Abstract.
Stochastic modeling and algorithmic verification techniques have been proved useful in analyzing and detecting unusual trends in performance and energy usage of systems such as power management controllers and wireless sensor devices. Many important properties are dependent on the cumulated time that the device spends in certain states, possibly intermittently.We study the problem of verifying continuoustime
Markov chains (CTMCs) against linear duration properties (LDP), i.e. properties stated as conjunctions of linear constraints over the total duration of time spent in states that satisfy a given property. We identify two classes of LDP properties, eventuality duration properties (EDP) and invariance duration properties (IDP), espectively referring to the reachability of a set of goal states, within a time
bound; and the continuous satisfaction of a duration property
over an execution path. The central question that we address is how to compute the probability of the set of infinite timed paths of the CTMC that satisfy a given LDP. We present algorithms to approximate these probabilities up to a given precision, stating their complexity and error bounds. The algorithms mainly employ an adaptation of uniformization and the computation of volumes of multi-dimensional
integrals under systems of linear constraints, together with
different mechanisms to bound the errors.
|