic verification method used. Below we describe
two configurations that are relevant for robustness analysis of
real-world BNNs.

Robustness to Bounded Perturbations. In this configuration,
T is defined as a ball around the input test point x∗. We check
whether there exists x∈T such that φj holds for the deterministic
NN, fw. The verification is parametrised by ε, the radius of T .
We apply the reachability method of Ruan et al. [2018] that com-
putes a safe enclosure of the NN output over T , along with two
points in T that respectively minimize and maximize the output
of fw over T . Note that the worst-case input over all points in T
is one of these two extremum points: for Problem 1, it is the point
with the largest likelihood discrepancy from x∗; for Problem 2,
it is the point that minimizes the likelihood of the nominal class
m(x∗). Thus, we can proceed to verify φj by simply checking
the property for the corresponding worst-case input.

Robustness to Adversarial Attacks. We seek to assess the
vulnerability of the network against known attack vectors. We use
the white-box methods by Goodfellow et al. [2014] and Madry
et al. [2017]. These work by building the network gradient and
transversing the input space toward regions of reduced classifi-
cation confidence. Both are parameterised by an attack strength
parameter ε, used to scale the gradient magnitude. Note that the at-
tack is applied to each realisation of the BNN, and as such each at-
tack vector is optimized specifically for fw, for eachw∼p(w|D).



HMC VI MCD

Figure 1: On the left are two images from the MNIST dataset with the features to be tested outlined in red. The three central columns contain the
heatmaps showing the robustness probabilities (as per Problem 1) for different values of ε (x axis) and δ (y axis) for fully connected BNNs trained
with HMC, VI and MCD. On the right are 3D surface plots of the heatmaps with the position of the surfaces projected onto the yz-axis so that the
heatmaps are easily comparable.

6 Results
We evaluate our method on different BNN architectures trained
with different probabilistic inference techniques (HMC, VI, MCD
– see Section 3). In Section 6.2, we analyse robustness to bounded
perturbations for a two-class subset of the MNIST dataset. In
Section 6.3, we report results for adversarial attacks on the full
MNIST dataset and a subset of GTSRB. Finally, we empirically
compare results for Problems 1 and 2 in the Appendix for the
case of MNIST classification.

6.1 Experimental Settings
We focus our experiments on BNNs with ReLU activation
functions and independent Gaussian priors over the weights.

In Section 6.2 we train a fully conneted network (FCN) with
512 hidden nodes on a two-class subset of MNIST (classes one
and seven) and then in Section 6.3 we use the entire dataset.
Also in Section 6.3, we analyse a two-layer convolutional BNN
on a two-class subproblem of GTSRB (examples of the two
classes can be seen in the left column of Figure 3). Namely,
the convolutional layer contains 25 filters (kernel size: 3 by 3)
followed by a fully-connected layer of 256 hidden nodes. Overall,
this Bayesian CNN is characterised by over four million trainable
weights. Unfortunately, applying HMC to larger networks is
challenging [Neal, 2012].

For the statistical estimation of robustness probabilities, we
used the following Massart bounds parameters: θ = 0.075,
γ = 0.075 and α = 0.05. Details on training procedures and
hyperparameters are included in the Appendix.

6.2 Robustness to Bounded Perturbations
Figure 1 depicts the results obtained for Problem 1 on two
input images randomly selected from the subset of the MNIST
dataset, when relying on Ruan et al. [2018] for the deterministic
verification sub-routine. The input region T is defined as a

hyper-rectangle with edge length ε around the reference test
image x∗. In view of scalability limitations of the underlying
deterministic method, we restrict the evaluation to the feature
highlighted in red in the left column of Figure 1. We investigate
how the robustness probability is affected by variations of ε and δ.

First of all, note that the estimated robustness decreases as
ε increases and/or as δ decreases, as these respectively imply
larger regions T and/or tighter constraints on the BNN output
values. Interestingly, even in this simple network, the robustness
profile strongly depends on the approximation method used for
computation of the BNN posterior. In fact, for HMC and VI
(respectively second and third column of the figure) we observe
smooth changes in the robustness probability w.r.t. ε and δ, where
these changes are quantitatively more prominent for HMC than
for VI. As with HMC no assumption is made on the form of the
posterior distribution, this quantitative robustness difference might
suggest that the normality assumption made by VI during training
is not sufficient in adversarial settings – i.e. as the model is pushed
toward corner-case scenarios. In turn, this could make the BNN
vulnerable to low-variance adversarial examples [Grosse et al.,
2018]. On the other hand, MCD (fourth column of Figure 1) is
characterised by an almost deterministic behaviour with respect to
Problem 1, with estimated robustness probabilities sharply mov-
ing from 1 to 0. This is especially visible when compared with the
other two inference methods (fifth column of Figure 1). As the ac-
curacy scores obtained by the three methods are similar, our results
seem to suggest that the BNNs trained by MCD behave almost
deterministically with respect to probabilistic robustness. Again,
this may be due to the fact that, in adversarial settings, the MCD
approximation could lead to an underestimation of model uncer-
tainty. Underestimation of the uncertainty for MCD has also been
observed in non-adversarial settings by Myshkov et al. [2016].



Figure 2: On the left we show two samples from the MNIST training data set. In the center, each violin plot comes from the estimated robustness
of 50 different input samples from Bayesian FCNs (the same for each violin) for varying values of ε in Problem 1. On the right, we plot robustness
to inform model selection and can observe that MCD robustness peaks are centred at 0 and 1, whereas VI and HMC are more centred.

Figure 3: On the left we show examples from the two classes tested. In the center, we explore the effect of attack strength on the probabilistic
robustness of Bayesian CNNs trained on GTSRB using Problem 2. On the right, we plot the accuracy of samples from network posteriors. This
information may be used to reason about model selection.

6.3 Robustness to Adversarial Attacks
We analyse the resilience of Bayesian CNNs against adversarial
attacks. As robustness of convolutional neural networks is
generally defined in terms of misclassification, we provide results
for Problem 2.

MNIST
In Figure 2 (central column) we inspect how the BNN behaves un-
der gradient-based attacks with respect to varying attack strength
parameterized by ε. The empirical distribution of robustness val-
ues (1-p2) shown in the violin plots was estimated by performing
statistical verification on 50 images randomly selected from the
MNIST test dataset (the empirical average and standard deviation
are respectively depicted by a dot and a line centred around it).
Results serve to buttress the observations made in the previous
section. Again, we see that robustness values for VI and, espe-
cially, MCD are more stretched toward 0-1 values, compared to
those obtained for HMC. Interestingly, for strong attacks (i.e. high
values of ε), this leads to relatively higher robustness for MCMC,
while small strength attacks consistently fail for MCD. Thus, it
appears that MCD could be a valuable alternative to MCMC for
relatively weak attacks, but may quickly lose its advantage for
strong attacks. Notice that HMC is the only method consistently
showing high probability density around the mean value, suggest-
ing that the uncertainty estimation obtained from the posterior
could be used in these cases to flag potential adversarial inputs.

Figure 2 (right column) shows how knowledge of network
robustness can be used to select models according to the desired
levels of prediction robustness and accuracy. For example, if
one is not concerned with corner-case scenarios, then standard
accuracy maximization would have us choose MCD; however,
in a case where we are making risk-sensitive decisions, then
we might prefer a model that captures a more complete
approximation of uncertainty under an adversarial framework,
hence trading accuracy for robustness.

Finally, we remark that the computational time required for
the statistical verification of an image averages 120 seconds in
the experiments here provided.

GTSRB
Figure 2 (central column) depicts robustness results of CNNs
trained on the two-class GTSRB dataset, for different values of
attack strength ε. We find that the CNNs tested are generally
less robust than FCNs used for MNIST. This finding is in line
with observations of previous works [Carlini and Wagner, 2016].
Here, a noticeable difference with the robustness values obtained
for MNIST (see Figure 2) comes at large values of ε, where the
robustness in Figure 3 does not tend to zero for HMC and MCD.
This is due to the fact that, in Problem 2 we are sampling from
the Multinoulli distribution, with parameters given by the softmax
activation values (see Equation (1)). As such, even if an adversary
affects the output, the network may still predict the correct class



with probability equal to the confidence assigned to that class by
the network with respect to the adversarial example. In turn, since
the BNNs trained with VI are overconfident in their predictions
in this setting, the robustness values obtained for VI quickly drop
to zero as ε increases. Further experimental results demonstrating
robustness characteristics of Problem 2 compared to Problem 1
are given in the Appendix.

7 Conclusion
We introduced probabilistic robustness for BNNs that takes into
account both model and data uncertainty, and can be used to
capture, among other properties, the probability of the existence
of adversarial examples. We developed a sequential scheme to
estimate such a probability with a priori statistical guarantees
on the estimation error and confidence and evaluated it on fully
connected and convolutional networks. Our methods allows one
to quantify the tradeoff between accuracy and robustness for
different inference procedures for BNNs. We believe our work
represents an important step towards the application of neural
networks in safety-critical applications.
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Appendix: Experimental Settings
We report details of the training procedure for the three inference
methods analysed in the main text.

HMC. We utilised the implementation of HMC provided in the
Edward Python package [Tran et al., 2016]. We used an update step size
of 0.01 and the numerical integrator was given 5 update steps per sample.

The Gaussian priors on the convolutional filters were set to have mean
1 and variance 0.01 and the Gaussian priors of the fully connected layer
were centred at 0 with variance 1.

The fully connected network for MNIST obtained roughly 87%
accuracy on the test set. The CNN trained on the GTSRB dataset
comprises about 4.3 million parameters, and reaches around 92%
accuracy on the test set.

VI. For our implementation of this method we again relied on the
Edward Python package [Tran et al., 2016], using minimisation of the
KL divergence. For the network on GTSRB we train using a batch
size of 128, and we use the Adam optimizer with a 0.001 learning rate
over 15000 iterations. These parameters are identical to the training
parameters used for MNIST with the exception of training for 5000
iterations with a higher learning rate of 0.01. The priors were set
accordingly to the ones used for HMC.

MCD. In order to choose a dropout value, we grid search the
parameter of the Bernoulli that governs the dropout method and select
the value that gives the highest test set accuracy. This resulted in the 0.5
dropout rate in the BNN used for MNIST, and 0.25 and 0.5 respectively
for the two layers that make up the CNN used for GTSRB.

Appendix: Number of Posterior
Samples for Robustness Probability Estimation
Figure 4 shows the number of BNN posterior samples required such
that the estimated robustness probability satisfies the following statistical
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Figure 4: Number of posterior samples (y axis) required in our estimation
scheme as a function of the robustness probability. We consider the
best of Massart (blue) and Chernoff (orange) bounds. Parameters are
θ=0.075, γ=0.075 and α=0.05.

guarantees: error bound θ=0.075 and confidence γ =0.075. These
are the parameters used in all our experiments.

Recall from Section 5 that in our estimation scheme the number of
samples n depends on the true probability value p, and that we employ
a more conservative version of the Massart bounds that use the (1−α)
confidence interval for p, Ip=[a,b], instead of p itself, which is obviously
unknown. The x axis of the plot indeed does not represent the true value of
p, but it represents one of the two extrema of Ip (awhen a>0.5, bwhen
b<0.5, see Equation (5)). Indeed we observe that, for probabilities ap-
proximately between 0.23 and 0.79, the probability-independent Chernoff
bounds are tighter than the (conservative) Massart bounds. Nevertheless,
for probability values close to 0 or 1, the Massart bounds are considerably
less conservative than the Chernoff bounds, which require 292 samples.
For instance, with the above parameters and α=0.05, when b<=0.1
we need at most 171 samples, and, when a>=0.9, at most 181 samples.

Appendix:
Quantitative Difference between Problem 1 & 2
In Figure 5, we extend the tests on robustness to bounded perturbations
that appear in Figure 1. It is easy to see that solving Problem 2 is, in some
sense, similar to solving Problem 1 with an implicit value of δ, where
that value is approximately the value needed to yield a misclassification.

Figure 5: We highlight the difference between Problem 1 (left plots
for varying values of δ) and Problem 2 (right plot, value for 1−p2). To
generate the statistics in this plot we extended the reachability analysis
for MNIST shown in Figure 1. We observe that Problem 1 approaches
the value of Problem 2 as we increase δ.
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